Best approximation and intersections of balls in Banach spaces

David T. Yost

Let E be a Banach space, M a closed subspace of E with the 3-ball property. It is known that M is proximinal in E, and that its metric projection admits a continuous selection. This means that there is a continuous (generally non-linear) map $\pi: E \rightarrow M$ satisfying $\|x-\pi(x)\|=d(x, M)$ for all x in E. Here it is shown that the same conclusion holds under a much weaker hypothesis on M, which we call the $1 \frac{1}{2}-b a l l$ property. We also establish that if M has the $1 \frac{1}{2}-b a l l$ property in E, then there is a continuous Hahn-Banach extension map from M^{*} to E^{*}.

Introduction

Let M be a closed subspace of a Banach space E. This paper clarifies the relationship between approximative properties of M, and intersection properties of balls pertaining to M. Recall that M is said to be an L-summand (respectively, an M-summand) of E if there is a linear projection Q from E onto M such that $\|x\|=\|Q x\|+\|x-Q x\|$ (respectively, $\|x\|=\max \{\|Q x\|,\|x-Q x\|\}$) for all $x \in E$. If M^{0}, the polar of M, is an L-summand of E^{*}, then M is said to be an M-ideal in E. We say that M has the n-ball property in E if given n closed balls $B\left(a_{i}, r_{i}\right)$ such that $M \cap B\left(a_{i}, r_{i}\right)$ is non-empty for each i, and $\cap_{i=1}^{n} B\left(a_{i}, r_{i}\right)$ has non-empty interior, then $M \cap \bigcap_{i=1}^{n} B\left(a_{i}, r_{i}\right)$ is

Received 27 March 1979.
non-empty. These notions were introduced by Alfsen and Effros [1], who showed that an M-ideal has the n-ball property for every n and, conversely, that any subspace with the 3 -ball property is already an M-ideal.

Let $H(\cdot)$ denote the family of all closed, bounded, convex, and nonempty subsets of a given Banach space. The metric projection $P=P_{M}: E \rightarrow H(M) \cup\{\emptyset\}$ is the set-valued map defined by $P(a)=M \cap B(a, d(a, M))$. Thus $P(a)$ is the set of points in M which are nearest to $a . M$ is said to be proximinal in E if $P(a) \neq \varnothing$, for all $a \in E$. Then a proximity map $\pi: E \rightarrow M$ is any (not necessarily continuous) selection for P. Note that $P(a+x)=P(a)+x$ whenever $x \in M$. We say that a selection π is quasi-additive if $\pi(a+x)=\pi(a)+x$ whenever $x \in M$.

Alfsen and Effros [12 Corollary 5.6] and Ando [2, Theorem 2.1] independently showed that every M-ideal is proximinal. Holmes, Scranton, and Ward [6, Theorem 2.2] improved this by showing that the metric projection onto an M-ideal admits a continuous, homogeneous selection.

We will say that M has the ly-ball property in E if the conditions $a_{1} \in M, M \cap B\left(a_{2}, r_{2}\right) \neq \varnothing$, and $\left\|a_{1}-a_{2}\right\|<r_{1}+r_{2}$ imply that $M \cap B\left(a_{1}, r_{1}\right) \cap B\left(a_{2}, r_{2}\right) \neq \varnothing$. After translating and scaling it is evident that this is equivalent to requiring $M \cap B(0,1) \cap B(a, r) \neq \emptyset$ whenever $M \cap B(a, r) \neq \emptyset$ and $\|a\|<r+1$. Our main result is that every subspace with the $l^{\frac{1}{2}}$-ball property is proximinal, and that its metric projection admits a continuous, homogeneous, quasi-additive selection. In Section 2 we give examples of closed subspaces of Banach spaces which possess the $1 \frac{1}{2}$-ball property. Not all of these subspaces are M-ideals, so our result has wider applicability than that of [6]. We also show that if M has the l $\frac{1}{2}$-ball property in E, then there is a continuous, homogeneous map $\psi: M^{*} \rightarrow E^{*}$ such that each $\psi(f)$ is a norm preserving extension of f. Under additional hypotheses, we are able to establish the Lipschitz continuity and linearity of certain proximity maps and Hahn-Banach extension maps.

Except when specific mention is made to the contrary, scalars may be real or complex. By $C(X, E)$ we denote the Banach space of continuous
functions from the compact, Hausdorff space X into the Banach space E. If S is a sequence space, then $S(E)$ will denote the Banach space of all sequences $\left(x_{n}\right)$ from E such that the sequence $\left(\left\|x_{n}\right\|\right)$ is in S. $B(E, F)$ is the space of bounded, linear operators from E to F, and $K(E, F)$ is the subspace of compact operators. We use d_{H} for the Hausdorff metric on $H(E)$,

$$
d_{H}(A, B)=\sup (\{d(x, A): x \in B\} \cup\{d(x, B): x \in A\})
$$

By Michael's Selection Theorem we mean [11, Theorem 3.2"].

1. Existence of continuous selections

We establish the results stated in the abstract.
LEMMA 1.1. Suppose M has the $l^{\frac{1}{2}-b a l l ~ p r o p e r t y ~ i n ~} E$. Then (i) M is proximinal in E,
(ii) for $a Z Z \quad a, b \in E$ we have $d_{H}(a-P(a), b-P(b)) \leq 3 d(a-b, M)$. The constant 3 is, in general, best possible.

