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DIAGONAL EQUATIONS OVER LARGE FINITE 
FIELDS 

CHARLES SMALL 

0. Introduction. We consider polynomials of the form 

/ = £ a,xf 
7 = 1 

with non-zero coefficients at in a finite field F. For any finite extension 
field K 3 F, let / # :£" -» AT be the mapping defined by / . We say / is 
universal over AT if/^ is surjective, and / is isotropic over ^ if fK has a 
non-trivial "kernel"; the latter means/K(X) = 0 for some 0 ¥= x e AT". 

We show (Theorem 1) that / is universal over K provided \K\ (the 
cardinality of K) is larger than a certain explicit bound given in terms of 
the exponents dh . . . , dn. The analogous fact for isotropy is Theorem 2. 

It should be noted that in studying diagonal equations 

2 atxf = b 
i = \ 

we fix both the number of variables n and the exponents dh and ask how 
large the field must be to guarantee a solution. This is in contrast to the 
usual approach in additive theory, where one asks how large n must be, 
compared to the dh to guarantee solubility independent of the field. (An 
example is Chevalley's theorem, discussed briefly in 18 and 20 below.) 

Theorems of the type given here are known, but usually in qualitative 
versions asserting simply that any diagonal equation 

2 a,xf = b 
/ = i 

over a finite field K has a solution (and when b = 0 a non-trivial solution) 
provided K is sufficiently large. What seems not to be spelled out 
anywhere in the literature (although the results, at least in the prime-field 
case, are well known to the experts) are explicit bounds which answer the 
question, how large does K have to be to ensure that / is universal, or 
isotropic, and which apply to arbitrary diagonal equations without any 
supplementary hypotheses. It is somewhat surprising that such results 
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250 CHARLES SMALL 

have escaped explicit notice, since (as we shall see) they are rather easy 
consequences of well-known estimates related to the so-called Riemann 
hypothesis for varieties defined over finite fields. For earlier results along 
these lines see [13] particularly Theorem 7, [2], [15], [4], and of course the 
pioneer work in this area, [17]. 

1. Statement of the main results. 

THEOREM 1. Let K 2 F be finite fields and let 

with a\û2 . . . an ^ 0. / = 
n 

2 a,xf e F[XU . . ., X„ 
7 = 1 

Assume n = 2 and for each i put 

«,- = g.c.d.(4, |tf| - l). 

/ / 

i*i > n (8,--1)2^-') 

then f is universal over K. 

THEOREM 2. Let K, F,f and6t be as in Theorem 1, assume n = 3, and put 
\K\ = q. If 

q"-] - 1 J_ 
(q ~ \)q("/2)~] > ~D 21 (no-« , - ) ) 

1 = 0 X Sill 7 

where D = 1x^=1 $i then f is isotropic over K. 

In the right-hand side of the inequality in Theorem 2, the usual 
conventions apply: <5Z|0 for all /, and empty products are 1. The expression 
on the left-hand side of the same inequality is asymptotic to q^n/2)~\ and 
therefore (for n ^ 3) goes to oo with q. Thus, Theorem 2 does say tha t / i s 
isotropic over K as soon as |A |̂ is larger than a certain bound given 
explicitly in terms of the exponents d\, . . . , dn off provided n = 3. 

Since the homogeneous case d\ = ^ = . . . = dn = d, say, is of 
particular interest, we record the appropriate special cases of Theorems 1 
and 2: 

COROLLARY 3. Let K 3 F be finite fields with 

n 

\K\= q, / = 2 a,xf G F[Xh...,Xn] 
1 = 1 
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with a\a2 . . . an i= 0, and put 

8 = g.cA.(d, \K\ - 1). 

Then: 
(a) / / « è 2 a«J |£ | > (ô - l)2 w /(w-^ then fis universal over K, and 
(b) if n ^ 3 tfttd 

" - 1 - 1 ô - 1 
> (4 - \)<£n/2)~x 8 

then f is isotropic over K. 

