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Abstract. We show that there is no square other than 122 and 7202 such that it can be written

as a product of k � 1 integers out of k ð53Þ consecutive positive integers. We give an exten-
sion of a theorem of Sylvester that a product of k consecutive integers each greater than k is
divisible by a prime exceeding k.
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1. Introduction

Let ‘5 2 be a prime number. Erdo
00
s and Selfridge [3] proved that a product of k5 2

consecutive positive integers is never an ‘th power. Further Saradha and Shorey [12]

showed that there is no ‘th power with ‘ > 2 other than 8 such that it can be written

as a product of k � 1 integers out of k5 3 consecutive positive integers. This settled

a question of Erdo
00
s and Selfridge [3, p. 300]. In this paper, we solve the analogous

question for ‘ ¼ 2 of Erdo
00
s and Selfridge [3, p. 300] where they observed that

6!=5 ¼ 122; 10!=7 ¼ 7202. We prove

THEOREM 1. Let k5 3. There is no square other than 122 and 7202 such that it can

be written as a product of k � 1 integers out of k consecutive positive integers.

It is clear that the assumption k5 3 is necessary in Theorem 1. For an integer

n > 1, we write PðnÞ and oðnÞ for the greatest prime factor of n and the number of

distinct prime divisors of n, respectively. Further we put Pð1Þ ¼ 1 and oð1Þ ¼ 0.

We shall denote by b; n; k and y positive integers such that b is square free. We

always write p for a prime number. We shall prove a more general result.

THEOREM 2. Let k5 4;PðbÞ4 k; n > k2 and 0 < i < k � 1 be an integer. Suppose

that

nðn þ 1Þ � � � ðn þ i � 1Þðn þ i þ 1Þ � � � ðn þ k � 1Þ ¼ by2: ð1Þ
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Then

ðn; k; y; b; iÞ ¼ ð24; 4; 90; 2; 2Þ:

It is clear that we should assume in Theorem 2 that PðyÞ > k otherwise (1) has infi-

nitely many solutions and (1) with PðyÞ > k implies that n > k2. Further, we see that

k5 3 since 0 < i < k � 1. We rewrite nðn þ 2Þ ¼ 2y2 as Pell’s equations

j y2
1 � 2y2

2 j ¼ 1 to observe that it has infinitely many solutions. Thus the assumption

k5 4 in Theorem 2 is necessary. If i ¼ 0 or k � 1, the left-hand side of (1) is a pro-

duct of k � 1 consecutive positive integers. Then we have

THEOREM A. Let k5 3; n > k2 and PðbÞ4 k. The equation

nðn þ 1Þ � � � ðn þ k � 1Þ ¼ by2 ð2Þ

has no solution in positive integers n; k and y such that k5 4. If k ¼ 3, then ð2Þ implies

that ðn; y; bÞ ¼ ð48; 140; 6Þ.

Theorem A with k5 4 and PðbÞ < k was proved by Erdo
00
s and Selfridge [3]. The

assumption PðbÞ < k has been relaxed to PðbÞ4 k by Saradha [10]. Theorem A with

k ¼ 3 is a consequence of some old diophantine results. Now we combine Theorems

A and 2 to obtain

COROLLARY 1. Let k5 4 and n > k2. Assume that ðn; kÞ is different from

ð24; 4Þ; ð47; 4Þ; ð48; 4Þ. Then there exist distinct primes p1 > k and p2 > k such

that the maximal power of each of p1 and p2 dividing nðn þ 1Þ � � � ðn þ k � 1Þ

is odd.

It is not known whether there are infinitely many primes p such that p2 � 1 ¼ 2y2.

Thus the case k ¼ 3 remain open. In the case k ¼ 2, if ðu; vÞ is a solution of the Pell’s

equation u2 � 2v2 ¼ 1 and n ¼ 2v2, then nðn þ 1Þ ¼ 2ðuvÞ2. Hence, the corollary does

not hold for k ¼ 2. An immediate consequence of Corollary 1 is the following

improvement of Theorem A.