Proof. (i) Let $a \in E, \delta=d(a, M)$. We inductively construct a sequence $\left(x_{n}\right) \subset M$ satisfying

$$
\begin{equation*}
\left\|x_{n}-x_{n+1}\right\| \leq 2^{-n} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|x_{n}-a\right\| \leq \delta+2^{-n} \tag{2}
\end{equation*}
$$

Obviously a suitable x_{1} exists. Suppose x_{n} is given, and satisfies (2). Then we have $x_{n} \in M, M \cap B\left(\alpha, \delta+2^{-n-1}\right) \neq \varnothing$ and $\left\|x_{n}-a\right\|<\delta+2^{-n-1}+2^{-n}$. Since M has the $l^{1 \frac{1}{2}-b a l l}$ property, $M \cap B\left(x_{n}, 2^{-n}\right) \cap B\left(a, \delta+2^{-n-1}\right) \neq \varnothing$. Any point x_{n+1} in this intersection will satisfy (1) and (2).

The induction completed, (1) implies that $\left(x_{n}\right)$ is Cauchy, and hence converges to some $x \in M$. Then (2) yields $\|x-a\|=\delta$. Thus $P(a) \neq \varnothing$.
(ii) Let $a, b \in E$ with $d(a-b, M)<\varepsilon$. It suffices to show that, given $x \in P(a)$, we can find $y \in P(b)$ with $\|(a-x)-(b-y)\|<3 \varepsilon$. If $b \in M$, then $P(b)=\{b\}$ and we must take $y=b$. Then $\|a-x-b+y\|=\|a-x\|=d(a, M)=d(a-b, M)<\varepsilon$ as required. If $b \neq M$, then $\delta=d(b, M)>0$. Choose $z \in M$ with $\|a-b+z\|<\varepsilon$. Then $z+x \in M$, $M \cap B(b, \delta) \neq \varnothing$ by (i), and

$$
\|z+x-b\| \leq\|a-b+z\|+\|x-a\|<\varepsilon+d(a, M)<2 \varepsilon+\delta .
$$

Since M has the $l^{\frac{1}{2}-b a l l}$ property, we can find

$$
y \in M \cap B(b, \delta) \cap B(z+x, 2 \varepsilon)
$$

Clearly $y \in P(b)$. Finally

$$
\|a-x-b+y\| \leq\|y-(x+z)\|+\|a-b+z\|<2 \varepsilon+\varepsilon .
$$

To show that this estimate is sharp, consider the real Banach space $E=\tau_{\infty}$ (3) (that is, $E=\mathbf{R}^{3}$, with the sup norm), with M the onedimensional subspace spanned by ($1,1,0$). It is elementary to check that M has the $l^{\frac{1}{2}-b a l l}$ property in E. Let $a=(0,0,3)$, $b=(1,-1,2)$, and $x=(-3,-3,0)$. Then

$$
P(b)=\{(\lambda, \lambda, 0):-1 \leq \lambda \leq 1\}
$$

and so $d(a-x, b-P(b))=3$. Now $x \in P(a)$, so $d_{H}(a-P(a), b-P(b)) \geq 3$. But $\quad d(a-b, M) \leq\|a-b\|=1$. //

We remark that if M has the 2 -ball property in E, then the estimate of Lemma 1.1 can be sharpened to $d_{H}(a-P(a), b-P(b)) \leq d(a-b, M)$. The preceding example then shows that the $l \frac{1}{2}-b a l l$ property is strictly weaker than the 2 -ball property.

THEOREM 1.2. If M has the liv-ball property in E, then
(i) there is a continuous, homogeneous map $\psi: E / M \rightarrow E$ satisfying $\psi(a+M) \in a+M$ and $\|\psi(a+M)\|=\|a+M\|$ for $a l l$ $a \in E$,
(ii) there is a continuous, homogeneous, quasi-additive proximity map $\pi: E \rightarrow M$,
(iii) there is a continuous, homogeneous Hahn-Banach extension $\max \psi: M^{*} \rightarrow E^{*}$.

Proof. (i) Define $\eta: E / M \rightarrow H(E)$ by $\eta(a+M)=a-P_{M}(a)$. Since M is proximinal, η is well-defined. By Lemma l.1, η is continuous with respect to the Hausdorff metric on $H(E)$, and is therefore lower semicontinuous. Michael's selection theorem ensures the existence of ψ, a continuous selection for η. An argument of Kadison [see 11, p. 376] shows that ψ can be chosen homogeneous. Clearly ψ has the stated properties.
(ii) Let ψ be given by (i), and define π by $\pi(a)=a-\psi(a+M)$. Then π is continuous, homogeneous, quasi-additive, and satisfies $\pi(a) \in P(a)$ for all $a \in E$.
(iii) We claim that M^{0} has the liz-ball property in E^{*}. So let $M^{0} \cap B(f, r) \neq \emptyset,\|f\| \leq r+1$. To show that $M^{0} \cap B(0,1) \cap B(f, r) \neq \emptyset$ it suffices, by [7, Theorem 1.2], to show that $\left|f\left(a_{2}\right)\right| \leq\left\|a_{1}\right\|+r\left\|a_{2}\right\|$ whenever $a_{1}+a_{2} \in M$. If $\left\|a_{2}\right\| \leq\left\|a_{1}\right\|$ then

$$
\left|f\left(a_{2}\right)\right| \leq(r+1)\left\|a_{2}\right\| \leq\left\|a_{1}\right\|+r\left\|a_{2}\right\| .
$$

