BULL. AUSTRAL. MATH. SOC. VOL. 20 (1979), 285-300.

Best approximation and intersections of balls in Banach spaces

David T. Yost

Let E be a Banach space, M a closed subspace of E with the 3-ball property. It is known that M is proximinal in E, and that its metric projection admits a continuous selection. This means that there is a continuous (generally non-linear) map $\pi : E \rightarrow M$ satisfying $||x-\pi(x)|| = d(x, M)$ for all x in E. Here it is shown that the same conclusion holds under a much weaker hypothesis on M, which we call the $1\frac{1}{2}$ -ball property. We also establish that if M has the $1\frac{1}{2}$ -ball property in E, then there is a continuous Hahn-Banach extension map from M^* to E^* .

Introduction

Let M be a closed subspace of a Banach space E. This paper clarifies the relationship between approximative properties of M, and intersection properties of balls pertaining to M. Recall that M is said to be an L-summand (respectively, an M-summand) of E if there is a linear projection Q from E onto M such that ||x|| = ||Qx|| + ||x-Qx||(respectively, $||x|| = \max\{||Qx||, ||x-Qx||\}$) for all $x \in E$. If M^0 , the polar of M, is an L-summand of E^* , then M is said to be an M-ideal in E. We say that M has the n-ball property in E if given nclosed balls $B(a_i, r_i)$ such that $M \cap B(a_i, r_i)$ is non-empty for each

$$i$$
, and $\bigcap_{i=1}^{n} B(a_i, r_i)$ has non-empty interior, then $M \cap \bigcap_{i=1}^{n} B(a_i, r_i)$ is $i=1$

Received 27 March 1979.

non-empty. These notions were introduced by Alfsen and Effros [1], who showed that an M-ideal has the n-ball property for every n and, conversely, that any subspace with the 3-ball property is already an M-ideal.

Let $H(\cdot)$ denote the family of all closed, bounded, convex, and nonempty subsets of a given Banach space. The metric projection $P = P_M : E \rightarrow H(M) \cup \{ \emptyset \}$ is the set-valued map defined by $P(a) = M \cap B(a, d(a, M))$. Thus P(a) is the set of points in M which are nearest to a. M is said to be proximinal in E if $P(a) \neq \emptyset$, for all $a \in E$. Then a proximity map $\pi : E \rightarrow M$ is any (not necessarily continuous) selection for P. Note that P(a+x) = P(a) + x whenever $x \in M$. We say that a selection π is quasi-additive if $\pi(a+x) = \pi(a) + x$ whenever $x \in M$.

Alfsen and Effros [1, Corollary 5.6] and Ando [2, Theorem 2.1] independently showed that every *M*-ideal is proximinal. Holmes, Scranton, and Ward [6, Theorem 2.2] improved this by showing that the metric projection onto an *M*-ideal admits a continuous, homogeneous selection.

We will say that M has the $\frac{1}{2}$ -ball property in E if the conditions $a_1 \in M$, $M \cap B(a_2, r_2) \neq \emptyset$, and $\|a_1 - a_2\| < r_1 + r_2$ imply that $M \cap B(a_1, r_1) \cap B(a_2, r_2) \neq \emptyset$. After translating and scaling it is evident that this is equivalent to requiring $M \cap B(0, 1) \cap B(a, r) \neq \emptyset$ whenever $M \cap B(a, r) \neq \emptyset$ and $\|a\| < r + 1$. Our main result is that every subspace with the $\frac{1}{2}$ -ball property is proximinal, and that its metric projection admits a continuous, homogeneous, quasi-additive selection. In Section 2 we give examples of closed subspaces of Banach spaces which possess the $\frac{1}{2}$ -ball property. Not all of these subspaces are M-ideals, so our result has wider applicability than that of [6]. We also show that if M has the $\frac{1}{2}$ -ball property in E, then there is a continuous, homogeneous map $\psi : M^* \neq E^*$ such that each $\psi(f)$ is a norm preserving extension of f. Under additional hypotheses, we are able to establish the Lipschitz continuity and linearity of certain proximity maps and Hahn-Banach extension maps.

Except when specific mention is made to the contrary, scalars may be real or complex. By C(X, E) we denote the Banach space of continuous

https://doi.org/10.1017/S0004972700010972 Published online by Cambridge University Press

functions from the compact, Hausdorff space X into the Banach space E. If S is a sequence space, then S(E) will denote the Banach space of all sequences (x_n) from E such that the sequence $(||x_n||)$ is in S. B(E, F) is the space of bounded, linear operators from E to F, and K(E, F) is the subspace of compact operators. We use d_H for the Hausdorff metric on H(E),

$$d_{H}(A, B) = \sup \{ \{ d(x, A) : x \in B \} \cup \{ d(x, B) : x \in A \} \}.$$

By Michael's Selection Theorem we mean [11, Theorem 3.2"].

We establish the results stated in the abstract.

