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Biflagellate algal cells of the genus Volvox form spherical colonies that propel themselves,
vertically upwards in still fluid, by the coordinated beating of thousands of flagella, that
also cause the colonies to rotate about their vertical axes. When they are swimming in
a chamber of finite depth, pairs (or more) of Volvox carteri colonies were observed by
Drescher et al. (Phys. Rev. Lett., vol. 102, 2009, 168101) to exhibit hydrodynamic bound
states when they are close to a rigid horizontal boundary. When the boundary is above,
the colonies are attracted to each other and orbit around each other in a ‘waltz’; when
the boundary is below they perform more complex ‘minuet’ motions. These dances are
simulated in the present paper, using a novel ‘spherical squirmer’ model of a colony in
which, instead of a time-independent but θ -dependent tangential velocity being imposed
on the spherical surface (radius a; θ is the polar angle), a time-independent and uniform
tangential shear stress is applied to the fluid on a sphere of radius (1 + ε)a, ε � 1, where
εa represents the length of the flagella. The fluid must satisfy the no-slip condition on the
sphere at radius a. In addition to the shear stress, the motions depend on two dimensionless
parameters that describe the effect of gravity on a colony: Fg, proportional to the ratio of
the sedimentation speed of a non-swimming colony to its swimming speed, and Gbh, that
represents the fact that colonies are bottom heavy; Gbh is the ratio of the time scale to
swim a distance equal to the radius, to the time scale for gravitational reorientation of the
colony’s axis to the vertical when it is disturbed. In addition to reproducing both of the
dancing modes, the simulations are able to determine values of Fg and Gbh for which they
are stable (or not); there is reasonable agreement with the experiments. A far-field model
for the minuet motions is also shown to have qualitative agreement, but does not describe
some features that are reproduced in the full simulations.
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1. Introduction

Volvox is a genus of algae, several species of which form spherical, free-swimming
colonies consisting of up to 50 000 somatic cells embedded in an extracellular matrix
on the surface, with interior germ cells that develop into a small number of colonies
of the next generation. The colony has an anterior–posterior axis of symmetry and each
somatic cell bears a pair of beating flagella that enable the colony to swim approximately
parallel to this axis. Each cell’s flagella beat in approximately the same direction (relative
to the colony), i.e. in a plane that is offset from a purely meridional plane by an angle
of 10◦–20◦. This offset causes the colony to rotate about its axis as it swims (Hoops
1993); the rotation is always clockwise when viewed from its anterior pole. In still
water colonies tend to swim vertically upwards, on average, because they are bottom
heavy (daughter colonies being clustered towards the rear), although they are slightly
(approximately 0.3 %) denser than water and therefore sediment downwards when the
flagella are inactivated. The beating of the flagella of cells at different polar angles, θ ,
has been observed, in colonies held stationary on a micro-pipette, to be coordinated in
the form of a symplectic metachronal wave, which propagates from anterior to posterior
in the same direction as the power stroke of the flagellar beat (Brumley et al. 2012).
Modelling suggests that hydrodynamic interactions between the flagella of different
cells, coupled with flagellar flexibility, provide the mechanism for the coordination
(Niedermayer, Eckhardt & Lenz 2008; Brumley et al. 2012, 2015). A detailed survey of
the physics and fluid dynamics of green algae such as Volvox has been given by Goldstein
(2015).

The radius a of a Volvox colony increases with age (the lifetime of a V. carteri colony is
approximately 48 h) although the number and size of cells do not. Drescher et al. (2009)
measured the free-swimming properties of many colonies of V. carteri of different radii.
Results for the mean upswimming speed W, sedimentation speed Vg, angular velocity Ω ,
mean density difference between a colony and the surrounding fluid (inferred from Vg)
and time scale τ for reorientation by gravity when the axis is disturbed from the vertical
(a balance between viscous and gravitational torques) are shown in figure 1(a–e). Note
that, if the colony were neutrally buoyant but otherwise identical, driven by the same
flagellar beating, its swimming speed would be U = W + Vg. The largest colonies cannot
make upwards progress (W < Vg); they naturally sink towards the bottom of the swimming
chamber, even when their flagella continue to perform normal upswimming motions. The
colony Reynolds number is always less than approximately 0.15 so that the hydrodynamics
is dominated by viscous forces.

Drescher et al. (2009) also observed the behaviour of V. carteri colonies as they swim
up towards a horizontal glass plane above or sink towards a horizontal plane below. In the
former case, the flagella on a colony that is close to the upper surface continue beating and
applying tangential thrust to the nearby fluid. Since the fluid is prevented from flowing
from above, the flagellar beating pulls in fluid horizontally from all round and thrusts it
downwards. This was observed by seeding the fluid with 0.5 μm polystyrene microspheres
and the velocity field measured in horizontal and vertical planes using particle image
velocimetry (Drescher et al. 2009).