((Ô - if-1 + ( - î r ) 

It is perhaps not immediate (although it is true) that Corollary 3 (b) is a 
special case of Theorem 2. In Section 2 we indicate a proof of 3 (b) 
independent of Theorem 2 (see Corollary 10). 

Before proceeding to the proofs of Theorems 1 and 2 we indicate some 
additional corollaries; further consequences and examples are discussed in 
Section 3 (13 through 21). 

COROLLARY 4. Given a positive integer d choose n = n(d) large enough to 
ensure 

(d ~ l)2n/(»-1) < (d - l)2 + 1, 

and let 

n 

7 = 2 M f where 0 * at ^ Q. 

Let K be a finite field with \K\ > (d — l)2 and with p { #z V /, where p = 
char*. {Here p \ at means p divides neither numerator nor denominator of a; 
in lowest terms.) Then f is universal over K. 

Proof. Since p = char* divides none of the at we can read these 
coefficients as non-zero elements of K. Thus Corollary 3(a) applies, and 
since \K\ > (d — l)2 implies 

|tf| ^ (d - l)2 + 1 > (d - l)2"^"-1) ^ (8 - lfn/(n-\) 

where 8 = g.c.d.(d, \K\ — 1) we conclude that fis universal over K. 

COROLLARY 5. Let d be a positive integer and K a finite field. If \K\ > 
(d - l)2 then every element of K is a sum of d powers. 

Proof. Apply Corollary 4 to the case where all the af are 1. 

A remark at the end of this section shows that (d — l)z is best possible 
in Corollary 5. 
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For any finite field K and positive integer d let K(d) denote the set of all 
sums of dth powers in K. It is an easy exercise to see that K(d) is a subfield 
of K and Corollary 5 shows that, for fixed d, K(d) = K except possibly for 
finitely many K with \K\ ^ (d — l)2. It is known [16] that, whenever K(d) 
= K, every element of K is in fact a sum of S dth powers where 

S = g.c.d.(4 \K\ - 1) ^ d. 

For large finite fields this can be improved: 

COROLLARY 6. Let d be a positive integer and K a finite field. If\K\ > (d 
— I)4 then every element of K is a sum of two d powers. More precisely and 
more generally, if\K\ > (S — l)4 where S = g.c.d.(d, |A |̂ — 1) then any f = 
d\X\ + a2X2, with 0 ^ ^1^2 ^ K, is universal over K. 

Corollary 6 is just a special case (n = 2) of Corollary 3(a). This special 
case was noted in [12] and proved there by a technique which generalizes 
immediately to prove Theorem 1 as in Section 2 below. Corollary 6 is best 
possible in the sense that there are arbitrarily large finite fields, for 
example the prime fields Fp with;? = 1 (mod d), in which it is not true that 
every element is a single dih power; indeed, there are only (p — \)/d 
non-zero d powers in F^. 

The subfield K(d) can easily be characterized in general (compare 
[1]): 

PROPOSITION 7. Let K be a finite field with \K\ = q = pn (p prime, n ^ 1) 
and let d be a positive integer. Then \K(d) \ = pm where m is the smallest 
divisor of n such that (q — l)/g.c.d.(d, q — 1) divides pm — 1. 

The proof of Proposition 7 is an easy exercise: note that K(d) 
is characterized as the smallest subfield of K containing the subgroup 
{xd\0 =/= x <E K) of the (cyclic) multiplicative group of non-zero elements 
olK. 

It follows from Proposition 7, for example, that with d = p + 1 and \K\ 
= p we have K(d) = Fp Ç K. Thus in every characteristic, the conclu
sion of Corollary 5 fails if we have \K\ = (d — l)2 rather than \K\ > 
id - If. 

2. Proofs of theorems 1 and 2. Consider 

/= 2rf 
with 0 ^ axa2 . . . an <= F Q K as in the Introduction. For b G K let TV(b) 
= \fK\b) | ^ 0 be the cardinality of {x G Kn\f(x) = b). Thus N(b) is 
the "number of times / represents b" over K; fis universal over K if and 
only if N(b) > 0\/ 0 =/= b Œ K, and / i s isotropic over K if and only if 7V(0) 
> 1. 
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For each i(\ ta i ta n) put 

Si = g.c.d.(4 |tf| - 1). 