COROLLARY 2. Let k5 3; n > k2 and PðbÞ4 pk where pk denotes the least prime

exceeding k. Then ð2Þ implies that ðn; k; y; bÞ ¼ ð48; 3; 140; 6Þ.

The assumption k5 3 in Corollary 2 is necessary since the Pell’s equations

j y2
1 � 3y2

2 j ¼ 1 has infinitely many solutions.

Sylvester [15] proved that Pðnðn þ 1Þ � � � ðn þ k � 1ÞÞ > k if n > k. For deriving

Theorem 1 from Theorem 2, we show that the product on the left-hand side of (1)

with n > k is divisible by a prime exceeding k. In fact, we show that the proof of

Erdo
00
s [1] of Sylvester’s theorem allows to prove the following stronger version.
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THEOREM 3. Let k5 3; n > k and m a positive integer such that

m5 k �
1

3
pðkÞ

� �
� 1 ð3Þ

where pðkÞ denotes the number of primes4k. Let e1 < � � � < em be integers in ½0; kÞ

such that

Pððn þ e1Þ � � � ðn þ emÞÞ4 k:

Then k4 17 and

n 2 f4; 6; 7; 8; 16g if k ¼ 3; n 2 f6g if k ¼ 4;

n 2 f6; 7; 8; 9; 12; 14; 15; 16; 23; 24g if k ¼ 5;

n 2 f7; 8; 15g if k ¼ 6; n 2 f8; 9; 10; 12; 14; 15; 24g if k ¼ 7;

n 2 f9; 14g if k ¼ 8:

: ð4Þ

We observe that there are infinitely many n satisfying the assertion of Theorem 3 if

k ¼ 2 and it is necessary to exclude the cases given in (4). Further we see from Prime

Number Theorem that 1
3 in Theorem 3 cannot be replaced by a number larger than 1.

An immediate consequence of Theorem 3 is the following result.

COROLLARY 3. Let n > k5 3.

ðiÞ oðnðn þ 1Þ � � � ðn þ k � 1ÞÞ5pðkÞ þ ½13pðkÞ� þ 2, except when n; k take values as

in ð4Þ.

ðiiÞ oðnðn þ 1Þ � � � ðn þ k � 1ÞÞ5pðkÞ þ 2; unless n 2 f4; 6; 7; 8; 16g if k ¼ 3; n 2 f6g

if k ¼ 4; n 2 f6; 8g if k ¼ 5.

In view of the result of Sylvester stated above, the assumption n > k2 in Theorem

A can be replaced by n > k. Further analogues of Theorem 2 and Corollaries 1,2

follow immediately from Corollary 3(ii) whenever k < n4 k2. These results continue

to be valid for n4 k if pðn þ k � 1Þ � pðkÞ5 2 and we refer to studies on number of

primes in short intervals for the latter inequality. Corollaries 1 and 3(ii) have been

applied in [13] that a product of four or more positive integers in arithmetic progres-

sion with common difference a prime power is never a square. For convenience, we

shall prove the following equivalent version of Theorem 3.

THEOREM 30. Let k5 3; x and m be positive integers satisfying x5 2k and ð3Þ. Let

f1 < � � � < fm be integers in ½0; kÞ such that

Pððx � f1Þ � � � ðx � fmÞÞ4 k: ð5Þ

Then k4 8 and

x 2 f6; 8; 9; 10; 18g if k ¼ 3; x 2 f9g if k ¼ 4;

x 2 f10; 11; 12; 13; 16; 18; 19; 20; 27; 28g if k ¼ 5;

x 2 f12; 13; 20g if k ¼ 6;x 2 f14; 15; 16; 18; 20; 21; 30g if k ¼ 7;

x 2 f16; 21g if k ¼ 8:

: ð6Þ

*For exceptions when 8 < k4 17, see Remark at the end.
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The equivalence of Theorems 3 and 30 can be easily seen by taking n þ k � 1 ¼ x

and ei ¼ k � 1 � fmþ1�i for 14 i4m.