The simplest model of a swimming colony (Short et al. 2006) ascribes the total mean
force exerted by the flagella to a uniform tangential shear stress exerted on the spherical
surface, with components fθ and fφ in the directions of the polar angle θ and the azimuthal
angle φ. Drescher et al. (2009) estimated fθ and fφ , as functions of colony radius a, from the
measured values of W, Vg and Ω and low-Reynolds-number hydrodynamics (the Stokes
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FIGURE 1. Swimming properties of V. carteri as a function of radius: (a) upswimming speed,
(b) rotational frequency, (c) sedimentation speed, (d) bottom-heaviness reorientation time,
(e) density offset and ( f ) components of average flagellar force density. (From Drescher et al.
(2009), figure 3, with permission.)

law and the equivalent for rotation)

fθ = 6μ(W + Vg)/πa, fφ = 8μΩ/π, (1.1a,b)

where μ is the fluid viscosity. The estimated values corresponded to a few pN per flagellar
pair, as also found by Solari et al. (2006). It can be inferred from these results that there
is a critical colony radius, ac, at which a colony far from any boundaries will hover at rest
(W = −Vg). For the experiments shown in figure 1, ac ≈ 300 μm.

When two Volvox colonies of approximately the same size, with a < ac, were introduced
into the chamber, and when they were both spinning near the upper surface, they were
observed to attract each other and to orbit around each other in a bound state, termed
a ‘waltz’, by Drescher et al. (2009) (figure 2a and supplementary movie M1 available
at https://doi.org/10.1017/jfm.2020.613). When the individual angular velocity Ω was
approximately 1 rad s−1, the orbiting frequency ω was approximately 0.1 rad s−1. The
mutual attraction is consistent with the radial inflow of small particles to a single
colony, and the rate of approach of two nearby colonies close to the top wall can be
well approximated by treating each colony as a point Stokeslet at the sphere’s centre,
together with its image system in the plane (Drescher et al. 2009). These results provided
the first quantitative experimental verification of the prediction by Squires (2001) of a
wall-mediated attraction between downward-pointing Stokeslets near an upper no-slip
surface.
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FIGURE 2. (a) Waltzing of V. carteri: top view. Superimposed images taken 4 s apart, graded in
intensity. Scale bar is 1 mm; (b) ‘minuet’ bound state: side views 3 s apart of two colonies near
the chamber bottom. Arrows indicate the anterior–posterior axes pm at angles θm to the vertical.
Scale bar is 600 μm. (From Drescher et al. (2009), figures 1a and 5a, with permission.)

However, the orbiting is not a direct consequence of colony 2 translating in the swirling
velocity field generated by colony 1, for example, because an isolated colony does not
generate a swirl velocity field. The overall torque on a colony is zero; therefore the
azimuthal (φ-direction) torque generated by the beating flagella is balanced by an equal
and opposite viscous torque on the colony as a whole, as if the flagella were trying to
crawl along the inside surface of a shell of fluid, but succeed only in pushing the spherical
colony surface in the opposite direction. The orbiting comes about because of near-field
effects as the colonies approach each other, which can be seen to be important because the
rotation rate of colony 1 is reduced by viscous forces in the gap between the two colonies.
To predict the rate of orbiting, Drescher et al. (2009) added a vertical rotlet at the centre
of each sphere, together with its image in the plane and, assuming that the surface of each
sphere was rigid, used lubrication theory to calculate the force and torque exerted by one
sphere on the other for a given rotation rate Ω . The torque provides the rotlet strength and
this, together with the force, determines the orbiting frequency,

ω ≈ 0.069 log (d/2a)Ω, (1.2)

where d is the separation between the two spherical surfaces (Drescher et al. 2009).
Equation (1.2) is close to the average of measurements on 60 different waltzing pairs.

Some pairs of colonies with a ≈ ac, which individually hover, form time-dependent
bound states near the bottom of the chamber, with one colony above the other, both
colonies oscillating horizontally back and forth. This motion was called a ‘minuet’ by
Drescher et al. (2009). In this regime the state of perfectly aligned colony axes is unstable,
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the flow generated by the swimming of one colony tilting and moving the other one away,
while the latter’s bottom heaviness and swimming tend to bring it back (see figure 2b and
movie M2). The distance between two minuetting colonies is large enough for lubrication
effects to be negligible, so Drescher (2010) modelled them as vertical gravitational
Stokeslets of equal strength, the resulting sedimentation of each being balanced by steady
swimming with speed U, directed at a small angle θ(m)(m = 1, 2) to the vertical. This
angle is determined by a gyrotactic balance between viscous and gravitational torques, the
latter arising from bottom heaviness. The height of each colony above the chamber bottom
was taken to be fixed.

We may note that a single sedimenting colony, with a > ac, will hover with its centre
at height H above the chamber bottom, where the sedimenting velocity, Vg = F̃g/(6πμa)
is balanced by the upward velocity of the fluid at that location due to both the squirming
(U = πafθ/(6μ)), and the image Stokeslet in the plane, VI = 3F̃g/(8πμH). Hence

F̃g

(
1 − 9

8
a
H

)
= π2a2fθ , (1.3)

which defines the hovering height H. When F̃g is large compared with the squirming force
π2a2fθ the hovering height asymptotes to 9a/8; thus the minimum gap width between
squirmer and wall is a/8. Hence lubrication theory would not be very accurate, and the
far-field Stokeslet model will no longer be very accurate either.

The model for the minuet by Drescher et al. (2009) consisted of two vertical Stokeslets
located at the centres of the spheres, x(m), plus their image systems in the horizontal plane
below (Blake 1971; see figure 3). For small displacements from the vertically aligned
state the model of Drescher et al. (2009) led to a two-dimensional dynamical system
for the difference in horizontal displacement of the two squirmer centres, ξ , and the
difference in the angles their two axes make with the vertical, Θ . This system shows that
the equilibrium, ξ = 0 and Θ = 0, goes unstable to a Hopf bifurcation if the gyrotactic
time B exceeds a critical value Bc, and the instability is a Hopf bifurcation if U/hBc is
large enough. These results were qualitatively consistent with the experimental data.