So assume $\left\|a_{2}\right\|>\left\|a_{1}\right\|$ and fix $\varepsilon>0$. Since $a_{1}+a_{2} \in M \cap B\left(a_{2},\left\|a_{1}\right\|+\varepsilon\right)$, the $l^{\frac{3}{2}}$-ball property gives us some

$$
a \in M \cap B\left(0,\left\|a_{2}\right\|-\left\|a_{1}\right\|\right) \cap B\left(a_{2},\left\|a_{1}\right\|+\varepsilon\right)
$$

Now $\|f \mid M\|=d\left(f, M^{0}\right)<r$, so

$$
\begin{aligned}
\left|f\left(a_{2}\right)\right|=\left|f(a)-f\left(a-a_{2}\right)\right| & \leq r\|a\|+(r+1)\left\|a-a_{2}\right\| \\
& \leq r\left(\left\|a_{2}\right\|-\left\|a_{1}\right\|\right)+(r+1)\left(\left\|a_{1}\right\|+\varepsilon\right)
\end{aligned}
$$

Letting $\varepsilon \rightarrow 0$ establishes the claim.
From (i) we obtain a continuous, homogeneous map $\psi: E^{*} / M^{0} \rightarrow E^{*}$ satisfying $\psi\left(f+M^{0}\right) \in f+M^{0}$ and $\left\|\psi\left(f+M^{0}\right)\right\|=d\left(f, M^{0}\right)=\|f \mid M\|$ for all $f \in E^{*}$. Identifying E^{*} / M^{0} with M^{*} completes the proof. //

If $P_{M}(a)$ is a singleton for each $a \in E$, then M is said to be a Chebyshev subspace of E. In this case the proximity map is unique and is usually referred to as the metric projection. Let us say that M is a
semi-L-summand in E [7, Section 5] if M is Chebyshev in E and the metric projection $\pi: E \rightarrow M$ satisfies $\|x\|=\|\pi(x)\|+\|x-\pi(x)\|$ for all $x \in E$. It is routine to check that every semi-L-summand (a fortiori, every L-summand) has the $1 \frac{1}{2}$-ball property.

THEOREM 1.3. Let M be a semi-L-sumand in E. Then
(i) the metric projection $\pi: E \rightarrow M$ is a contraction,
(ii) there is a linear Hahn-Banach extension map $\psi: M^{*} \rightarrow E^{*}$ and a linear proximity map $P: E^{*} \rightarrow M^{0}$,
(iii) M^{00} is the range of a norm one projection on $E^{* *}$.

Proof. (i) Fix $a, b \in E$ and assume without loss of generality that $\|\pi(a)-a\| \leq\|\pi(b)-b\|$. Since M is Chebyshev, π must be quasi-additive. Thus $\pi(\pi(a)-b)=\pi(a)-\pi(b)$ and so

$$
\begin{aligned}
\|\pi(a)-\pi(b)\| & =\|\pi(a)-b\|-\|\pi(b)-b\| \\
& \leq\|\pi(a)-a\|+\|a-b\|-\|\pi(b)-b\| \\
& \leq\|a-b\|
\end{aligned}
$$

(ii) We have just shown the existence of a Lipschitz continuous retraction of E onto M with Lipschitz constant 1 . The existence of ψ follows from [9, Theorem 3(a)]. If $P f=f-\psi(f \mid M)$ then P is linear and $\|f-P f\|=\|f \mid M\|=d\left(f, M^{0}\right)$ for all $f \in E^{*}$.
(iii) Define $Q: E^{* *} \rightarrow M^{00}$ by $Q F=F \circ(I-P)$. //

Lima [7, Section 6] calls M a semi-M-ideal in E if M^{0} is a semi-L-summand in E^{*}, and shows this is equivalent to M having what he calls the 2 -ball property. The reader is warned that the definition of the 2-ball property used in [7] is, formally at least, weaker than that which we employ.

COROLLARY 1.4. Let M be a semi-M-ideal in E.
(i) The Hahn-Banach extension map $\psi: M^{*} \rightarrow E^{*}$ is uniquely determined and satisfies $\|\psi(f)-\psi(g)\| \leq 2\|f-g\|$ for all $f, g \in E^{*}$. The Lipschitz constant 2 can not, in general, be decreased.
(ii) M^{0} is the range of a norm one projection on E^{*}.

Proof. (i) Again we identify E^{*} / M^{0} and M^{*}. If $\pi: E^{*} \rightarrow M^{0}$ is the (unique) metric projection, then $\psi: E^{*} / M^{0} \rightarrow E^{*}$ satisfies $\psi\left(f+M^{0}\right)=f-\pi(f)$. Fix $f+M^{0}, g+M^{0} \in E^{*} / M^{0}$. Adding a suitable element of M^{0}, we may assume that $\pi(f-g)=0$. Then

$$
\begin{aligned}
\left\|\psi\left(f+M^{0}\right)-\psi\left(g+M^{0}\right)\right\| & =\|f-g-\pi(f)+\pi(g)\| \leq 2\|f-g\| \\
& =2 d\left(f-g, M^{0}\right)=2\left\|\left(f+M^{0}\right)-\left(g+M^{0}\right)\right\|
\end{aligned}
$$