LEMMA 1.1. Suppose M has the $1\frac{1}{2}$ -ball property in E. Then (i) M is proximinal in E,

(ii) for all $a, b \in E$ we have $d_{\mu}(a-P(a), b-P(b)) \leq 3d(a-b, M)$.

Existence of continuous selections

The constant 3 is, in general, best possible.

1.

Proof. (i) Let $a \in E$, $\delta = d(a, M)$. We inductively construct a sequence $(x_n) \subset M$ satisfying

(1)
$$||x_n - x_{n+1}|| \le 2^{-n}$$

and

(2)
$$||x_n - a|| \le \delta + 2^{-n}$$
.

Obviously a suitable x_1 exists. Suppose x_n is given, and satisfies (2). Then we have $x_n \in M$, $M \cap B(a, \delta+2^{-n-1}) \neq \emptyset$ and $||x_n-a|| < \delta + 2^{-n-1} + 2^{-n}$. Since M has the $|\frac{1}{2}$ -ball property, $M \cap B\left(x_n, 2^{-n}\right) \cap B(a, \delta+2^{-n-1}) \neq \emptyset$. Any point x_{n+1} in this intersection will satisfy (1) and (2).

The induction completed, (1) implies that (x_n) is Cauchy, and hence converges to some $x \in M$. Then (2) yields $||x-a|| = \delta$. Thus $P(a) \neq \emptyset$.

(*ii*) Let $a, b \in E$ with $d(a_b, M) < \varepsilon$. It suffices to show that, given $x \in P(a)$, we can find $y \in P(b)$ with $||(a_x)_(b_y)|| < 3\varepsilon$. If $b \in M$, then $P(b) = \{b\}$ and we must take y = b. Then $||a_x_b+y|| = ||a_x|| = d(a, M) = d(a_b, M) < \varepsilon$ as required. If $b \notin M$, then $\delta = d(b, M) > 0$. Choose $z \in M$ with $||a_b+z|| < \varepsilon$. Then $z+x \in M$, $M \cap B(b, \delta) \neq \emptyset$ by (*i*), and

 $||z+x-b|| \le ||a-b+z|| + ||x-a|| < \varepsilon + d(a, M) < 2\varepsilon + \delta$.

Since M has the $1\frac{1}{2}$ -ball property, we can find

 $y \in M \cap B(b, \delta) \cap B(z+x, 2\varepsilon)$.

Clearly $y \in P(b)$. Finally

 $||a-x-b+y|| \le ||y-(x+z)|| + ||a-b+z|| < 2\varepsilon + \varepsilon$.

To show that this estimate is sharp, consider the real Banach space $E = l_{\infty}(3)$ (that is, $E = \mathbb{R}^3$, with the sup norm), with M the onedimensional subspace spanned by (1, 1, 0). It is elementary to check that M has the l_2^L -ball property in E. Let a = (0, 0, 3), b = (1, -1, 2), and x = (-3, -3, 0). Then

 $P(b) = \{(\lambda, \lambda, 0) : -1 \leq \lambda \leq 1\}$

and so d(a-x, b-P(b)) = 3. Now $x \in P(a)$, so $d_H(a-P(a), b-P(b)) \ge 3$. But $d(a-b, M) \le ||a-b|| = 1$. //

We remark that if M has the 2-ball property in E, then the estimate of Lemma 1.1 can be sharpened to $d_H(a-P(a), b-P(b)) \leq d(a-b, M)$. The preceding example then shows that the $1\frac{1}{2}$ -ball property is strictly weaker than the 2-ball property.

THEOREM 1.2. If M has the $1\frac{1}{2}$ -ball property in E, then

- (i) there is a continuous, homogeneous map ψ : $E/M \rightarrow E$ satisfying $\psi(a+M) \in a+M$ and $\|\psi(a+M)\| = \|a+M\|$ for all $a \in E$,
- (ii) there is a continuous, homogeneous, quasi-additive proximity map $\pi : E \Rightarrow M$,
- (iii) there is a continuous, homogeneous Hahn-Banach extension map $\Psi : M^* \rightarrow E^*$.

Proof. (i) Define $\eta : E/M \to H(E)$ by $\eta(a+M) = a - P_M(a)$. Since M is proximinal, η is well-defined. By Lemma 1.1, η is continuous with respect to the Hausdorff metric on H(E), and is therefore lower semicontinuous. Michael's selection theorem ensures the existence of ψ , a continuous selection for η . An argument of Kadison [see 11, p. 376] shows that ψ can be chosen homogeneous. Clearly ψ has the stated properties.

(*ii*) Let ψ be given by (*i*), and define π by $\pi(a) = a - \psi(a+M)$. Then π is continuous, homogeneous, quasi-additive, and satisfies $\pi(a) \in P(a)$ for all $a \in E$.