It should be noted that the above model is only a coarse approximation, as it neglects
vertical motions of the two colonies, as well as their spinning motion about the vertical,
which can give rise to orbiting motions when the colony axes are not vertical. Moreover,
the main weakness of the model is that it assumes that the Stokeslet strengths of the two
squirmers are the same but their hovering heights above the bottom are different, which is
not consistent with (1.3). A far-field model that does not make this assumption is outlined
in § 4 and appendix B below.

It is also worth pointing out that orbiting motions of two squirmers close together,
such as occur near the top wall, are not expected near the bottom, because the horizontal
component of the fluid motion generated by the squirming will tend to push fluid out
radially and in from above, not suck it in radially and push it out axially, as at the top.

The purpose of this paper is to provide a more detailed fluid mechanical understanding
of the pairwise interactions of Volvox by means of an improved model of the above
phenomena, which confirms and extends the modelling results of Drescher et al. (2009).
We will simulate the flow due to two identical, spinning squirmers in a semi-infinite fluid
with a rigid horizontal plane either above or below, for a range of realistic values of the
relevant parameters. In § 2 the problem is specified precisely and the numerical method
(using the boundary-element method, or BEM) described. The results are presented in
§ 3 for the waltz and § 4 for the minuet (in § 4 the two squirmers may have different
masses). They will consist of representative movies of both the waltz and the minuet
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Colony 1

Colony 2

Images
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ψ

FIGURE 3. Model for the minuet bound state: the centres of the two colonies 1 and 2 are at x(1)

and x(2), with their images in the plane e3 = 0 at x(1
′) and x(2

′); r = x(1)–x(2), R = x(1)–x(2
′).

In the model analysed by Drescher (2010), the angle θ(m) between the orientation vector of colony
m and the vertical is taken to be small, as is the angle ψ between r and the vertical.

(in supplementary material) with careful comparison with the experiments of Drescher
et al. (2009). In particular we seek to delineate regions of parameter space in which the
dancing modes are stable and investigate what happens when they are not.

2. Basic equations and numerical methods

2.1. A Volvox model
A single colony is modelled as a steady ‘spherical squirmer’, modified from that used
previously to study the hydrodynamic interactions between two such model organisms and
their behaviour in suspensions (Ishikawa, Simmonds & Pedley 2006; Ishikawa & Pedley
2007a,b; Ishikawa, Locsei & Pedley 2008; Pedley 2016). In those studies the velocity on
the spherical surface of the squirmer was taken to be purely tangential and prescribed
as a function of polar angle θ , while remaining symmetric about the orientational axis,
represented by unit vector p. Moreover, the azimuthal, φ, component of velocity was taken
to be zero. Thus an isolated squirmer of uniform density would ‘swim’ in the direction of
p, at a constant speed, U, but would not rotate. Here, instead of the surface velocity, we
prescribe the mean shear stress f s generated by the beating flagella of Volvox as acting
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Colony

Colony 1

Colony 2

Rigid sphere

fs

g

x3
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p(1)

p(2)

θp
(1)

θp
(2)

ε

(a) (b)

O

FIGURE 4. Fluid mechanical model of Volvox. (a) The colony is modelled as a rigid sphere, and
forces generated by flagella are expressed by a shell of shear stress f s at the distance ε above the
spherical surface. (b) Cartesian coordinate system used in the study, in which the gravity g acts
in the e3 direction. A plane wall exists at e3 = 0. The orientation vector of colony m is p(m) that
has the angle θ(m)p from the e3 axis.

tangentially at a radius αa, where α = 1 + ε and εa is proportional to the length of
a flagellum (figure 4a); there is no slip on the colony surface r = a. The shear stress
has components fθ and fφ in the θ - and φ-directions, i.e. f s = ( fr, fθ , fφ) with fr = 0.
Prescribing stresses not velocities is probably more realistic, especially when colonies
come close to each other or to a fixed boundary, and especially because it permits no slip
on the surface r = a. Non-zero fφ means that colony rotation is automatically included.
The model is still greatly oversimplified because the stresses are taken to be constant,
independent of both time and position (i.e. θ and φ). A similar ‘stress and no-slip’ squirmer
model was used, but not fully analysed, in the computations of Ohmura et al. (2018).
We also note that the model bears some relation to the ‘traction-layer’ model for ciliary
propulsion proposed by Keller, Wu & Brennen (1975), and to the model studied by Short
et al. (2006).

Solution of the Stokes equations shows that the swimming speed and rotation rate of a
neutrally buoyant squirmer in an infinite fluid are given by

U = afθ
μ

π

6
4α3 − 3α2 − 1

4α
, Ω = − fφ

μ

π

8
(α3 − 1) (2.1a,b)

(see appendix A for details). Thus, for small ε = α − 1, the dimensionless shear stresses
are given by afθ/(μU) = 4/(πε) and fφ/(μΩ) = −8/(3πε), which can be approximately
inferred from the experimental measurements of figure 1(a–c), as long as a value of ε
is assumed (this is discussed further in § 5). Moreover, the stresslet strength, which is
important in determining the effect of micro-organisms on the fluid flow around them
(Simha & Ramaswamy 2002; Saintillan & Shelley 2008), is identically zero, so according
to this model Volvox carteri is approximately a neutral squirmer (Michelin & Lauga 2010),
consistent with the observations of Drescher et al. (2010).