To show that the estimate is sharp, let E be the real Banach space Z_{1} (3) and take $M=\{(x, y, z): x+y+z=0\}$. Then $E^{*}=Z_{\infty}(3)$ and $M^{0}=\mathbf{R} 1$. It is easy to verify that M^{0} is a semi- L-summand. In E^{*} / M^{0}, let $f=(0,2,2)+R 1$ and $g=(-2,0,-2)+R 1$. Then $\|f-g\|=1$. Routine checking gives $\pi(0,2,2)=(1,1,1)$ and $\pi(-2,0,-2)=(-1,-1,-1)$. Thus $\psi(f)=(-1,1,1)$, $\psi(g)=(-1,1,-1)$ and so $\|\psi(f)-\psi(g)\|=2$.
(ii) By Theorem 1.3 (iii) there is a norm one projection $Q: E^{* * *} \rightarrow M^{000}$. Let $f \longmapsto \hat{f}$ denote the canonical embedding of E^{*} into $E^{* * *}$. Since $\hat{f} \in M^{000}$ whenever $f \in M^{0}$, the required projection is given by $f \mapsto Q(\hat{f}) \mid E . \quad / /$

2. Examples

We give examples, mostly in spaces of operators and spaces of contimuous functions, of subspaces which have the $1 \frac{1}{2}$-ball property but are not M-ideals. For some of these examples, previous authors ([3, Corollary 3.19] and [12, 7.5.6]) have used ad hoc methods to establish the existence of continuous proximity maps, or simply to establish proximinality. The existence of continuous Hahn-Banach extension maps seems to have gone unnoticed. Checking that these subspaces have the l兰-ball property provides a uniform, and often easier, method of establishing such results. We also give some new example of M-ideals. Lastly we consider the relationship between the n-ball property and algebraic structure in subspaces of Banach algebras.

Let us say that a real Banach space E is a (real) Lindenstrauss space if every collection of pairwise intersecting closed balls in E,
whose centres form a compact set, has non-empty intersection.
Lindenstrauss [8, p. 62] showed that a real Banach E has this property if and only if $E^{*}=L_{1}(\mu)$ for some measure μ.

THEOREM 2.1. Let E be a real Lindenstrauss space, X and Y compact Hausdorff spaces, and $\psi: X \rightarrow Y$ a continuous surjection. Let $\psi^{*}: C(Y, E) \rightarrow C(X, E)$ denote the natural isometric embedding, $\psi^{*} f=f \circ \psi$. Then $M=\psi^{*} C(Y, E)$ has the $1 \frac{1}{2}-b a l l$ property in $C(X, E)$.

Proof. Suppose we are given $f \in C(X, E)$ and $r>0$ with $M \cap B(f, r) \neq \emptyset$ and $\|f\| \leq r+1$. Define $\eta: Y \rightarrow H(E)$ by

$$
\begin{aligned}
\eta(y) & =B(0,1) \cap \cap_{x \in \psi^{-1}(y)} B(f(x), r) \\
& =B(0,1) \cap\left\{a \in E: f\left(\psi^{-1}(y)\right) \in B(a, r)\right\}
\end{aligned}
$$

Clearly each $\eta(y)$ is closed and convex. We must check that $\eta(y)$ is non-empty. Let $\psi^{*} g \in M \cap B(f, r)$. If $x_{1}, x_{2} \in \psi^{-1}(y)$ then

$$
\begin{aligned}
\left\|f\left(x_{1}\right)-f\left(x_{2}\right)\right\| & \leq\left\|f\left(x_{1}\right)-g(y)\right\|+\left\|g(y)-f\left(x_{2}\right)\right\| \\
& \leq 2\left\|f-\psi^{*} g\right\| \leq 2 r
\end{aligned}
$$

and so $B\left(f\left(x_{1}\right), r\right)$ meets $B\left(f\left(x_{2}\right), r\right)$. Since $\|f\| \leq r+1, B(0,1)$ must meet each $B(f(x), r)$. Thus the family of balls defining $\eta(y)$ intersect pairwise. Since the collection of centres $\{0\} \cup f\left(\psi^{-1}(y)\right)$ is compact, we have $\eta(y) \neq \varnothing$. We claim that η is lower semicontinuous.

So let $G \subset E$ be open. Let $y_{0} \in\{y: \eta(y)$ meets $G\}$ be given, and choose $a \in \eta\left(y_{0}\right) \cap G$. Then $\|a\| \leq 1, f\left(\psi^{-1}\left(y_{0}\right)\right) \subset B(a, r)$ and $B(a, \varepsilon) \subset G$ for some $\varepsilon>0$. It follows from the compactness of X that the map $y \mapsto \psi^{-1}(y)$ is upper semicontinuous. Hence $N=\left\{y: f\left(\psi^{-1}(y)\right) \subset \operatorname{int} B(a, r+\varepsilon)\right\}$ is an open set containing y_{0}. If $y \in N$, then $B(a, \varepsilon)$ meets $B(f(x), r)$ for all $x \in \psi^{-1}(y)$. Clearly $B(a, \varepsilon)$ meets $B(0,1)$. Since E is a real Lindenstrauss space, we deduce that $\eta(y)$ meets $B(a, \varepsilon)$, whenever $y \in N$. Thus $N \subset\{y: \eta(y)$ meets $G\}$. It follows that $\{y: \eta(y)$ meets $G\}$ is open, and this proves η is lower semicontinuous.

By Michael's selection theorem, there is a continuous function $h: Y \rightarrow E$ satisfying $h(y) \in \eta(y)$ for all y. It is routine to verify that $\psi^{*} h \in M \cap B(0,1) \cap B(f, r)$. //

COROLLARY 2.2. Let X, Y, ψ, E be as in Theorem 2.1. Fix $y_{0} \in Y$ and let $M=\left\{\psi^{*} f: f \in C(Y, E)\right.$ and $\left.f\left(u_{0}\right)=0\right\}$. Then M has the ly-ball property in $C(X, E)$.