Since the multiplicative group of K is cyclic of order |*| — 1 we have 

{xd'\0 * x G K) = {xô<|0 * x e K). 

Thus changing the dt to Sl changes the mapping fx'.K" —» K without 
changing its image; in particular the N(b), b <E K, are not affected. It is 
for this reason that Theorems 1 and 2 are expressed in terms of the 5Z 

rather than the dt. 
Theorem 1 will follow from the following classical estimate: 

PROPOSITION 8. With n = 2 and notation as above we have, for all 0 ¥= b 
e K, 

\N(b) - qn'x\ ^ (11(0, - l ) ) ^ - 1 ) 7 2 

where q = \K\. 

A proof of Proposition 8, via Gauss and Jacobi sums, can be found in 
[6] where it appears as Corollary 1 on p. 57. 

From Proposition 8 we have, for any 0 ¥= b e K, 

N(b) -<?"-' â - (il (Si- 1 ) ) ^ - 1 ) / 2 . 

Hence 

N(b) i£ 9 C-i ) /2 ( 9 0- i ) /2 - f l (fi. - l) ) , 

and N(b) > 0 provided 

^ - • ) / 2 > n ( ô ; - 1 ) , 
i=\ 

which (for n > 1) is the same as 

g > II (.St- \ ) 2 / i n ~ ] ) . 

This proves Theorem 1. 
In order to give the analogue of Proposition 8 for b = 0 from which 

Theorem 2 will follow, we need a little more notation. Given integers n 
and Sj, . . . ,SW, all ^ 2, put 
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J = / ( Ô , , . . . , ô „ ) 

= U = Uu--.Jn) e Z " | 1 ^ 7 , ^ 5 , - 1 V / } . 

Fo r ; = (;,, . . . ; „ ) e / define 

w(j) = 2 ji/8ï, 
i=\ 

thus w:/ -> Q. Put 

I = I(8h...98n) = W-J(Z) 

= {7 G / I w(j) G Z}. 

I am indebted for the following result to Professor Richard Stanley of 
M.I.T. 

LEMMA 9. 

1/1=^ SÏlIo-a*)) 
D /=0 v 8k\l ' 

where D = 11^=1 Sk. 

Proof. Let f be the primitive Dth root of unity e27Tl/D and for each k = 1, 
2 , . . . , « put 8^ = Z>/ô^. For any positive integer / we have 

D-\ 

(i - r> 2 ?l = o, 
/=o 

so that 

/ ^ Dy t" - (D i i D U 

{*> ,-fo " \ 0 i f£){r " 

For j = (y , , . . . ,j„) e / we have 

w(y) = (È,jkôk)/D, 

A 

hence j e / if and only if D\ Zij^S^ if and only if 

n 

A : = l 

Thus for y = (jh . . . ,jn) G / w e have 

1 D l s, A 
i — _ V syztik8k\t x ~ n ^ u ' ' 
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A 

For j = O'i,... ,j„) e J,jr £ I, on the other hand, we have D f Zjk^h 
hence (by (*) ) for such j , 

1 D " ' v A 

D /To 

Therefore 

<• *) i/i = ^ °2 2 (My 

where the unlabeled sum is over ally = (j\, . . . Jn) e / . The right-hand 
side of (* *) is just 

i 0 - i n 8k-\ A 

y: 2 n 2 f5*"", 
V / = 0 £ = i m = i 

and since ^k is a primitive 8k root of unity, we can use the analog of (*) 
to evaluate the inmost sum: 

Ô A - 1 A 

2 fVm = 8* - 1 if ô,|/, - 1 if 8k \ I 
m=\ 

Hence, if we let fi(l) be the number of k for which 8k \ /, we get from 
(* *): 

1 / 1 = ^ 2 V 1)^11 (8,-1), 
V /=o 5,|/ 

which is clearly the same as the result as stated. 