As for previous models (Ishikawa & Pedley 2007a,b) we can incorporate bottom
heaviness by supposing that the centre of mass of the sphere is displaced from
the geometric centre by the vector −lp, so when p is not vertical the sphere
experiences a torque −lp ∧ g that tends to rotate it back to vertical (g = −gk is the
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gravitational acceleration). The relevant dimensionless quantity representing the effect of
bottom heaviness relative to that of swimming is

Gbh = 4πρgal
3μU

= 8πa
BU

, (2.2)

where ρ is the density of the fluid. When Gbh = 8π, the angular velocity of a neutrally
buoyant colony that is oriented horizontally in an infinite fluid becomes U/a. We also add
a point Stokeslet at the centre of the sphere to represent the negative buoyancy of a Volvox
colony. The dimensionless quantity representing the effect of sedimentation relative to that
of swimming is

Fg = 4πΔρga2

3μU
, (2.3)

where Δρ is the density difference between a colony and the fluid. When Fg = 6π, the
sedimentation velocity in an infinite fluid is U.

2.2. Basic equations
Since the colony Reynolds number is always less than approximately 0.15, we neglect
inertia. In the Stokes flow regime, the velocity u is given by an integral equation over the
colony surface Sc and the shell of shear stress Sf as (Pozrikidis 1992)

u(x) = − 1
8πμ

∫
Sc

J(x, y) · q( y) dSc( y)− 1
8πμ

∫
Sf

J(x, y) · f s( y) dSf ( y), (2.4)

where J is the Green function for a flow bounded by an infinite plane wall (Blake 1971),
and q is the traction force; q is defined as q = σ · n = (−pI + 2μE) · n, where σ is the
stress tensor, p is the pressure and E is the rate of strain. As explained in § 2.1, the mean
shear stress f s generated by the beating flagella acts at a radius (1 + ε)a. On the surface
of the rigid sphere r = a, the no-slip boundary condition is given by

u(x) = U + Ω ∧ r, r ∈ Sc, (2.5)

where U and Ω are the translational and rotational velocities of the colony.
The shear stress f s expresses the thrust force per unit area generated by the flagellar

beat. The thrust force should be balanced by the viscous drag force and the sedimentation
force. Thus, the force condition for a colony can be given as∫

Sc

q dSc +
∫

Sf

f s dSf + 4πa3Δρ

3
g + F rep = 0. (2.6)

Here, F rep is the non-hydrodynamic repulsive force between colonies and between a colony
and a wall. Although lubrication flow can prevent a rigid sphere colliding with a plane
wall, the shear-stress shell can easily collide with a plane wall or another shear-stress shell.
In the case of a real Volvox, the collision tends to deform the flagella, and the repulsive
force may be generated by the elasticity of flagella. Here, we do not model such a complex
phenomenon, but follow Brady & Bossis (1985) and Ishikawa & Pedley (2007b) and use
the following function

F rep = α1
α2 exp(−α2λ)s
(1 − exp(−α2λ))s

, (2.7)

where s is the centre-to-centre vector between two colonies or the normal vector from
the wall to the colony centre; α1, α2 are dimensionless coefficients and λ is the minimum
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separation between two shear-stress shells or between a shear-stress shell and the wall,
non-dimensionalized by a. The coefficients used in this study are α1 = 10 and α2 = 10 for
colony–wall interactions, whereas α1 = 1 and α2 = 10 for colony–colony interactions. The
parameters were chosen to avoid collision while keeping computational efficiency. Since
the colony surfaces are at least 2εa apart in the present study, the repulsive force remains
much smaller than the lubrication forces, and is much less significant than in Ishikawa
et al. (2006), in which the gap could become infinitely small. The minimum separation
obtained with these parameters is of the order of 10−2a.

The torque condition is given by∫
Sc

r ∧ q dSc +
∫

Sf

r ∧ f s dSf − 4πa3ρl
3

p ∧ g = 0. (2.8)

The repulsive force does not contribute to the torque balance.

2.3. Numerical methods
The governing equations are discretized by the BEM (Pozrikidis 1992). By combining the
governing equations and the boundary condition, a set of linear algebraic equations can be
generated. Each spherical surface of a colony is discretized by 320 triangles, while each
spherical shear-stress shell is discretized by 1280 triangles. The numerical integration is
performed using 28-point Gaussian polynomials, and the singularity is solved analytically.
Time marching is performed using a fourth-order Runge–Kutta method. The details of
these numerical methods can be found in Ishikawa et al. (2006).

The coordinate axes are taken as shown in figure 4(b). Gravity acts in the −e3 direction,
i.e. k = e3, and an infinite plane wall exists at e3 = 0. When we investigate a waltzing
motion beneath the wall, colonies are placed in the negative e3 half-space. When we
investigate a minuet motion above the wall, on the other hand, colonies are placed in the
positive e3 half-space. p(m) is the orientation vector of colony m. The angle of p(m) from e3
is defined as θ(m)p .