For a survey of results related to (1) and (2), we refer to [14].

2. Lemmas

We begin with a lemma for the proof of Theorem 2.

LEMMA 1. Let ð1Þ be satisfied with b; n; k; y and i as given in Theorem 2. Then k4 9

or k 2 f11; 13; 19g.

Proof. Let

k5 10 and k =2 f11; 13; 19g: ð7Þ

By (1), we have

n þ j ¼ ajx
2
j ; aj square free; PðajÞ4 k for 04 j < k; j 6¼ i:

Suppose aj1 ¼ aj2 for some j2 > j1. Then xj2 > xj1 and

k � 15 j2 � j1 ¼ ðn þ j2Þ � ðn þ j1Þ ¼ aj1ðx
2
j2
� x2

j1
Þ

> 2aj1xj1 5 2ðaj1x
2
j1
Þ
1
2 5 2n

1
2 > 2k;

a contradiction. Hence all the aj’s for 04 j < k; j 6¼ i are distinct. For any integer

m5 1, we denote by fðk;mÞ the number of aj’s with 04 j < k and j 6¼ i composed

of the first m primes 2 ¼ p1 < p2 < � � � < pm. Then

fðk;mÞ5 f0ðk;mÞ ¼: k � 1 �
X

i5mþ1

k

pi

� �
þ Ei

� �
;

where Ei ¼ 0 if either pi > k or if pi j k and Ei ¼ 1 otherwise. Since aj’s are square free

we see that fðk;mÞ4 2m and hence

f0ðk;mÞ4 2m: ð8Þ

We observe that

Y
aj 5

Yk�1

j¼1

sj 5 ð1:5Þk�1
ðk � 1Þ! for k5 64; ð9Þ

where
Q

aj is the product over all aj’s and sj denotes the jth square free integer. We

refer to [3] and [11, p. 32] for the above inequaliy. On the other hand, for a prime

p4 k, the number of aj’s divisible by p does not exceed ½ðk � 1Þ=p� þ 1 and thusQ
aj j

Q
p4 k p½

k�1
p �þ1 implying that

Q
aj j ðk � 1Þ!

Q
p4 k p. Now we follow the

argument in [11, Lemma 3] to getY
aj 4 153819970 k16ð2:78Þkð2:8819Þ�k

ðk � 1Þ!: ð10Þ
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Comparing (9) and (10), we get ð1:5549Þk 4 230729960 k16 which implies that

k4 250. Now we check that

f0ðk; 3Þ5 9 for 254 k4 78; f0ðk; 4Þ5 17 for 794 k4 250;

f0ð10; 2Þ5 5; f0ð21; 3Þ5 9; f0ð22; 3Þ5 9

and we conclude by (8) that

k4 24; k 6¼ 10; 21; 22: ð11Þ

Further we find that

f0ðk; 3Þ5 8 if k 2 f23; 24g; f0ðk; 2Þ5 4 if k4 20:

Let k ¼ 24. Then by (8), we have f0ðk; 3Þ ¼ 8. Hence, the primes 23, 19, 17, 13, 11, 7

divide exactly 2, 2, 2, 2, 3, 4 distinct aj’s and none of these aj’s is divisible by more

than one of these primes. Therefore 23 divides a0; a23; 7 divides a1; a8; a15; a22. Then

11 does not divide three other aj’s. This is a contradiction. In this way, we exclude all

k given by (7) and (11) except k ¼ 17. When k ¼ 17, we have f0ðk; 2Þ ¼ 4 and the

primes 17, 13, 11,7, 5 divide exaclty 1, 2, 2, 3, 4 distinct aj’s. Hence, 5 divides either

a0; a5; a10; a15 or a1; a6; a11; a16. In the former case we see that 7 divides a2; a9; a16

and 13 divides a1; a14. In the latter case, 7 divides a0; a7; a14 and 13 divides a2; a15.