COROLLARY 10. In the homogeneous case, 8\ = 82 = . . . = 8n = 8, we 
have 

\I\ = | / ( 5 , . . . , 5) I = 8-^ ((« " 1)"- ' + ( " ! ) " ) • 

Proof. This can be extracted from Lemma 9 as a special case. It can also 
be proved by induction on n\ see [10], Lemma 6D, p. 169. 

The analogue of Proposition 8 for b = 0 is: 

PROPOSITION 11. With notation as above (f = 2 ^ 1 ai^1\ n = 2, 0 ¥= 
#1^2 . . . an <E F Q K, \K\ = q, 8, = g.c.d.(dz, q — 1) ) we have 

\N(0) - qn~l\ ^ \I\(q - \)q{n/2)~x 

where I = I(8\, . . . , 8n) 
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A proof of Proposition 11 can be found in [6] where it appears as 
Corollary 1 on page 54. 

COROLLARY 12. With notation as in Proposition 11 we have 

\D-\ 
(a) \N(0) - q»~x\ ^ 1 2 ( n o - * , - ) ) \(q- Dén/2)~l 

*=0 Hi* 

where D = Yli=\ 8f 

(b) \N(0) - f~\ Si 8—^((S - l ) " " 1 + ( - 1 ) " ) ( ? " \)q('"2)-X 

in the homogeneous case 8\ = 82 = .. . = 8tl = 8 and 
(c) N(0) = qn~x in the "antihomogeneous" case where one of the 5, is 

relatively prime to all the others. 

Proof. For (a) and (b), combine Proposition 11 with Lemma 9 and 
Corollary 10 respectively. Part (c) follows from Proposition 11 and the 
fact, noted in [6] and easily verified, that / is empty in the antihomogen-
eous case. 

We can now prove Theorem 2. From Proposition 11 we have 

N(0) - qn~x â - \I\(q - l)Jn/2>-\ 

so that N(0) > 1 provided 

qn~x - \I\(q - \)q{n/2)~x > 1, 

that is, 

qn~x - 1 
(q ~ l ) ^ " ' 2 ) " 1 > |/|. 

Using Lemma 9 to evaluate |/| we get Theorem 2, since/is isotropic if and 
only if 7^(0) > 1. 

Note that the parameter |/| = |/(Si, . . . , 8n) | which intervenes in the 
above results can be interpreted as the degree of the numerator of the zeta 
function of 

see [7], Corollary 2. 

3. Examples and remarks. 

13. From Corollary 10 we see that for 8 = 2 and n odd, 
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1/(8,. . . , S) | = 0. 

It then follows from Proposition 11 that when n is odd the equation 

n 

S atx] = o 
7 = 1 

has exactly \K\"~] solutions in any finite field K. In particular, we recover 
the familiar fact that a\Xx + a2X2 + #3^3 *s isotropic over any finite 
field (see [11], Corollary 2 of 1.2.2). From Corollary 3(a) we recover the 
(equivalent) fact that axXx 4- a2X2 is always universal. 

14. Theorem 2, stated for n = 3, is true (by the same proof) for n = 2 as 
well, but it collapses in this case to the statement that axX\l + #2^2 *s 

isotropic over K when / = I(8h 82) is empty, since 

ta-D^-' = 1 when" = 2-
This is weak since Proposition 11 implies N(0) = qn~l whenever / is 
empty. The statement "2"=i a^1 is isotropic over all sufficiently large 
finite fields", true for n ^ 3 by Theorem 2, is in fact false for n = 2. 

2 2 (Example: Xx + X2 is isotropic over K if and only if — 1 is a square in K, 
if and only if \K\ = 1 (mod 4), so there are arbitrarily large finite prime 
fields F^ over which Xx + X2 is isotropic and arbitrarily large finite 
prime fields F^ over which it is not.) 