Parameter values are varied so as to cover experimental conditions. By assuming that
the relaxation time, B, defined as 6μ/ρgl, is about 14 s (Drescher et al. 2009) and the
colony swims about one body length per second, Gbh is approximately 2. In the present
study, Gbh is varied in the range 0–100. Small and young Volvox swim faster than the
sedimentation speed, though large and old Volvox cannot swim upwards. In order to cover
both conditions, Fg is varied in the range 0–9π. The tilt angle of the flagellar beating plane
with respect to the colonial axis was approximately 15◦ (Drescher et al. 2009). We thus
set arctan( fφ/fθ ) = 15◦ throughout this study; ε is set as 0.05 on the basis of experimental
observations (Brumley et al. 2012).

3. Waltzing motion beneath a top wall

We first calculate the flow field around a single colony hovering beneath a plane wall.
The colony is directed vertically upwards, and the hovering motion is stable when the
colony is sufficiently bottom heavy. The results for velocity vectors in the e1–e3 plane
are shown in figure 5(a) (Gbh = 25 and Fg = 3π). We see that fluid is pulled in radially
towards the colony and then goes downward. The white broken arrows in the figure
schematically show the vortex structure.

It is not possible to predict precisely the gap width between the top of a single colony
and the wall. Although lubrication forces prevent a rigid sphere from colliding with the
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Experiment
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FIGURE 5. A hovering colony beneath a top wall (Gbh = 25 and Fg = 3π). (a) Velocity
vectors around a stably hovering colony beneath a top wall. The colony is directed vertically
upwards. White broken arrows schematically show the vortex structure. (b) Time change of
centre-to-centre distance s between two colonies, where t0 is the time of collision. The broken
line indicates experimental result Drescher et al. (2009), and the solid line indicates our
simulation result. The simulation result is dimensionalized by assuming that the colony swims
one body length per second in the absence of gravity.

wall, this is not the case for a squirmer, nor for a real Volvox colony, for which there will be
contact between the flagella and the wall, and the flagellar beating will be modified. This
is why we have incorporated the near-field repulsion force (2.7) between the squirmer and
the wall. This guarantees that the minimum distance between the wall and the squirmer
can be no less than εa.

The computed flow field is similar to that observed experimentally. When two colonies
hover beneath a wall, they are attracted to each other due to the inward suction. The change
with time of the centre-to-centre distance s between two colonies with Gbh = 25 and Fg =
3π is shown in figure 5(b), where t0 is the time of collision. The broken line indicates
experimental results from Drescher et al. (2009) averaged over 60 colonies. The solid
line indicates the simulation result, in which the time scale is dimensionalized by using
the characteristic time of a/U = 0.5 s. The attraction velocity increases as the distance
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FIGURE 6. Waltzing motion of two colonies (Gbh = 25 and Fg = 3π). (a) Trajectories of two
colonies. White or black circles indicate the centre positions of each colony, which are plotted
with the time interval of 20a/U. The colonies attracted each other and finally displayed waltzing
motions. (b) Sample image of waltzing colonies, where two colonies are trapped just below the
top wall and orbit around each other. Red and yellow arrows schematically show spin and orbit
motions, respectively. (See supplementary movie 3.)

decreases, which is captured in the simulation. This result is not unexpected, as it was
shown by Drescher et al. (2009) that the average experimental curve was almost identical
with that predicted analytically by Squires (2001) for two equal, vertical Stokeslets close
to a horizontal boundary, using the far-field, point-particle model.

Two nearby colonies beneath a wall orbit around each other in a ‘waltz’, as stated
above. Figure 6 and supplementary movie 3 show the waltzing motion reproduced by the
simulation under the condition of Gbh = 25 and Fg = 3π. We see that two colonies orbit
around each other with a constant rotation rate. The radius of the orbiting is approximately
1.07, so the two shear-stress surfaces are very close to contact.

In order to discuss the stability of the waltzing motion, we calculated the change of
orientations and distance between two nearby colonies. Figure 7(a) shows the definitions
of parameters used in the analysis. Let x(m) = (x (m)1 , x (m)2 , x (m)3 ) and p(m) = (p(m)1 , p(m)2 , p(m)3 )
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(c)

FIGURE 7. Stability of waltzing motion. White vectors indicate the angular velocity in spherical
coordinates θp − φp. Colours indicate the separation velocity of two colonies. (a) Definition of
s and φp. (b) Stability in the case of Gbh = 25 (Fg = 3π). Stable waltzing motion is observed.
Stable orientation (θp = 0.075, φp = 0.092) is shown by a black circle. Inset is the magnified
image of the black rectangle. (c) Stability in the case of Gbh = 5 (Fg = 3π). Waltzing motion is
unstable.

respectively be the position vector and the orientation vector of colony m. For simplicity,
we assume that the two colonies align in the e2-direction, i.e. x (1)1 = x (2)1 and x (1)3 = x (2)3 .
The orientation vectors were set as p(1)1 = −p(2)1 , p(1)2 = −p(2)2 and p(1)3 = p(2)3 , so that a
rotation of π around the e3-axis leaves the configuration unchanged.