Then 11 does not divide two other aj’s in both the cases, a contradiction. &

The following lemmas are used in the proof of Theorem 30.

LEMMA 2. For x > 1,

ðiÞ pðxÞ <
x

log x
þ

1:5x

log2 x

ðiiÞ pð2xÞ � pðxÞ5
3x

5 log x
for x5 20:5

ðiiiÞ
Q

pa 4 x pa < ð2:83Þx.

See [9, p. 69–71] for the above assertions.

LEMMA 3. Let k5 3. Suppose that the assumptions of Theorem 30 hold and x < k3=2.

Then

x
k

� �
4 ð2:83Þkþ

ffiffi
x

p

xk�m: ð12Þ

Proof. We follow the argument of Erdo
00
s ½1�. For any prime p with pak x

k

� �
, one has

pa 4 x. Therefore

Y
p4 k

pordp

�
x
k

	
4

Y
p4 k
pa 4 x

pa 4
Y
p4 k

p
Y

p4 x
1
2

p
Y

p4 x
1
3

p � � � : ð13Þ
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From Lemma 2 (iii) with x replaced by x
1
2 and k, we getY

p4 x
1
2

p
Y

p4x
1
4

p
Y

p4 x
1
6

p � � � < ð2:83Þ
ffiffi
x

p

ð14Þ

and Y
p4 k

p
Y

p4 k
1
2

p � � � < ð2:83Þk:

In the latter inequality, we use the fact that k
1
‘ > x

1
2‘�1 for ‘5 2 since x < k3=2 to getY

p4 k

p
Y

p4 x
1
3

p
Y

p4 x
1
5

p � � � < ð2:83Þk: ð15Þ

Now we combine (13), (14) and (15) to getY
p4 k

pordp

�
x
k

	
4 ð2:83Þkþ

ffiffi
x

p

: ð16Þ

By (5), there are at most k � m terms in
�

x
k

�
divisible by a prime > k. ThusY

p>k

pordp

�
x

k

	
4 xk�m

which, together with (16), implies (12). &

LEMMA 4. Suppose that the assumptions of Theorem 30 hold. Then x < k3=2 for

k5 153; x < k7=4 for k5 50 and x < k2 for k5 27.

Proof. Let x5 k3=2 and k5 153. By (5), we have

ðx � f1Þ � � � ðx � fmÞ4
�Y

p4 k

pordp

�
x

k

	�
k!

4
Y
p4 k

x

 !
k!4 xpðkÞk!:

On the other hand,

ðx� f1Þ � � � ðx� fmÞ5 ðx� fmÞ
m5 ðx� kþ 1Þm > xm 1 �

1ffiffiffi
k

p

� �m

5xm 1 �
1ffiffiffi
k

p

� �k

:

By comparing the bounds obtained above for ðx � f1Þ � � � ðx � fmÞ, we derive from (3)

and x5 k3=2 that

k
1
2�

3
2kpðkÞ�

3
2k½

1
3pðkÞ��

3
2k 1 �

1ffiffiffi
k

p

� �
< 1 ð17Þ
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which, by Lemma 2(i), implies that

k
1
2�2
�

1
log kþ

1:5

log2 k

	
� 3

2k 1 �
1ffiffiffi
k

p

� �
< 1:

This is not valid for k ¼ 210 and the left hand side is an increasing function of k.

Therefore it is not valid for k5 210. Now we use the exact value of pðkÞ to conclude

that (17) is not possible since k5 153. The argument for other assertions is

similar. &

LEMMA 5. Suppose that the assumptions of Theorem 30 hold and x < k3=2. Then

ðiÞ k4 116 if x5 4k

ðiiÞ k4 762 if 5
2 k4 x < 4k

ðiiiÞ k4 789 if 2k4 x < 5
2 k:

Proof. (i) If x5 4k, then
�

x
k

�
5

�
4k
k

�
> 8k=2k which, together with (12), gives

k4 116.