Proof. Let f, r, η be as in the previous proof. If $\psi^{*} g \in M \cap B(f, r)$, then $\|f(x)\|=\left\|f(x)-\left(\psi^{*} g\right)(x)\right\| \leq r$ whenever $x \in \psi^{-1}\left(y_{0}\right)$. Thus $0 \in \eta\left(y_{0}\right)$. If we define $\eta_{0}: Y \rightarrow H(E)$ by $\eta_{0}(y)=\eta(y)$ for $y \neq y_{0}$, and $\eta_{0}\left(y_{0}\right)=\{0\}$, then η_{0} will be lower semicontinuous. The existence of a continuous selection for η_{0} shows that $M \cap B(0,1) \cap B(f, r) \neq \emptyset$. //

COROLLARY 2.3. Any closed subalgebra of $C(X, \mathbf{R})$ has the $1 \frac{1}{2}-b a l l$ property.

Proof. This follows from the Stone-Weierstrass Theorem and Theorem 2.1 (for subalgebras containing the constant functions) or Corollary 2.2 (for subalgebras not containing the constants). //

It follows from [7, Theorem 7.6] that any closed subspace of $C(X, R)$ with the 2 -ball property must be an ideal. Thus the examples given by the preceding results will not, in general, be M-ideals.

PROPOSITION 2.4. Let E be any Banach space, X a compact Hausdorff space, Y a closed subset of $X, n \in \mathbb{N}$. Then $M=\{f \in C(X, E): f \mid Y=0\}$ has the n-ball property in $C(X, E)$.

Proof. Suppose that we have $M \cap B\left(f_{i}, r_{i}\right) \neq \emptyset$ for $i \leq n$, and
int $\bigcap_{i=1}^{n} B\left(f_{i}, r_{i}\right) \neq \emptyset$. Define $\psi: X \rightarrow H(E)$ by $\psi(x)=\prod_{i=1}^{n} B\left(f_{i}(x), r_{i}\right)$.
Clearly each $\psi(x)$ is closed, convex, and has non-empty interior. Hence $\psi(x)=\overline{\text { int } \psi(x)}$ for all $x \in X$. Now let G be any open subset of E, and let $x_{0} \in\{x: \psi(x)$ meets $G\}$. Then int $\psi\left(x_{0}\right]$ meets G, so we can find $a \in \operatorname{int} \psi\left(x_{0}\right) \cap G$. Then $\left\|a-f_{i}\left(x_{0}\right)\right\|<r_{i}$ for each i. By continuity, x_{0} has a neighbourhood N such that $x \in N \Rightarrow\left\|a-f_{i}(x)\right\|<r_{i}$,
for all i. Then $a \in \psi(x)$ whenever $x \in N$, so
$N \subset\{x: \psi(x)$ meets $G\}$. This proves that ψ is lower semicontinuous.
Fix $x \in Y$. If $g_{i} \in M \cap B\left(f_{i}, r_{i}\right)$; then

$$
\left\|f_{i}(x)\right\|=\left\|f_{i}(x)-g_{i}(x)\right\| \leq\left\|f_{i}-g_{i}\right\| \leq \dot{p}_{i}
$$

This proves that $0 \in \psi(x)$.
Now define $\eta: X \rightarrow H(E)$ by $\eta(x)=\psi(x)$ for $x \notin Y$, and $n(x)=\{0\}$ for $x \in Y$. Since Y is closed, it is easily shown that η is lower semicontinuous. Let $f \in C(X, E)$ be a continuous selection for η. Then $f \in M \cap \bigcap_{i=1}^{n} B\left(f_{i}, r_{i}\right)$.

We note that Corollary 2.3 fails in spaces of complex-valued functions.

PROPOSITION 2.5. A closed *subalgebra A in $C(X, \mathbb{C})$ has the $1 \frac{1}{2}-$ ball property if and only if it is an ideal.

Proof. That ideals have the $1 \frac{13}{2}-\mathrm{ball}$ property is immediate from Proposition 2.4, with $E=\mathbb{C}$. Suppose now that A is not an ideal. We assume that A does not contain the constant functions. (If $I \in A$, the result follows from a simplification of the following argument.) By the Stone-Weierstrass Theorem, there is a compact Hausdorff space Y, a continuous surjection $\psi: X \rightarrow Y$ and a point $y_{0} \in Y$ such that $A=\left\{\psi^{*} f: f \in C(Y, \mathbb{Q})\right.$ and $\left.f\left(y_{0}\right)=0\right\}$. If the restriction of ψ to $X \backslash \psi^{-1}\left(y_{0}\right)$ is injective, it can readily be shown that A is an ideal. Thus we may find distinct $x_{0}, x_{1} \in X$ such that $\psi\left(x_{0}\right)=\psi\left(x_{1}\right) \neq y_{0}$. Let $y_{1}=\psi\left(x_{1}\right)$, and construct continuous functions $a: X \rightarrow \mathbf{R}, b: Y \rightarrow \mathbf{R}$ satisfying $-1 \leq a \leq 1,0 \leq b \leq 1, \quad a\left(x_{n}\right)=(-1)^{n}$ and $b\left(y_{n}\right)=n$ $(n=0,1)$. Then $\left\|a-i \psi^{*} b\right\| \leq V_{2}<1+\frac{1}{2}, i \psi^{*} b \in A$, and $A \cap B(a, 1) \neq \emptyset$. However $A \cap B(a, 1) \cap B\left(i \psi^{*} b, \frac{1}{2}\right)=\emptyset$, which shows that A does not have the $1 \frac{1}{2}$-ball property. For suppose $\psi^{*} f \in A \cap B(a, 1)$. Then, for $n=0,1, \quad\left|f\left(y_{1}\right) \pm 1\right|=\left|\left(\psi^{*} f\right)\left(x_{n}\right)-a\left(x_{n}\right)\right| \leq\left\|\psi^{*} f-a\right\| \leq 1$. Hence $f\left(y_{1}\right)=0$. But then $\left\|\psi^{*} f-i \psi^{*} b\right\| \geq\left|f\left(y_{1}\right)-i b\left(y_{1}\right)\right|=1>\frac{2}{2}$.