The length of the centre-to-centre vector is set as 2.14a. The colour-coded values of
ds/dt indicate the separation velocity between the two colonies, i.e. ds/dt < 0 is attractive,
whereas ds/dt > 0 is repelling. φp is the angle of the projection vector of p in the
e1e2 plane from the line connecting the two colony centres. Because of the condition
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Fg/π
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FIGURE 8. Phase diagram on the stability of waltzing motion in Gbh − Fg space. Circles
indicate the simulation cases. The waltzing is unstable in the bottom grey region, and stable
in the top white region

p(1)1 = −p(2)1 , p(1)2 = −p(2)2 , φp is the same for each colony; θp, defined in figure 4(b), is
also the same for each colony.

Figure 7(b) shows the results of fluxes in phase space to understand the direction of
motion with Gbh = 25 (Fg = 3π), in which stable waltzing motion was observed. The
horizontal axis indicates φp, the vertical axis indicates θp, and the components of the
white vectors are dφp/dt and dθp/dt at given φp and θp. Moreover, the colour indicates the
separation velocity ds/dt. By following the white vectors and considering the separation
velocity, we can understand how the configurations of two colonies change with time. The
black dot in figure 7(b) indicates the stable point, where a point sink of the white vector
field exists with ds/dt ≤ 0. We can conclude that the waltzing motion with Gbh = 25 is
stable with respect to small fluctuations in the colony configurations.

In the case of Gbh = 5 (Fg = 3π), on the other hand, there is no stable point (figure 7c).
Thus, colonies with Gbh = 5 eventually repel each other and do not show the stable
waltzing motion. Figure 8 shows the phase diagram for the stability of waltzing motion
in Gbh − Fg space. The waltzing becomes unstable in the bottom grey region, while it is
stable in the top white region. The boundary lies between Gbh = 5 and 10, and Fg has little
influence on it. The mean Gbh value in the experiments can be estimated as approximately
1.8 (Drescher et al. 2009), which is smaller than the stable limit in the simulation. There
might be two possibilities to explain the discrepancy. First, the flagella beat might be
disturbed in the experiments due to interaction with the top glass wall. If the flagella
beat is disturbed, the torque generated by the flagella will be reduced, which effectively
increases their bottom heaviness to stabilize the vertical orientation of the colony. Another
possibility is that it was only colonies with large Gbh that were observed in the experiment,
because only they could stay near a top wall for a sufficiently long time.

Next, we discuss the mechanism of the waltzing motion. For simplicity, we again assume
the simple configuration shown in figure 7(a). The coordinate system, forces, torques and
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velocities are defined in figure 9. In the Stokes flow regime, the motions of two rigid
spheres in the presence of a plane wall can be described by using the mobility tensor (Kim
& Karrila 1992). Hence, the orbiting velocity of colony 1, U(1)

1 , which is equivalent to the
orbiting rotation rate multiplied by the orbiting radius, can be given as follows

Ux1 = M1,1F(1)
1 + M1,5T (1)2 + M1,6T (1)3 + M1,7F(2)

1 + M1,11T (2)2 + M1,12T (2)3 , (3.1)

where Mi,j is the (i, j) component of the 12 × 12 mobility tensor; F2,F3 and T1 do
not contribute to U1 due to the symmetry of the problem; Mi,j can be calculated by
BEM in the stable waltzing configurations with Gbh = 25 and Fg = 3π, and the results
are (M1,1,M1,5,M1,6,M1,7,M1,11,M1,12) = 10−2(2.39,−0.13,−0.8, 0.31,−0.01,−0.50).
The forces and torques can also be calculated by BEM by fixing two colonies in
space with the active shear stress f s. The results are (F(1)

1 ,T (1)2 ,T (1)3 ,F(2)
1 ,T (2)2 ,T (2)3 ) =

(−3.1, 1.5,−13.9, 3.1,−1.5,−13.9). The largest positive contribution comes from
M1,12T (2)3 = 0.069, and other major positive contributions are M1,7F(2)

1 = 0.010 and
M1,6T (1)3 = 0.011. The largest negative contribution comes from M1,1F(1)

1 = −0.074. Thus,
one may roughly say that the orbiting velocity U(1)

1 is mainly generated by T (2)3 and
inhibited by F(1)

1 . T (2)3 is induced on the colony as a reaction torque from the flagellar
beat. Negative F(1)

1 is induced because the traction force q(1) acting in regions A and A′ in
figure 9 are different. In region A, q(1) is induced by the shear stress of colony 1, f (1)s . In
region A′, on the other hand, q(1) is induced by the shear stress of both colonies, f (1)s and
f (2)s , which tend to cancel each other out. Thus, smaller q(1) is generated in region A′ than
in A.

The angular velocity of an individual spinning with Gbh = 25 and Fg = 3π is Ω(1)
3 ≈

−0.41. The angular velocity of orbiting, ω (= −2U(1)
1 /s) is approximately 0.013. The

ratio of angular velocity of orbiting to that of spinning is about 0.03 in the simulation,
which is considerably smaller than the experimental value of 0.19 from Drescher et al.
(2009). The ratio, however, can be modified dramatically by reducing the value of Gbh,
as shown in figure 10. When Gbh becomes small, the colony orientations tend to tilt from
the e3-axis. Since the change in the colony orientations is towards the direction in which
the colonies follow each other, the colonies tend to have large following velocities. The
following velocity directly contributes to the angular velocity of orbiting. Thus, colonies
with small Gbh quickly follow each other and ω increases as Gbh is decreased. We see from
figure 10 that the effect of Gbh on ω is significant, though that of Fg is small.