(*iii*) We claim that M^0 has the $1\frac{1}{2}$ -ball property in E^* . So let $M^0 \cap B(f, r) \neq \emptyset$, $||f|| \leq r + 1$. To show that $M^0 \cap B(0, 1) \cap B(f, r) \neq \emptyset$ it suffices, by [7, Theorem 1.2], to show that $|f(a_2)| \leq ||a_1|| + r||a_2||$ whenever $a_1 + a_2 \in M$. If $||a_2|| \leq ||a_1||$ then

$$|f(a_2)| \le (r+1)||a_2|| \le ||a_1|| + r||a_2||$$
.

So assume $||a_2|| > ||a_1||$ and fix $\varepsilon > 0$. Since $a_1 + a_2 \in M \cap B(a_2, ||a_1|| + \varepsilon)$, the $1\frac{1}{2}$ -ball property gives us some

$$a \in M \cap B(0, ||a_2||-||a_1||) \cap B(a_2, ||a_1||+\varepsilon)$$

Now $||f|M|| = d(f, M^0) < r$, so $|f(a_2)| = |f(a)-f(a-a_2)| \le r||a|| + (r+1)||a-a_2||$ $\le r(||a_2||-||a_1||) + (r+1)(||a_1||+\varepsilon)$.

Letting $\varepsilon \neq 0$ establishes the claim.

From (i) we obtain a continuous, homogeneous map $\psi : E^*/M^0 \to E^*$ satisfying $\psi(f+M^0) \in f+M^0$ and $\|\psi(f+M^0)\| = d(f, M^0) = \|f|M\|$ for all $f \in E^*$. Identifying E^*/M^0 with M^* completes the proof. //

If $P_M(\alpha)$ is a singleton for each $a \in E$, then M is said to be a Chebyshev subspace of E. In this case the proximity map is unique and is usually referred to as the metric projection. Let us say that M is a semi-L-summand in E [7, Section 5] if M is Chebyshev in E and the metric projection $\pi : E \to M$ satisfies $||x|| = ||\pi(x)|| + ||x-\pi(x)||$ for all $x \in E$. It is routine to check that every semi-L-summand (a fortiori, every L-summand) has the $1\frac{1}{2}$ -ball property.

THEOREM 1.3. Let M be a semi-L-summand in E. Then

- (i) the metric projection $\pi : E \rightarrow M$ is a contraction,
- (ii) there is a linear Hahn-Banach extension map $\psi : M^* \rightarrow E^*$ and a linear proximity map $P : E^* \rightarrow M^0$,

(iii) M^{00} is the range of a norm one projection on E^{**} .

Proof. (*i*) Fix $a, b \in E$ and assume without loss of generality that $\|\pi(a)-a\| \leq \|\pi(b)-b\|$. Since *M* is Chebyshev, π must be quasi-additive. Thus $\pi(\pi(a)-b) = \pi(a) - \pi(b)$ and so

> $\|\pi(a) - \pi(b)\| = \|\pi(a) - b\| - \|\pi(b) - b\|$ $\leq \|\pi(a) - a\| + \|a - b\| - \|\pi(b) - b\|$ $\leq \|a - b\| .$

(*ii*) We have just shown the existence of a Lipschitz continuous retraction of E onto M with Lipschitz constant 1. The existence of ψ follows from [9, Theorem 3 (a)]. If $Pf = f - \psi(f|M)$ then P is linear and $||f-Pf|| = ||f|M|| = d(f, M^0)$ for all $f \in E^*$.

(iii) Define $Q: E^{\star\star} \rightarrow M^{00}$ by $QF = F \circ (I-P)$. //

Lima [7, Section 6] calls M a semi-M-ideal in E if M^0 is a semi-L-summand in E^* , and shows this is equivalent to M having what he calls the 2-ball property. The reader is warned that the definition of the 2-ball property used in [7] is, formally at least, weaker than that which we employ.

COROLLARY 1.4. Let M be a semi-M-ideal in E.

(i) The Hahn-Banach extension map $\psi : M^* \rightarrow E^*$ is uniquely determined and satisfies $\|\psi(f)-\psi(g)\| \leq 2\|f-g\|$ for all $f, g \in E^*$. The Lipschitz constant 2 can not, in general, be decreased.

```
(ii) M^0 is the range of a norm one projection on E^*.
```

Proof. (i) Again we identify E^*/M^0 and M^* . If $\pi : E^* \to M^0$ is the (unique) metric projection, then $\psi : E^*/M^0 \to E^*$ satisfies $\psi(f+M^0) = f - \pi(f)$. Fix $f+M^0$, $g+M^0 \in E^*/M^0$. Adding a suitable element of M^0 , we may assume that $\pi(f-g) = 0$. Then

$$\begin{split} \|\psi(f+M^{0})-\psi(g+M^{0})\| &= \|f-g-\pi(f)+\pi(g)\| \leq 2\|f-g\| \\ &= 2d(f-g, M^{0}) = 2\|(f+M^{0})-(g+M^{0})\| . \end{split}$$