By Proposition 2.4, $c_{0}(E)$ is an M-ideal in $Z_{\infty}(E)$ if E is finite dimensional. It is useful to know that this is true for arbitrary E.

LEMMA 2.6. For any Banach space $E, c_{0}(E)$ is an M-ideal in $\tau_{\infty}(E)$.

Proof. If $x=(x(n)) \in \tau_{\infty}(E)$ and $c_{0}(E) \cap B(x, r) \neq \emptyset$, then
$\limsup \|x(n)\| \leq r$. Suppose $\bigcap_{i=1}^{3} B\left(x_{i}, r_{i}\right) \neq \emptyset$ and $c_{0}(E) \cap B\left(x_{i}, r_{i}\right) \neq \emptyset$ for each i. Then for all $\varepsilon>0, \prod_{i=1}^{3} B\left(x_{i}, r_{i}+\varepsilon\right)$ contains a sequence with only finitely many non-zero terms and so meets $c_{0}(E)$. Although formally weaker than the 3 -ball property, the property just established does characterize M-ideals [7, Theorem 6.9]. //

COROLLARY 2.7. For any Banach space $E, K\left(E, c_{0}\right)$ is an M-ideal in $B\left(E, c_{0}\right)$.

Proof. This follows from the natural identifications $K\left(E, c_{0}\right)=c_{0}\left(E^{*}\right)$ and $B\left(E, c_{0}\right)=\left\{\left(f_{n}\right) \in \tau_{\infty}\left(E^{*}\right): f_{n} \rightarrow 0\right.$ weak $\left.{ }^{*}\right\}$. //

PROPOSITION 2.8. $K\left(\tau_{1}\right)$ has the $1 \frac{1}{2}-$ ball property in $B\left(l_{1}\right)$.
Proof. Recall that for any operator matrix $a=\left(a_{i j}\right) \in B\left(l_{1}\right)$ we have $\|a\|=\sup _{j=1}^{\infty} \sum_{i=1}^{\infty}\left|a_{i j}\right|$ and $a \in K\left(I_{1}\right) \Leftrightarrow \lim _{n \rightarrow \infty} \sup _{j=1}^{\infty} \sum_{i=n}^{\infty}\left|a_{i j}\right|=0 . \quad$ Fix $a \in B\left(l_{1}\right)$ with $\|a\| \leq r+1$, and $K\left(l_{1}\right) \cap B(a, r) \neq \phi$. We assume that $\|a\|>r$, otherwise $0 \in K\left(Z_{1}\right) \cap B(0,1) \cap B(a, r)$.

Fix $j \in \mathbf{N} . \operatorname{If} \sum_{i=1}^{\infty}\left|a_{i, j}\right| \leq r$, put $x_{i j}=0$ for all i. Otherwise choose $n=n(j)$ and $0 \leq \lambda \leq 1$ so that $\lambda\left|a_{n j}\right|+\sum_{i=n+1}^{\infty}\left|a_{i, j}\right|=r$. Putting $x_{i j}=a_{i j}$ for $i<n, x_{n j}=(1-\lambda) a_{n j}$ and $x_{i j}=0$ for $i>n$, we have $\sum_{i=1}^{\infty}\left|x_{i j}\right|=\sum_{i=1}^{\infty}\left|a_{i j}\right|-r$.

It follows that $x \in B\left(z_{1}\right)$ with $\|x\| \leq\|a\|-r \leq 1$. For each j, either $x_{i j}=0$ for all i, or $\sum_{i=1}^{\infty}\left|a_{i j}-x_{i j}\right|=r$. Hence $\|a-x\| \leq r$.

We must show $x \in K\left(Z_{1}\right)$. Fix $\varepsilon>\left(1\right.$. since $K\left(Z_{1}\right)$ meets $B(a, r)$, there is a finite rank operator in $B(a, r+\varepsilon)$. Thus, for some N, $\sup _{j=1}^{\infty} \sum_{i=N}^{\infty}\left|a_{i j}\right|<r+\varepsilon . \operatorname{Fix} j$. If $\sum_{i=1}^{\infty}\left|a_{i j}\right| \leq r$, or if $N>n(j)$, then $\sum_{i=N}^{\infty}\left|x_{i, j}\right|=0$. If $N \leq n(j)$ then $\sum_{i=N}^{\infty}\left|x_{i j}\right|=\sum_{i=N}^{\infty}\left|a_{i j}\right|-r<\varepsilon$. Thus $\sup _{j=1}^{\infty} \sum_{i=N}^{\infty}\left|x_{i j}\right|<\varepsilon$, as desired. //