4. Minuet motion above a bottom wall

4.1. Numerical results
When colonies become large as they age, so that Fg exceeds approximately 6π, the
sedimentation velocity exceeds the swimming velocity. Such colonies stay near a bottom
wall and sometimes interact with each other, as discussed in § 1. Before going into the
details of two-colony interactions, we first calculate the flow field around a solitary colony
near the bottom wall. Figure 11(a) shows the simulated velocity vectors around a colony
with Fg = 9π hovering stably at a height of approximately 3.2 (non-dimensionalized
with a) over a bottom wall (Gbh = 5). The wall is at x3 = 0, and the x3-axis is taken
as shown in the figure. The colony is directed vertically upwards. We see that strong
downward flow is generated around the colony. A toroidal vortex, shown by white arrows,
is observed at the side of the colony. The height of stable hovering decreases as Fg
increases, as shown in figure 11(c) and predicted by (1.3). However, even for Fg as large
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FIGURE 9. Schematics of forces and torques exerted on two colonies fixed in space; f (m)s is the
shear stress of colony m, and qm is the traction generated on the surface of colony m; F(m)1 and
T(m)3 are the e1 component of the total force and the e3 component of the total torque exerted
on colony m, respectively. Magnified views of regions A and A′ are indicated by the red broken
lines.
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FIGURE 10. Effect of Gbh on the angular velocity of orbiting for various Fg values.
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FIGURE 11. Hovering of a colony near a bottom wall (Gbh = 5). (a) Simulated velocity vectors
around a stably hovering colony over a bottom wall (Fg = 9π). The wall exists at e3 = 0, and the
e3-axis is taken as shown in the figure. The colony is directed vertically upwards. White arrows
schematically show the vortex structure. (b) Upward velocity of a single colony for various Fg
values. (c) Stable height of a hovering colony for various Fg values.

as 9π, a colony exhibits a positive upswimming velocity when its height above the wall is
less than the height of stable hovering (figure 11b).

Next we examine the ‘minuetting’ bound state of two colonies, of different mass but
otherwise identical, near a bottom wall. We show three examples; in each case colony 1
has Fg = 7.5π and colony 2 has Fg = 9π. Both colonies are assumed to have the same
Gbh value, and Gbh is varied from 2 to 6. Other parameters of the colonies, such as a
and ε, are the same. Colonies 1 and 2 are initially placed at (−1.5, 0, 5) and (1.5, 0, 3),
respectively. Trajectories of the two colonies near the bottom wall for time t in the range
0 − 100 are shown in figure 12. When Gbh = 2 (cf. figure 12a and supplementary movie 4),
the two colonies attract each other when they are apart, but repel each other when they are
close together. Attraction and repulsion are repeated, forming the ‘minuet’ bound state. In
order to discuss the oscillation of trajectories in the horizontal direction, we calculate the
distance between the two colonies projected onto the x1x2 plane. The results are shown
in figure 13. We see that the horizontal distance oscillates with amplitude up to 3.5 in the
case of Gbh = 2.

In the case of Gbh = 3 (cf. figure 12b and supplementary movie 5), the minuet motion
is still observed, but the amplitude of the oscillation in the horizontal distance decreases
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FIGURE 12. Trajectories of two colonies near a bottom wall during t = 0–100. Trajectories of
a colony with Fg = 7.5π start from the black circles and end at the white circles. Trajectories of
a colony with Fg = 9π start from the black triangles and end at the white triangles. (a) Minuet
motion with Gbh = 2 (supplementary movie 4). (b) Minuet motion with Gbh = 3 (supplementary
movie 5). (c) Alignment of two colonies with Gbh = 6 (supplementary movie 6).

to about 2 (cf. figure 13). This is because the orientation change induced by hydrodynamic
interactions is suppressed by the bottom heaviness. We see that the centres of two
colonies form almost two-dimensional trajectories up to t = 30, though the trajectories
become gradually three-dimensional and the two colonies eventually orbit around each
other in a bound state. We note that the direction of orbiting relative to the direction
of spin, in this case, is opposite to the ‘waltzing motion’ observed near a top wall.
Moreover, it seems that two-dimensional minuet motion can be unstable in the direction
perpendicular to the plane. In the case of Gbh = 6, the two colonies eventually align
vertically (cf. figure 12c and supplementary movie 6). Similar alignment was observed
in the experiment (Drescher et al. (2009) and supplementary movie 2). The horizontal
distance, shown in figure 13, gradually converges to zero in this case. We note that
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FIGURE 13. Time course of the changing distance between two colonies with Fg = 7.5π and
9π projected in the e1–e2 plane. Gbh is varied to 2, 3 and 6.

even when two colonies have the same Fg values, such as F(1)
g = F(2)

g = 7.5π or 9π,
we observed minuet motion, orbiting around each other or vertical alignment depending
on the Gbh values and the initial positions (not shown here). Figure 13 shows that the
orbiting period decreases from nearly 20a/U when Gbh = 2 to approximately 5 when
Gbh = 6.