15. The homogeneous example/ = a\X\ + ^2^2 + ^3^3 is consid
ered in detail in [9]. Corollary 3(a) guarantees/is universal over any finite 
field with more than 27 elements, and Corollary 3(b) guarantees / is 
isotropic over K if \K\ = q satisfies (q + 1)/ \fq > 6. The smallest integ
er q satisfying this inequality is 34, and since q must be a prime power we 
conclude/is isotropic except possibly for q ^ 32. However if q ^= 1 (mod 
4), / is equivalent to either a\Xx + #2^2 + #3^3 or a\X\ + a2X2 

+ #3X3 (replace d = 4 by S = g.c.d.(4, q — 1) ), both of which (as we have 
already seen) are isotropic over any finite field. 

Thus a\X\ + a2X2 + a^X^ is isotropic over all finite fields with more 
than 29 elements. For this particular example (n = 3, d = 4) the result 
thus obtained by Corollary 3(b) is best possible, since X\ + X\ + X\ is 
anisotropic over F29. 

16. One application of theorems of the type discussed here, on diagonal 
equations over finite fields, is to similar equations over^-adic fields, for a 
basic technique in studying yè-adic fields is to use tools like Hensel's 
lemma to lift information from the (finite) residue class fields. In [3], for 

https://doi.org/10.4153/CJM-1984-016-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1984-016-6


258 CHARLES SMALL 

example, the ternary form/ = axd + byd 4- czd is considered, where a, b, c 
are non-zero elements in the field with q elements, and [17] is cited for the 
fact that fis isotropic provided q > d4. Applying Corollary 3(b) we see 
that in fact fis isotropic provided 

q2 - 1 d - \ 
> 

which amounts to 

q+ 1 

((d- l)2 ~ l ) , 

Vq 
>(d~ \)(d - 2). 

Putting m = (d — \){d — 2) and applying the quadratic formula we 
conclude fis isotropic provided 

m + rnynr — 4 
q > <KJ) = - 1. 

This is a clumsier criterion to write down than q > d4, but it does 
give significantly lower estimates. Indeed, for large d (hence large m), 

ym1 — 4 is roughly m, so that 4>(d) is roughly m2 — 1, or d4 — 6d3 + 
13d2 - I2d + 3, and 

lim (d4 - <f>(J) ) = oo 
d—>oo 

(like 6d3). 

17. Let 

7 = 2 0/Af'', 0 ^ ala2 . . .an Œ F Q K, 

\K\ = q, n ^ 2, and ôz = g.c.d.(Jz, ^ - 1), 

as above. If any two of the 87 are relatively prime then/ i s isotropic over K. 
In particular, if any two of the dt are relatively prime then / is isotropic 
over every finite field containing F. To see this, assume without loss of 
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generality that g.c.d.(ôb ô2) = 1. Then by Corollary 12 (c) we have that 
a\X\] + a2X2 has exactly q zeros in Ky and in particular is isotropic; but 
then so i s / . 

18. A famous theorem of Chevalley (see [5, 10 Section 2] or [11, I, 2.2] ) 
asserts that 2/*=i fl/Ay(0 ¥= a\ a2 . . . an e F) is isotropic over every finite 
field AT containing F provided n > max dt. In [14] the homogeneous case is 
improved as follows: with exactly one exception (\K\ = p prime and d = p 
— 1), 2/7=i 0/A7 is isotropic over every finite field K 3 F provided n ^ (d 
+ 3)/2. Thus for a fixed positive integer d, if we leave aside the one 
exceptional case noted above, the largest n for which an anisotropic form 

\d + 2 

2 . 
2"=i 0/A7 can exist is n . This explains for example why, 

when d = 4, the case « = 3 is the one of interest (cf. 15 above); in general 

the interesting case for isotropy off= 2"=i fl/A"/ is « = —-— 

Moreover, this form / is of interest primarily over fields K with \K\ = 1 
(mod J), for over a field A' not satisfying this congruence, fis equivalent to 
a form 2"=i fl/A^ with smaller exponent 

8 = gx.d.(J, 1̂ 1 - 1). 