To show that the estimate is sharp, let E be the real Banach space $l_1(3)$ and take $M = \{(x, y, z) : x+y+z = 0\}$. Then $E^* = l_{\infty}(3)$ and $M^0 = \mathbb{R}1$. It is easy to verify that M^0 is a semi-L-summand. In E^*/M^0 , let $f = (0, 2, 2) + \mathbb{R}1$ and $g = (-2, 0, -2) + \mathbb{R}1$. Then ||f-g|| = 1. Routine checking gives $\pi(0, 2, 2) = (1, 1, 1)$ and $\pi(-2, 0, -2) = (-1, -1, -1)$. Thus $\psi(f) = (-1, 1, 1)$, $\psi(g) = (-1, 1, -1)$ and so $||\psi(f)-\psi(g)|| = 2$.

(*ii*) By Theorem 1.3 (*iii*) there is a norm one projection $Q: E^{***} \rightarrow M^{000}$. Let $f \mapsto \hat{f}$ denote the canonical embedding of E^* into E^{***} . Since $\hat{f} \in M^{000}$ whenever $f \in M^0$, the required projection is given by $f \mapsto Q(\hat{f}) | E$. //

2. Examples

We give examples, mostly in spaces of operators and spaces of continuous functions, of subspaces which have the $1\frac{1}{2}$ -ball property but are not *M*-ideals. For some of these examples, previous authors ([3, Corollary 3.19] and [12, 7.5.6]) have used *ad hoc* methods to establish the existence of continuous proximity maps, or simply to establish proximinality. The existence of continuous Hahn-Banach extension maps seems to have gone unnoticed. Checking that these subspaces have the $1\frac{1}{2}$ -ball property provides a uniform, and often easier, method of establishing such results. We also give some new example of *M*-ideals. Lastly we consider the relationship between the *n*-ball property and algebraic structure in subspaces of Banach algebras.

Let us say that a real Banach space E is a (real) Lindenstrauss space if every collection of pairwise intersecting closed balls in E, whose centres form a compact set, has non-empty intersection. Lindenstrauss [8, p. 62] showed that a real Banach E has this property if and only if $E^* = L_1(\mu)$ for some measure μ .

THEOREM 2.1. Let E be a real Lindenstrauss space, X and Y compact Hausdorff spaces, and $\psi : X \rightarrow Y$ a continuous surjection. Let $\psi^* : C(Y, E) \rightarrow C(X, E)$ denote the natural isometric embedding, $\psi^* f = f \circ \psi$. Then $M = \psi^* C(Y, E)$ has the 1½-ball property in C(X, E).

Proof. Suppose we are given $f \in C(X, E)$ and r > 0 with $M \cap B(f, r) \neq \emptyset$ and $||f|| \leq r+1$. Define $\eta : Y \neq H(E)$ by

$$\eta(y) = B(0, 1) \cap \bigcap_{x \in \psi^{-1}(y)} B(f(x), r)$$

$$= B(0, 1) \cap \{a \in E : f(\psi^{-1}(y)) \subset B(a, r)\}$$

Clearly each $\eta(y)$ is closed and convex. We must check that $\eta(y)$ is non-empty. Let $\psi^*g \in M \cap B(f, r)$. If $x_1, x_2 \in \psi^{-1}(y)$ then

$$||f(x_1) - f(x_2)|| \le ||f(x_1) - g(y)|| + ||g(y) - f(x_2)||$$

$$\le 2||f - \psi^* g|| \le 2r ,$$

and so $B(f(x_1), r)$ meets $B(f(x_2), r)$. Since $||f|| \le r+1$, B(0, 1)must meet each B(f(x), r). Thus the family of balls defining $\eta(y)$ intersect pairwise. Since the collection of centres $\{0\} \cup f(\psi^{-1}(y))$ is compact, we have $\eta(y) \ne \emptyset$. We claim that η is lower semicontinuous.

So let $G \subset E$ be open. Let $y_0 \in \{y : \eta(y) \text{ meets } G\}$ be given, and choose $a \in \eta(y_0) \cap G$. Then $||a|| \leq 1$, $f(\psi^{-1}(y_0)) \subset B(a, r)$ and $B(a, \varepsilon) \subset G$ for some $\varepsilon > 0$. It follows from the compactness of X that the map $y \mapsto \psi^{-1}(y)$ is upper semicontinuous. Hence $N = \{y : f(\psi^{-1}(y)) \subset \text{int } B(a, r+\varepsilon)\}$ is an open set containing y_0 . If $y \in N$, then $B(a, \varepsilon)$ meets B(f(x), r) for all $x \in \psi^{-1}(y)$. Clearly $B(a, \varepsilon)$ meets B(0, 1). Since E is a real Lindenstrauss space, we deduce that $\eta(y)$ meets $B(a, \varepsilon)$, whenever $y \in N$. Thus $N \subset \{y : \eta(y) \text{ meets } G\}$. It follows that $\{y : \eta(y) \text{ meets } G\}$ is open, and this proves η is lower semicontinuous. By Michael's selection theorem, there is a continuous function $h: Y \rightarrow E$ satisfying $h(y) \in \eta(y)$ for all y. It is routine to verify that $\psi^*h \in M \cap B(0, 1) \cap B(f, r)$. //