(ii) If 5
2 k4 x < 4k, then

�
x
k

�
> 4k=2k

�
5
4

�k
which, together with (12), gives k4 762.

(iii) Let 2k4 x < 5=2 k. Then
�

x
k

�
5 4k=2k. Further, we observe that

�
x
k

�
is not

divisible by any prime p with x
3 < p4 k. Now it is clear from the proof of Lemma

3 that
�

x
k

�
4 ð2:83Þ

x
3þ

ffiffi
x

p

xk�m for x > 27 which we may assume. Hence k4 789. &

LEMMA 6. Suppose ð5Þ holds for some x; k; m and f1; . . . ; fm as in Theorem 30. Let k1

be the largest prime such that k1 4 k. Then there exists an integer m1 such that

m1 5 k1 � ½13pðk1Þ� � 1

and

Pððx � f1Þ � � � ðx � fm1
ÞÞ4 k1

where fi 2 ½0; k1Þ for 14 i4m1.

Proof. Since k1 is the largest prime not exceeding k, we have

Pððx � f1Þ � � � ðx � fmÞÞ4 k1: ð18Þ

Let f1; . . . ; fm1
2 ½0; k1Þ and fm1þ1; . . . ; fm 2 ½k1; kÞ. We observe that m1 5 1, otherwise

m4 k � k1 which is not possible by (3) since pðkÞ ¼ pðk1Þ. Then from (18) it follows

that

Pððx � f1Þ � � � ðx � fm1
ÞÞ4 k1

and

m1 ¼ m� ðm� m1Þ5 k �
1

3
pðkÞ

� �
� 1 � ðk � k1Þ5 k1 �

1

3
pðk1Þ

� �
� 1

since pðkÞ ¼ pðk1Þ. &

For positive integers a and b with a < b, we say that the property Pk holds for an

interval ½a; b� if there exist ½13 pðkÞ� þ 2 integers in ½a; b� each having a prime factor >k.

ALMOST SQUARES AND FACTORISATIONS IN CONSECUTIVE INTEGERS 119

https://doi.org/10.1023/A:1025480729778 Published online by Cambridge University Press

https://doi.org/10.1023/A:1025480729778


We denote by a0 ¼ a0ðkÞ the least integer greater than a such that the property Pk

holds for ½a; a0�. We observe that a0ðkÞ is a nondecreasing function of k.

LEMMA 7. Suppose that the assumptions of Theorem 30 hold. If x � k þ 14 a, then

x < a0ðkÞ.

Proof. Assume that x � k þ 14 a and x5 a0ðkÞ. Then we have ½x � k þ 1; x� �

½a; a0ðkÞ�. Thus by the definition of a0ðkÞ, the interval ½x � k þ 1; x� contains

½13 pðkÞ� þ 2 integers each having a prime factor > k. This is not possible by (3)

and (5). &

LEMMA 8. Suppose that the assumptions of Theorem 30 hold. Then k4 52.

Proof. First let k5 153. Then by Lemma 4, we have x < k3=2. Now we apply

Lemma 5 to derive that x < 4k and k4 789. We shall show that k =2 ½k0; k1� for

suitable values of k0; k1. We begin by taking k0 ¼ 400; k1 ¼ 789 and k 2 ½400; 789�.

Then x � k þ 14 2367. We take a ¼ 2367 and find that a0ð789Þ ¼ 2566 implying

a0ðkÞ4 2566 for k4 789. Then by Lemma 7, we may assume that x < 2566 which

gives x � k þ 14 2166. Now we repeat the above procedure several times. We give

below the sequence of upper bounds for x � k þ 1 obtained in this way:

2166 ! 1999 ! 1834 ! 1669 ! 1513 ! 1362 ! 1257 ! 1197 !