Now Corollary 3(b) gives a criterion (provided d ^ 4) for / to be isotropic, 
and shows that if/fails to be isotropic over a field K then \K\ = g must 
satisfy 

(*) % • ,-.(„_,,[*]_,_„[!]). 
(« - ')«' 2 :]/2 

We are thus led to the following question: Given d > 4, let g be the largest 
\d + 21 

prime power satisfying (*) and q = 1 (mod d), and put n = —-— . 
Is there an anisotropic form 2 f = i a^xf over F^? (For d = 4 we have g = 
29 and n = 3, and the answer is yes: see 15 above.) 

This is a precise formulation of the question whether the bound given in 
Corollary 3(b) is best possible in general. Note that the left side of the 
inequality (*) is asymptotic to 

r,/-9l 
j / 2 
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and the right side is very nearly 

\d±2] 
(d - 1)1 2 J 

so that the size q of the field of interest in this question is 
approximately 

Ud - l)"\2/("- •2) 

where n 

For example d = 12 gives n = 1 and g = 305. 

19. An amusing example arises when we consider/ = 2 / = i ai^i o v e r 

fields A with q = |A:| satisfying (4 - l)|d. Since x J = 1 for all 0 * x <E A, 
the mapping fx'.fC1 —> A' defined b y / c a n be defined as follows: let a = 
( Û I , . . . , Û W ) be the vector of coefficients o f / and for each x = 
(x\, . . . , xn) e Kn define the "reduction" x' of x by x' = (x\, . . . , x'n) with 
x[ = 0 when xt = 0, x\ = 1 when xt =/= 0. Then /^(x) is the inner 
product 

a • x - 2 ÛLX-. 

Thus / i s isotropic if and only if 

2 at: = 0 

. , «} . Also/represents a non-zero for some non-empty subset 71 of {1, 
element b if and only if 

for some subset T(b) of {1, . . . , n }, and / i s universal if and only if there is 
such a subset T(b) for each 0 ¥= b e K. 

In one special case it happens that all non-trivial forms 27= l ai^i' 
are of the type just discussed, namely when q — 1 is a prime p. (Of course, 
this forces q to be 3 or a power of 2, and characterizing such q is 
a notorious unsolved problem.) In this case q — 1 = /?, given any form 
2/l=i cijXj1 and setting 

S, = g.c.d.(<4 q - 1) 
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as usual, we have (for each /') either 8t = 1 or 8t = p. If ô, = 1 for some i 
things are trivial, and if S, = p for all i we are in the "geometric" (or 
"combinatorial") situation described above. 

20. A variant of Chevalley's theorem due to Morlaye [8] is perhaps 
worth mentioning here as it seems not to be widely known: 

/ = £ atf 

is both universal and isotropic (over all finite fields K containing the 
coefficients a,) provided 

n 

2 Mdi > 1; 
/ = i 

in fact for any b e K the number of solutions in Kn t o / = b is divisible by 
charicT. In the homogeneous case this is precisely Chevalley's theorem but 
in non-homogeneous situations it is sometimes stronger: for example X] 

is universal and isotropic (over all finite fields) by 
Morlaye's Theorem, but Chevalley's Theorem doesn't apply since n = 4 
< 6 = max dj. 

21. In general, universality and isotropy are independent notions, as the 
following simple examples show: over F7, Xx — X2 is isotropic but not 
universal; X] + 2X2 is universal but not isotropic; X] — X2 is both; 

2 
X\ is neither. There are nonetheless some obvious connections: if 

/= Érf 

is universal then 

is isotropic for any b ¥= 0; if 

/ = i atf 
7 = 1 

a n d / 4- bAn+l is isotropic then either / represents —b or / is itself 
isotropic; etc. For specific equations, observations of this type occasional
ly permit use of Theorem 1 (about universality) to derive a result about 
isotroDV which is stronger than what one would get from Theorem 2, and 
similarlv in the other direction. 
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