COROLLARY 2.2. Let X, Y, ψ , E be as in Theorem 2.1. Fix $y_0 \in Y$ and let $M = \{\psi^*f : f \in C(Y, E) \text{ and } f(\underline{y}_0) = 0\}$. Then M has the $1\frac{1}{2}$ -ball property in C(X, E).

Proof. Let f, r, η be as in the previous proof. If $\psi^*g \in M \cap B(f, r)$, then $||f(x)|| = ||f(x) - (\psi^*g)(x)|| \le r$ whenever $x \in \psi^{-1}(y_0)$. Thus $0 \in \eta(y_0)$. If we define $\eta_0 : Y \neq H(E)$ by $\eta_0(y) = \eta(y)$ for $y \neq y_0$, and $\eta_0(y_0) = \{0\}$, then η_0 will be lower semicontinuous. The existence of a continuous selection for η_0 shows that $M \cap B(0, 1) \cap B(f, r) \neq \emptyset$. //

COROLLARY 2.3. Any closed subalgebra of $C(X, \mathbb{R})$ has the 1½-ball property.

Proof. This follows from the Stone-Weierstrass Theorem and Theorem 2.1 (for subalgebras containing the constant functions) or Corollary 2.2 (for subalgebras not containing the constants). //

It follows from [7, Theorem 7.6] that any closed subspace of $C(X, \mathbb{R})$ with the 2-ball property must be an ideal. Thus the examples given by the preceding results will not, in general, be *M*-ideals.

PROPOSITION 2.4. Let E be any Banach space, X a compact Hausdorff space, Y a closed subset of X, $n \in \mathbb{N}$. Then $M = \{f \in C(X, E) : f | Y = 0\}$ has the n-ball property in C(X, E).

Proof. Suppose that we have $M \cap B(f_i, r_i) \neq \emptyset$ for $i \leq n$, and

 for all i. Then $a \in \psi(x)$ whenever $x \in N$, so $N \subset \{x : \psi(x) \text{ meets } G\}$. This proves that ψ is lower semicontinuous.

Fix $x \in Y$. If $g_i \in M \cap B(f_i, r_i)$; then

$$||f_{i}(x)|| = ||f_{i}(x)-g_{i}(x)|| \le ||f_{i}-g_{i}|| \le r_{i}$$

This proves that $0 \in \psi(x)$.

Now define $\eta : X \to H(E)$ by $\eta(x) = \psi(x)$ for $x \notin Y$, and $\eta(x) = \{0\}$ for $x \notin Y$. Since Y is closed, it is easily shown that η is lower semicontinuous. Let $f \in C(X, E)$ be a continuous selection for

$$\eta$$
. Then $f \in M \cap \bigcap_{i=1}^{n} B(f_i, r_i)$. //

We note that Corollary 2.3 fails in spaces of complex-valued functions.

PROPOSITION 2.5. A closed *subalgebra A in $C(X, \mathbb{C})$ has the $1\frac{1}{2}$ -ball property if and only if it is an ideal.

Proof. That ideals have the 12-ball property is immediate from Proposition 2.4, with $E = \mathbf{C}$. Suppose now that A is not an ideal. We assume that A does not contain the constant functions. (If $1 \in A$, the result follows from a simplification of the following argument.) By the Stone-Weierstrass Theorem, there is a compact Hausdorff space Y, a continuous surjection ψ : $X \rightarrow Y$ and a point $y_0 \in Y$ such that $A \;=\; \big\{\psi^*f \,:\; f \;\in\; C(\mathsf{Y},\; \complement) \text{ and } f\big(y_0\big) \;=\; 0\big\} \;\;. \quad \text{If the restriction of } \; \psi \;\; \text{ to }$ $X \setminus \psi^{-1}(y_0)$ is injective, it can readily be shown that A is an ideal. Thus we may find distinct $x_0, x_1 \in X$ such that $\psi(x_0) = \psi(x_1) \neq y_0$. Let $y_1 = \psi(x_1)$, and construct continuous functions $a : X \rightarrow \mathbb{R}$, $b : Y \rightarrow \mathbb{R}$ satisfying $-1 \le a \le 1$, $0 \le b \le 1$, $a(x_n) = (-1)^n$ and $b(y_n) = n$ (n = 0, 1). Then $||a-i\psi^*b|| \le \sqrt{2} \le 1 + \frac{1}{2}$, $i\psi^*b \le A$, and $A \cap B(a, 1) \neq \emptyset$. However $A \cap B(a, 1) \cap B(i\psi^*b, \frac{1}{2}) = \emptyset$, which shows that A does not have the 1/2-ball property. For suppose $\psi^* f \in A \cap B(a, 1)$. Then, for n = 0, 1, $|f(y_1) \pm 1| = |(\psi + f)(x_n) - \alpha(x_n)| \le ||\psi + f - \alpha|| \le 1$. Hence $f(y_1) = 0$. But then $||\psi^* f - i\psi^* b|| \ge |f(y_1) - ib(y_1)| = 1 > \frac{1}{2}$.