If E and F are separable sequence spaces (that is, c_{0} or \mathcal{Z}_{p}, $1 \leq p<\infty$), what is the largest value of n such that $K(E, F)$ has the n-ball property in $B(E, F)$? Hennefeld [5] showed that $K\left(l_{p}\right)$ is an M-ideal in $B\left(Z_{p}\right)$ if $1<p<\infty$. Minor modifications to his argument yield that $K\left(I_{p}, I_{q}\right)$ is an M-ideal in $B\left(l_{p}, l_{q}\right)$ if $l<p<q<\infty$. By [13, Theorem 6.2] $K\left(z_{1}\right)$ fails the 2 -ball property in $B\left(z_{1}\right)$. We show that $K\left(z_{1}, z_{p}\right)$ fails the $l z_{2}$-ball property in $B\left(z_{1}, z_{p}\right)$ if $1<p<\infty$. Since $K(E, F)=B(E, F)$ in all the remaining cases [10, Proposition 2.c.3], this completely answers the question.

For any matrix $a=\left(a_{i, j}\right) \in B\left(\tau_{1}, \tau_{p}\right)$ we have

$$
\|a\|=\sup _{j=1}^{\infty}\left\{\sum_{i=1}^{\infty}\left|a_{i, j}\right|^{p}\right\}^{1 / p} \quad \text { and } \quad a \in K\left(\tau_{1}, z_{p}\right\} \Leftrightarrow \lim _{n \rightarrow \infty}^{\infty} \sup _{j=1}^{\infty} \sum_{i=n}^{\infty}\left|a_{i j}\right|^{p}=0
$$

Choose λ so that $1<\lambda^{p}<2^{p-1}$ and put $a_{1 j}=\lambda$ for all $j, a_{j j}=1$ for $j \neq 1$, and $a_{i j}=0$ for all other (i, j). It is easy to verify. that $\|a\|<2$ and that $K\left(\tau_{1}, \tau_{p}\right) \cap B(a, 1) \neq \emptyset$. However $K\left(Z_{1}, Z_{p}\right) \cap B(0,1) \cap B(a, I)=\emptyset$. To see this, let $x \in K\left(Z_{1}, Z_{p}\right) \cap B(a, 1)$. Then $x_{j j} \rightarrow 0$ as $j \rightarrow \infty$, and

$$
\left|\lambda-x_{1 j}\right|^{p}+\left|1-x_{j j}\right|^{p} \leq \sum_{i=1}^{\infty}\left|a_{i j}-x_{i j}\right|^{p} \leq 1 \text { for all } j
$$

Thus $\quad x_{1 j} \rightarrow \lambda$, so $\|x\| \geq \lambda>1$.
We finish by considering subspaces with the n-ball property in Banach algebras. It is known [13, Theorem 5.3] that the M-ideals in a C^{*} algebra are precisely the closed two-sided ideals. We give a short proof of this fact. For elementary C^{*} algebra theory, we refer the reader to [4, Chapter 5].

LEMMA 2.9. Let J be an M-swmand in a unital C^{*} algebra A. Then J is an ideal in A.

Proof. Let $Q=I-P$, where P is the M-projection onto J. We first note that if $f \in A^{*}$ is positive, then so are $P^{*} f$ and $Q^{*} f$. For

$$
\begin{aligned}
\left|\left(P^{*} f\right)(1)\right|+\left|\left(Q^{*} f\right)(1)\right| & \leq\left\|P^{*} f\right\|+\left\|Q^{*} f\right\|=\|f\| \\
& =f(1)=\left(P^{*} f\right)(1)+\left(Q^{*} f\right)(1) .
\end{aligned}
$$

Hence $\left(P^{*} f\right)(1)=\left\|P^{*} f\right\|$ and $\left(Q^{*} f\right)(1)=\left\|Q^{*} f\right\|$.
Now let $p=P(1)$. If $f \in A^{*}$ is positive, then
$f(p)=\left(P^{*} f\right)(1) \geq 0$. Hence p is positve. We show that $a p^{\frac{1}{2}} \in J$ for all $a \in A$.

Let $f \in A^{*}$ be positive. Using the Cauchy-Schwarz inequality, we obtain

$$
\begin{aligned}
\left|f\left(Q\left(a p^{\frac{3}{2}}\right)\right)\right|^{2}=\left|\left(Q^{*} f\right)\left(a p^{\frac{3}{2}}\right)\right|^{2} & \leq\left(Q^{*} f\right)\left(a a^{*}\right)\left(Q^{*} f\right)\left(p^{\frac{2}{2}} p^{\frac{3}{2}}\right) \\
& =0
\end{aligned}
$$

since $\left(Q^{*} f\right)(p)=f(Q p)=0$. Thus $Q\left(\alpha p^{\frac{7}{2}}\right)$ lies in the kernel of every positive functional on A. It follows that $Q\left(a p^{\frac{1}{2}}\right)=0$, so $a p^{\frac{3}{2}} \in J$.

Thus $a p \in J=P(A)$ for all $a \in A$. Similarly $a(1-p) \in Q(A)$ for all a. It follows that $P a=a p$ for all a, so $J=P^{\prime}(A)=A p$ is a left ideal. A similar argument shows that J is a right ideal. //

PROPOSITION 2.10. Let A be a C^{*} algebra, J a closed subspace of A. Then J is an M-ideal if and only if J is an ideal.