1149 ! 1089 ! 1047 ! 1009 ! 921 ! 859 ! 793 ! 709:

Thus we may assume that x � k þ 14 709 which implies that k4 709 since x5 2k.

Now we take k0 ¼ 400; k1 ¼ 709; x � k þ 14 709 and follow the above procedure to

get the following smaller bounds for x � k þ 1:

709 ! 619 ! 487 ! 301:

The last bound is not possible since x � k þ 15 k þ 15 401. Hence k4 399. Next

we take k0 ¼ 250; k1 ¼ 399 and k 2 ½250; 399�. Then x � k þ 14 1197 since

x < 4k. We follow the above procedure to get the following sequence of upper

bounds for x � k þ 1:

1197 ! 1043 ! 931 ! 801 ! 669 ! 589 ! 511 ! 441 ! 367 ! 273 ! 151

implying k4 249. Now we take k 2 ½153; 249�. Thus x � k þ 14 747. Proceeding as

above we get the following sequence of upper bounds for x � k þ 1:

747 ! 660 ! 590 ! 509 ! 434 ! 385 ! 346 ! 296 ! 266 !

226 ! 206 ! 154 ! 76

which is again not possible.

Hence, k < 153 and we may assume that k5 53. Then we see from Lemma 4 that

x < k7=4. We apply the procedure given above to the intervals [101, 151], [61, 97] and

[53, 59] to conclude that k does not belong to any of these intervals. Now we use

Lemma 6 to arrive at a contradiction. &
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LEMMA 9. ðiÞ The solutions of 3m � 2n ¼ �1 in nonnegative integers m; n are given

by ðm; nÞ ¼ ð0; 1Þ; ð1; 1Þ; ð2; 3Þ; ð1; 2Þ.

ðiiÞ The solutions of 3m � 2n ¼ �5 in nonnegative integers m; n are given by

ðm; nÞ ¼ ð1; 3Þ; ð2; 2Þ; ð3; 5Þ.

The first result is a well known result of Leo Hebrews and Levi Ben Gerson (See

Ribenboim [7]) and the second result is due to Herschfeld [6]. We apply this lemma

to show

LEMMA 10. The assertion of Theorem 30 is valid for 34 k4 7.

Proof. We observe that m5 k � 1 for k ¼ 3; 4 and m5 k � 2 for 54 k4 7.

Hence there are at least two terms of the product in (5) composed of 2 and 3. Thus

we get 2a1 3b1 � 2a23b2 ¼ r for some nonnegative integers a1; b1; a2; b2; r with

14 r4 6. Further we observe that r < k and 2a1 3b1 > k; 2a23b2 > k by x5 2k. We

see that the above equation can be reduced to an equation of the type mentioned in

Lemma 9. Hence, we find that ða1; a2; b1; b2Þ equals ð0; 3; 2; 0Þ if r ¼ 1;

ð3; 1; 0; 1Þ; ð1; 2; 1; 0Þ; ð1; 4; 2; 0Þ if r ¼ 2; ð2; 0; 1; 2Þ; ð0; 1; 2; 1Þ; ð0; 3; 3; 1Þ if r ¼ 3;

ð4; 2; 0; 1Þ; ð2; 3; 1; 0Þ; ð2; 5; 2; 0Þ if r ¼ 4; ð5; 0; 0; 3Þ if r ¼ 5; ð3; 1; 1; 2Þ; ð1; 2; 2; 1Þ;