By Proposition 2.4, $c_0(E)$ is an *M*-ideal in $l_{\infty}(E)$ if *E* is finite dimensional. It is useful to know that this is true for arbitrary *E*.

LEMMA 2.6. For any Banach space E , $c_0^{}(E)$ is an M-ideal in $l_{\rm m}(E)$.

Proof. If $x = (x(n)) \in l_{\infty}(E)$ and $c_0(E) \cap B(x, r) \neq \emptyset$, then $\lim \|x(n)\| \leq r$. Suppose $\bigcap_{i=1}^{3} B(x_i, r_i) \neq \emptyset$ and $c_0(E) \cap B(x_i, r_i) \neq \emptyset$ for each i. Then for all $\varepsilon > 0$, $\bigcap_{i=1}^{3} B(x_i, r_i + \varepsilon)$ contains a sequence with only finitely many non-zero terms and so meets $c_0(E)$. Although formally weaker than the 3-ball property, the property just established does characterize *M*-ideals [7, Theorem 6.9]. //

COROLLARY 2.7. For any Banach space E , $K(E, c_0)$ is an M-ideal in $B(E, c_0)$.

Proof. This follows from the natural identifications $K(E, c_0) = c_0(E^*)$ and $B(E, c_0) = \{(f_n) \in l_{\infty}(E^*) : f_n \neq 0 \text{ weak}^*\}$. // PROPOSITION 2.8. $K(l_1)$ has the lip-ball property in $B(l_1)$.

Proof. Recall that for any operator matrix $a = (a_{ij}) \in B(l_1)$ we have $||a|| = \sup_{j=1}^{\infty} \sum_{i=1}^{\infty} |a_{ij}|$ and $a \in K(l_1) \Leftrightarrow \lim_{n \to \infty} \sup_{j=1}^{\infty} \sum_{i=n}^{\infty} |a_{ij}| = 0$. Fix $a \in B(l_1)$ with $||a|| \le r+1$, and $K(l_1) \cap B(a, r) \ne \emptyset$. We assume that ||a|| > r, otherwise $0 \in K(l_1) \cap B(0, 1) \cap B(a, r)$.

Fix $j \in \mathbb{N}$. If $\sum_{i=1}^{\infty} |a_{ij}| \leq r$, put $x_{ij} = 0$ for all i. Otherwise choose n = n(j) and $0 \leq \lambda \leq 1$ so that $\lambda |a_{nj}| + \sum_{i=n+1}^{\infty} |a_{ij}| = r$. Putting $x_{ij} = a_{ij}$ for i < n, $x_{nj} = (1-\lambda)a_{nj}$ and $x_{ij} = 0$ for i > n, we have $\sum_{i=1}^{\infty} |x_{ij}| = \sum_{i=1}^{\infty} |a_{ij}| - r$. It follows that $x \in B(l_1)$ with $||x|| \le ||a|| - r \le 1$. For each j, either $x_{ij} = 0$ for all i, or $\sum_{i=1}^{\infty} |a_{ij} - x_{ij}| = r$. Hence $||a - x|| \le r$. We must show $x \in K(l_1)$. Fix $\varepsilon > 0$. Since $K(l_1)$ meets B(a, r), there is a finite rank operator in $B(a, r+\varepsilon)$. Thus, for some N, $\sup_{j=1}^{\infty} \sum_{i=N}^{\infty} |a_{ij}| \le r + \varepsilon$. Fix j. If $\sum_{i=1}^{\infty} |a_{ij}| \le r$, or if N > n(j), then $\sum_{i=N}^{\infty} |x_{ij}| = 0$. If $N \le n(j)$ then $\sum_{i=N}^{\infty} |x_{ij}| = \sum_{i=N}^{\infty} |a_{ij}| - r \le \varepsilon$. Thus $\sup_{j=1}^{\infty} \sum_{i=N}^{\infty} |x_{ij}| \le \varepsilon$, as desired. //

If *E* and *F* are separable sequence spaces (that is, c_0 or l_p , $1 \le p < \infty$), what is the largest value of *n* such that K(E, F) has the *n*-ball property in B(E, F)? Hennefeld [5] showed that $K(l_p)$ is an *M*-ideal in $B(l_p)$ if 1 . Minor modifications to his argument $yield that <math>K(l_p, l_q)$ is an *M*-ideal in $B(l_p, l_q)$ if 1 . $By [13, Theorem 6.2] <math>K(l_1)$ fails the 2-ball property in $B(l_1)$. We show that $K(l_1, l_p)$ fails the l_2 -ball property in $B(l_1, l_p)$ if 1 . Since <math>K(E, F) = B(E, F) in all the remaining cases [10, Proposition 2.c.3], this completely answers the question.