Proof (ONLY IF). If J^{0} is an L-summand in A^{*}, then J^{00} is an
M-summand in the unital C^{*} algebra $A^{* *}$. By Lemma 2.9, J^{00} is an ideal in $A^{* *}$. Hence $J=J^{00} \cap A$ is an ideal in A.
(IF) If J is an ideal in A, then J^{00} is a weak* closed ideal in the W^{*} algebra $A^{* *}$. Thus $J^{00}=A^{* *} p$ for some central projection p. Straightforward calculations show that $A^{* *}=J^{00} \oplus A^{* *}(1-p)$, and that the two subspaces are weak* closed complementary M-summands. Taking polars, we deduce that J^{0} is an L-summand in A^{*}. //

It is natural to ask to what extent the previous result can be generalized to Banach algebras. Smith and Ward [13, Theorem 3.8] showed that in a commutative, unital Banach algebra, every M-ideal is an ideal. By showing that $K\left(l_{1}\right)$ fails the 2-ball property in $B\left(l_{1}\right)$, they gave a non-commutative counterexample to the converse problem. Cormutative examples are easily obtained by giving a suitable Banach space the zero product, then adjoining an identity. We give a less trivial counterexample.

Let A be the disc algebra [4, p. 6] and take $J=\{f \in A: f(0)=0\}$. Clearly J is an ideal in A. Using the maximum modulus principle, it is easily shown that $P_{J}(f)=\{f-f(0)\}$, for all $f \in A$. Consideration of the balls $B(0,2)$ and $B(f, 1)$, where $f(z)=z^{2}+2 z-1$, shows that J fails the $l^{\frac{1}{2}-b a l l}$ property.

In fact, the disc algebra even contains a non-proximinal ideal. This time, take $J=\{f \in A: f(0)=f(1)=0\}$. Obviously J is an ideal in A. Let $f(z)=1-z$. For any $g \in J$ we have, by the maximum modulus principle, $\|f-g\|>|f(0)-g(0)|=1$. Fix $\varepsilon>0$, and let $g(z)=z(z-1) /(1+\varepsilon-z)$. Then $g \in J$ and $\|f-g\|=(1+\varepsilon) /(1+(\varepsilon / 2))$. Thus $d(f, J)=1$, but $P(f)=J \cap B(f, l)$ is empty.

Smith and Ward [13, Theorem 3.6] also showed that every M-ideal in a unital Banach algebra is a subalgebra. This is not so for subspaces with the $l^{\frac{1}{2}}$-ball property, even in commutative Banach algebras. Let Π denote the circle group, and let $S=\{z \in \Pi: 0<\arg z<\pi\}$. With convolution as multiplication, $L_{1}(\Pi)$ is a commutative Banach algebra. Now $M=\left\{f \in L_{1}(\pi): f \mid S=0\right\}$ is an L-summand, and so has the $1 \frac{1}{2}$-ball
property in $L_{1}(\Pi)$. If $a \in M$ is defined by $a(S)=\{0\}$ and $a(\Pi \backslash S)=\{1\}$ then $a^{2} \& M$. Thus M is not a subalgebra. Although $L_{1}(\pi)$ is not a unital Banach algebra, a unital example is easily obtained via the adjunction of an identity.

References

[1] Erik M. Alfsen and Edward G. Effros, "Structure in real Banach spaces. Part I", Ann. of Math. (2) 96 (1972), 98-128.
[2] T. Ando, "Closed range theorems for convex sets and linear liftings", Pacific J. Math. 44 (1973), 393-410.
[3] Jörg Blatter, Grothendieck spaces in approximation theory (Memoirs of the American Mathematical Society, 120. American Mathematical Society, Providence, Rhode Island, 1972).
[4] F.F. Bonsall, J. Duncan, Complete normed algebras (Ergebnisse der Mathematik und ihrer Grenzgebiete, 80. Springer-Verlag, Berlin, Heidelberg, New York, 1973).
[5] Julien Hennefeld, "A decomposition for $B(X)^{*}$ and unique Hahn-Banach extensions", Pacific J. Math. 46 (1973), 197-199.
[6] Richard Holmes, Bruce Scranton, and Joseph Ward, "Approximation from the space of compact operators and other M-ideals", Duke Math. J. 42 (1975), 259-269.
[7] Asvald Lima, "Intersection properties of balls and subspaces in Banach spaces", Trans. Amer. Math. Soc. 227 (1977), 1-62.
[8] Joram Lindenstrauss, Extension of compact operators (Memoirs of the American Mathematical Society, 48. American Mathematical Society, Providence, Rhode Island, 1964).
[9] Joram Lindenstrauss, "On nonlinear projections in Banach spaces", Michigan Math. J. 11 (1964), 263-287.
[10] Joram Lindenstrauss, Lior Tzafriri, Classical Banach spaces I. Sequence spaces (Ergebnisse der Mathematik und ihrer Grenzgebiete, 92. Springer-Verlag, Berlin, Heidelberg, New York, 1977).
[11] Ernest Michael, "Continuous selections. I", Ann. of Math. (2) 63 (1956), 361-382.
[12] Zbigniew Semadeni, Banach spaces of continuous functions (Instytut Matematyczny Polskiej Akademii Nauk Monografie Matematyczne, 55. Polish Scientific Publishers, Warszawa, 1971).
[13] R.R. Smith and J.D. Ward, "M-ideal structure in Banach algebras", J. Funct. Anal. 27 (1978), 337~349.

Department of Mathematics, University of Edinburgh,
Edinburgh,
Scotland.