ð1; 4; 3; 1Þ if r ¼ 6. Let ða1; a2; b1; b2Þ ¼ ð0; 3; 2; 0Þ. Then 8 and 9 are two terms of the

product in (5). Hence, by (3), we find that x ¼ 9; 10 if k ¼ 3; x ¼ 9 if k ¼ 4;

x ¼ 10; 11; 12 if k ¼ 5; x ¼ 12; 13 if k ¼ 6;x ¼ 14 if k ¼ 7. All other solutions are

obtained similarly. &

3. Proofs of the Theorems

Proof of Theorem 30: By Lemmas 8 and 10, we have 84 k4 52. Let k ¼ 8. Then

we see from (3) and (5) that there are at least four terms which are composed of 2; 3

and 5. By deleting a term corresponding to 2; 3 and 5 in which they appear to the

maximum power, we find that x � k þ 14 60. Similarly x � k þ 14 360 if k ¼ 13

and 720 if k ¼ 17; 19; 23. Further we argue with the primes 2 and 3 to get

x � k þ 14 24 if k ¼ 9 and 72 if k ¼ 10; 11. Also x � k þ 14 k2 � k for 294 k4 52

by Lemma 4. Now we follow the procedure as illustrated in Lemma 8 and use

Lemma 6 to get the assertion. For this, we also need bounds for x � k þ 1 with

124 k4 18 which can be obtained as above. &

Proof of Theorem 2. We denote by b1; b2; b3; b4 and Y1;Y2;Y3;Y4 positive inte-

gers. We shall be using SIMATH together with some combinatorial arguments for

solving several elliptic equations. By Lemma 1, we have k4 9 or k 2 f11; 13; 19g. We

first take 44 k4 9. Let k ¼ 4; 5. Then we see that there exist 0 < j1 < j2
4 j3 4 k � 1 such that

ðn þ j1Þðn þ j2Þðn þ j3Þ ¼ b1Y
2
1
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with Pðb1Þ4 3. Putting n þ j1 ¼ X1, we re-write the above equation as

X1ðX1 þ pÞðX1 þ qÞ ¼ b1Y
2
1

where p ¼ j2 � j1; q ¼ j3 � j1. Thus 0 < p < q4 k � 1. We solve these elliptic equa-

tions using SIMATH. Then n ¼ X1 � j1 with 04 j1 4 k � 3. We find that the only

solution for (1) is ðn; k; y; b; iÞ ¼ ð24; 4; 90; 2; 2Þ.

Next we take 64 k4 9. Then we find that either

nðn þ 1Þðn þ 2Þ ¼ b2Y
2
2 or ðn þ k � 3Þðn þ k � 2Þðn þ k � 1Þ ¼ b3Y

2
3

with Pðb2Þ4 7 and Pðb3Þ4 7. Thus we solve the elliptic equation

X2ðX2 þ 1ÞðX2 þ 2Þ ¼ b4Y
2
4

where X2 ¼ n or n þ k � 3 and Pðb4Þ4 7. There are 16 such equations which are

solved using SIMATH. We find that none of the solution yields any solution to (1).

Let k ¼ 19. Then we see that either

17 divides a0; a17; 13 divides a1; a14; 11 divides a4; a15;

7 divides a2; a9; a16; 5 divides a3; a8; a13; a18

or

17 divides a1; a18; 13 divides a4; a17; 11 divides a3; a14;

7 divides a2; a9; a16; 5 divides a0; a5; a10; a15.

Thus there are four ai’s from either fa5; a6; a7; a10; a11; a12g or fa6; a7; a8; a11; a12; a13g

which are distinct and take the values 1; 2; 3; 6. Hence, there exist three terms

n þ j1; n þ j2; n þ j3 with j1 < j2 < j3 and taking values from either f5; 6; 7; 10; 11; 12g

or f6; 7; 8; 11; 12; 13g such that their product is a square. Writing X ¼ n þ j1, we find

that there exist integers r and s with 14 r < s4 7 such that

XðX þ rÞðX þ sÞ ¼ Y2 ð19Þ

for some positive integer Y. This is an elliptic equation and we use SIMATH to

exclude the case k ¼ 19. The above combinatorial argument reduces the number

of elliptic curves from 2pð19Þ ¼ 28 ¼ 256 to 21. We proceed as above to find that there