For any matrix $a = (a_{ij}) \in B(l_1, l_p)$ we have

$$\begin{split} \|a\| &= \sup_{j=1}^{\infty} \left\{ \sum_{i=1}^{\infty} |a_{ij}|^p \right\}^{1/p} \quad \text{and} \quad a \in K(\mathcal{I}_1, \mathcal{I}_p) \iff \lim_{n \to \infty} \sup_{j=1}^{\infty} \sum_{i=n}^{\infty} |a_{ij}|^p = 0 \; . \\ \text{Choose } \lambda \text{ so that } 1 < \lambda^p < 2^p - 1 \text{ and put } a_{1j} = \lambda \text{ for all } j \; , \; a_{jj} = 1 \\ \text{for } j \neq 1 \; , \text{ and } a_{ij} = 0 \text{ for all other } (i, j) \; . \text{ It is easy to verify} \\ \text{that } \|a\| < 2 \text{ and that } K(\mathcal{I}_1, \mathcal{I}_p) \cap B(a, 1) \neq \emptyset \; . \text{ However} \\ K(\mathcal{I}_1, \mathcal{I}_p) \cap B(0, 1) \cap B(a, 1) = \emptyset \; . \text{ To see this, let} \\ x \in K(\mathcal{I}_1, \mathcal{I}_p) \cap B(a, 1) \; . \text{ Then } x_{jj} \neq 0 \text{ as } j \neq \infty \; , \text{ and} \end{split}$$

296

$$|\lambda - x_{1j}|^p + |1 - x_{jj}|^p \leq \sum_{i=1}^{\infty} |a_{ij} - x_{ij}|^p \leq 1$$
 for all j .

Thus $x_{1i} \rightarrow \lambda$, so $||x|| \geq \lambda > 1$.

We finish by considering subspaces with the *n*-ball property in Banach algebras. It is known [13, Theorem 5.3] that the *M*-ideals in a C^* algebra are precisely the closed two-sided ideals. We give a short proof of this fact. For elementary C^* algebra theory, we refer the reader to [4, Chapter 5].

LEMMA 2.9. Let J be an M-summand in a unital C* algebra A . Then J is an ideal in A .

Proof. Let Q = I - P, where P is the M-projection onto J. We first note that if $f \in A^*$ is positive, then so are P^*f and Q^*f . For

$$|(P^*f)(1)| + |(Q^*f)(1)| \le ||P^*f|| + ||Q^*f|| = ||f||$$

= f(1) = (P^*f)(1) + (Q^*f)(1)

Hence $(P^*f)(1) = ||P^*f||$ and $(Q^*f)(1) = ||Q^*f||$.

Now let p = P(1). If $f \in A^*$ is positive, then $f(p) = (P^*f)(1) \ge 0$. Hence p is positive. We show that $ap^{\frac{1}{2}} \in J$ for all $a \in A$.

Let $f \in A^*$ be positive. Using the Cauchy-Schwarz inequality, we obtain

$$|f(Q(ap^{\frac{1}{2}}))|^{2} = |(Q^{*}f)(ap^{\frac{1}{2}})|^{2} \leq (Q^{*}f)(aa^{*})(Q^{*}f)(p^{\frac{1}{2}}p^{\frac{1}{2}})$$

= 0,

since $(Q^*f)(p) = f(Qp) = 0$. Thus $Q(ap^{\frac{1}{2}})$ lies in the kernel of every positive functional on A. It follows that $Q(ap^{\frac{1}{2}}) = 0$, so $ap^{\frac{1}{2}} \in J$.

Thus $ap \in J = P(A)$ for all $a \in A$. Similarly $a(1-p) \in Q(A)$ for all a. It follows that Pa = ap for all a, so J = P(A) = Ap is a left ideal. A similar argument shows that J is a right ideal. //

PROPOSITION 2.10. Let A be a C^* algebra, J a closed subspace of A. Then J is an M-ideal if and only if J is an ideal.

Proof (ONLY IF). If J^0 is an L-summand in A^* , then J^{00} is an

M-summand in the unital C^* algebra A^{**} . By Lemma 2.9, J^{00} is an ideal in A^{**} . Hence $J = J^{00} \cap A$ is an ideal in A.

(IF) If J is an ideal in A, then J^{00} is a weak* closed ideal in the W* algebra A^{**} . Thus $J^{00} = A^{**}p$ for some central projection p. Straightforward calculations show that $A^{**} = J^{00} \bigoplus A^{**}(1-p)$, and that the two subspaces are weak* closed complementary M-summands. Taking polars, we deduce that J^0 is an L-summand in A^* . //

It is natural to ask to what extent the previous result can be generalized to Banach algebras. Smith and Ward [13, Theorem 3.8] showed that in a commutative, unital Banach algebra, every *M*-ideal is an ideal. By showing that $K(l_1)$ fails the 2-ball property in $B(l_1)$, they gave a non-commutative counterexample to the converse problem. Commutative examples are easily obtained by giving a suitable Banach space the zero product, then adjoining an identity. We give a less trivial counter-example.

Let A be the disc algebra [4, p. 6] and take $J = \{f \in A : f(0) = 0\}$. Clearly J is an ideal in A. Using the maximum modulus principle, it is easily shown that $P_J(f) = \{f-f(0)\}$, for all $f \in A$. Consideration of the balls B(0, 2) and B(f, 1), where $f(z) = z^2 + 2z - 1$, shows that J fails the 1½-ball property.

In fact, the disc algebra even contains a non-proximinal ideal. This time, take $J = \{f \in A : f(0) = f(1) = 0\}$. Obviously J is an ideal in A. Let f(z) = 1 - z. For any $g \in J$ we have, by the maximum modulus principle, ||f-g|| > |f(0)-g(0)| = 1. Fix $\varepsilon > 0$, and let $g(z) = z(z-1)/(1+\varepsilon-z)$. Then $g \in J$ and $||f-g|| = (1+\varepsilon)/(1+(\varepsilon/2))$. Thus d(f, J) = 1, but $P(f) = J \cap B(f, 1)$ is empty.

Smith and Ward [13, Theorem 3.6] also showed that every *M*-ideal in a unital Banach algebra is a subalgebra. This is not so for subspaces with the $1\frac{1}{2}$ -ball property, even in commutative Banach algebras. Let Π denote the circle group, and let $S = \{z \in \Pi : 0 < \arg z < \pi\}$. With convolution as multiplication, $L_1(\Pi)$ is a commutative Banach algebra. Now $M = \{f \in L_1(\Pi) : f | S = 0\}$ is an *L*-summand, and so has the $1\frac{1}{2}$ -ball

property in $L_1(\Pi)$. If $a \in M$ is defined by $a(S) = \{0\}$ and $a(\Pi \setminus S) = \{1\}$ then $a^2 \notin M$. Thus M is not a subalgebra. Although $L_1(\Pi)$ is not a unital Banach algebra, a unital example is easily obtained via the adjunction of an identity.

References

- [1] Erik M. Alfsen and Edward G. Effros, "Structure in real Banach spaces. Part I", Ann. of Math. (2) 96 (1972), 98-128.
- [2] T. Ando, "Closed range theorems for convex sets and linear liftings", Pacific J. Math. 44 (1973), 393-410.
- [3] Jörg Blatter, Grothendieck spaces in approximation theory (Memoirs of the American Mathematical Society, 120. American Mathematical Society, Providence, Rhode Island, 1972).
- [4] F.F. Bonsall, J. Duncan, Complete normed algebras (Ergebnisse der Mathematik und ihrer Grenzgebiete, 80. Springer-Verlag, Berlin, Heidelberg, New York, 1973).
- [5] Julien Hennefeld, "A decomposition for $B(X)^*$ and unique Hahn-Banach extensions", *Pacific J. Math.* 46 (1973), 197-199.
- [6] Richard Holmes, Bruce Scranton, and Joseph Ward, "Approximation from the space of compact operators and other M-ideals", Duke Math. J. 42 (1975), 259-269.
- [7] Åsvald Lima, "Intersection properties of balls and subspaces in Banach spaces", Trans. Amer. Math. Soc. 227 (1977), 1-62.
- [8] Joram Lindenstrauss, Extension of compact operators (Memoirs of the American Mathematical Society, 48. American Mathematical Society, Providence, Rhode Island, 1964).
- [9] Joram Lindenstrauss, "On nonlinear projections in Banach spaces", Michigan Math. J. 11 (1964), 263-287.
- [10] Joram Lindenstrauss, Lior Tzafriri, Classical Banach spaces I. Sequence spaces (Ergebnisse der Mathematik und ihrer Grenzgebiete, 92. Springer-Verlag, Berlin, Heidelberg, New York, 1977).

- [11] Ernest Michael, "Continuous selections. I", Ann. of Math. (2) 63 (1956), 361-382.
- [12] Zbigniew Semadeni, Banach spaces of continuous functions (Instytut Matematyczny Polskiej Akademii Nauk Monografie Matematyczne, 55.
 Polish Scientific Publishers, Warszawa, 1971).
- [13] R.R. Smith and J.D. Ward, "M-ideal structure in Banach algebras", J. Funct. Anal. 27 (1978), 337-349.

Department of Mathematics, University of Edinburgh, Edinburgh, Scotland.

300