are four distinct ai’s taking values 1; 2; 3; 6 with

i 2f3;4;5;6;9;10g or f1;4;5;6;8;9g or f3;4;6;7;8;11gorf2;3;6;7;8;9g if k¼ 13;

i 2f2;3;4;6;7;9g or f1;3;4;6;7;8g if k¼ 11

which give rise to elliptic equations of the form (19). Now we use SIMATH again to

exclude the cases k ¼ 11; 13. &

Proof of Theorem 1. If k ¼ 3, the assertion follows immediately and we suppose

that k5 4. Erdo
00
s [2] and Rigge [8], independently, proved that a product of two or

more consecutive positive integers is never a square. Therefore we may assume (1)

with b ¼ 1 for some i with 0 < i < k � 1. By Theorem 2, we derive that n4 k2.
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Consequently, none of the factors on the left-hand side of (1) is divisible by a prime

exceeding k. Further we check that the assertion of Theorem 1 is valid for any of the

tuples ðn; kÞ given by (4). Now we apply Theorem 3 with m ¼ k � 1 to conclude that

n4 k. Then we observe that n4 ðn þ kÞ=2 < n þ k � 1. Further we derive from

Lemma 2 (ii) that pðn þ k � 1Þ � pððn þ kÞ=2Þ5 2 for n þ k5 12. Since every prime

between ðn þ kÞ=2 and n þ k � 1 occurs only to the first power, we conclude that

n þ k4 11. For these values of n and k, we directly check that the assertion of

Theorem 1 is valid. &

4. Proofs of the Corollaries

Proof of Corollary 3. Let ðn; kÞ be a pair distinct from the ones given by ð4Þ. If the

inequality of Corollary 3ðiÞ is not valid, then there are at most ½13 pðkÞ� þ 1 terms in

nðn þ 1Þ � � � ðn þ k � 1Þ divisible by a prime exceeding k contradicting Theorem 3.

Next we delete the cases in (4) satisfying the inequality of Corollary 3(ii) which, then,

follows from Corollary 3ðiÞ. &

Proof of Corollary 1. We denote by b5; b6; b7 and Y5;Y6;Y7 positive integers. Let

k5 4 and n > k2. Suppose that the assertion of Corollary 1 is not valid. Then there

exist prime p > k and d 2 f0; 1g such that the left hand side of ð2Þ is equal to pdb5Y
2
5 with

Pðb5Þ4 k. By Theorem A, we may assume that d ¼ 1. Suppose p divides n þ id with

0 < i < k � 1. We delete this term to obtain an equation as in ð1Þ and we apply Theorem

2 to get ðn; kÞ ¼ ð24; 4Þ. Suppose p divides either n or n þ k � 1. Then we get a product

of k � 1 consecutive positive integers equal to b6Y
2
6 with Pðb6Þ4 k. If Pðb6Þ < k, then

we apply Theorem A to get ðn; kÞ ¼ ð47; 4Þ; ð48; 4Þ. Thus we may assume that Pðb6Þ ¼ k

and in particular k is prime. Then from the k � 1 consecutive positive integers, we

remove the term divisible by k. By Theorem 2, we see that the removed term is either the

first or the last. Thus we get a product of k � 2 consecutive positive integers which

equals b7Y
2
7 with Pðb7Þ4 k � 2. This is not possible by Theorem A. &

Proof of Corollary 2. By Corollary 1, we may assume ð2Þ with k ¼ 3. Further we

may suppose that b 2 f5; 10; 15; 30g by Theorem A. Now we use SIMATH to find

that these equations have no solution. &

Remark. The exceptions n 2 f14; 15; 16; 18; 20; 21; 24g if k ¼ 13; n 2 f15; 20g if

k ¼ 14; n ¼ 20 if k ¼ 17 in Theorem 3 and the corresponding exceptions in Theorem

30 and Corollary 3(i) should be added. We thank Shanta Laishram for pointing out

these exceptions.
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