In figure 14, we show the phase diagram of two-colony interactions near a bottom wall
(Fg = 7.5π and 9π). In this case the Gbh values for the two colonies may be different. The
black circle in the figure indicates unstable motion, in which the centre-to-centre distance
between the two colonies exceeds 10a. The white circles indicate the minuet motion or
orbiting around each other in a bound state. The black triangles indicate vertical alignment,
in which the distance in the x1–x2 plane is less than 0.3a for t = 90–100. We see that the
colonies show the minuet motion when Gbh is in the appropriate range, while they align
vertically when Gbh is large. The effects of the Gbh values of colonies 1 and 2 on the
stability are almost symmetric.

In further simulations we assume that colony 1 has Fg = 6.5π and colony 2 has
Fg = 9π, so that the two colonies have very different heights of stable hovering (cf.
figure 11c) and may interact mainly in the far field. The reason why we changed the
parameters is because we would like to focus on far-field fluid mechanics in comparing
with the predictions of Drescher et al. (2009). Colonies 1 and 2 are initially placed at
(−1.5, 0, 7) and (1.5, 0, 3), respectively. Trajectories of the two colonies near the bottom
wall for time t in the range 0–1000 or until centre-to-centre distance exceeds 10a are shown
in figure 15. When Gbh = 0.1 (cf. figure 15a), the two colonies first show minuet motion,
but eventually move apart from each other. The centre-to-centre distance between the two
colonies, in this case, is shown in figure 15(d). We see that the distance oscillates due to
the minuet motion, but gradually increases with time. In the range t > 200, the distance is
larger than 4, so near-field hydrodynamics does not play a major role. Hence, we may say
that the minuet motion in this case is unstable even in the far field.

When Gbh = 0.3 (cf. figure 15b), the two colonies first show minuet motion, then
move apart from each other at approximately t = 500 (cf. figure 15d), then come
close once again at approximately t = 730, and eventually separate fully. The second
separation is induced by the near-field interactions at approximately t = 730, so the
minuet motion becomes unstable due to the near-field hydrodynamics in this case. When
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FIGURE 14. Phase diagram of two Volvox colonies interacting near a bottom wall (Fg = 7.5π
and 9π). The black circle indicates ‘unstable motion’, in which the centre-to-centre distance
between two colonies exceeds 10a. The white circles indicate the ‘minuet motion’. The black
triangles indicate ‘vertical alignment’, in which the distance in the e1–e2 plane is less than 0.3a
during t = 90–100.

Gbh = 1 (cf. figure 15c), the two colonies show a stable hydrodynamic bound state, in
which they first show almost two-dimensional minuet motion, before the trajectories
become gradually three-dimensional due to the instability of the two-dimensional minuet
motion in the direction perpendicular to the plane. At around t = 600, the two colonies
orbit each other, and the motion continues until t = 1000. These results illustrate that
near-field hydrodynamics plays an important role in the hydrodynamic bound states of
squirmers.

The graphs in figure 15(d) show that the period of the minuet oscillations decreases
from approximately 33a/U to approximately 14a/U as Gbh is increased from 0.1 to
1.0.

4.2. Far-field model
Since the pair of minuetting colonies in these simulations do not in general approach
very close to each other, it is appropriate to investigate the extent to which a far-field
model, such as that briefly outlined by Drescher et al. (2009), may provide a reasonably
accurate description of the stability or instability of the system. We consider two vertical
Stokeslets, of different strengths, −8πμF(1) and −8πμF(2), located at the centres of the
spheres, and perturb them from an equilibrium configuration in which one is vertically
above the other. They move, and are rotated from the vertical, because of their images in
the plane boundary (see figure 3). This model, which does not include three-dimensional
effects such as orbiting, is developed in appendix B, and conditions for instability of the
aligned equilibrium are derived. In brief, the vertically aligned state is unstable if the
reorientation time scale B > Bc = P−1 and the instability represents a Hopf bifurcation if
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FIGURE 15. Trajectories of two colonies near a bottom wall for time t in the range 0–1000 or
until centre-to-centre distance exceeds 10a. Trajectories of a colony with Fg = 6.5π start from
the black circles and end at the white circles. Trajectories of a colony with Fg = 9π start from the
black triangles and end at the white triangles. (a) Unstable far-field interaction with Gbh = 0.1.
(b) Unstable near-field interaction with Gbh = 0.3. (c) Stable bound state with Gbh = 1. Two
colonies first show minuet motion, and then orbit around each other. (d) Time change of the
centre-to-centre distance of the two colonies in (a–c).

4UQ > (P + 1/B)2, where

P = − 1
h2

[F(2)(1 − β1)− F(1)(1 + β2)], Q = 1
h3

[F(2)(1 − γ1)+ F(1)(1 − γ2)],

(4.1a,b)

and the quantities β1,2 and γ1,2 depend on the equilibrium heights of the two Stokeslets, H
and H + h, and are given in (B 6), (B 8), (B 11) and (B 13). The frequency of the resulting
oscillations when B = Bc is predicted to be

λ1 =
√

UQ − B−2
c . (4.2)

We first consider the minuetting squirmers of figure 12, with F(1)
g = 7.5π and F(2)

g = 9π,
noting that F(m) = (Ua/8π)F(m)

g where U is the swimming speed in isolation, assumed
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the same for each squirmer (we use the values of a and U from Drescher et al. (2009):
a = 300 μm and U = 300 μm s−1). If we take the values of H and h from figure 11(c),
i.e. H ≈ 3a, h ≈ 2a, we find that P < 0 so the equilibrium state is stable. However, if we
take the apparent equilibrium values from figure 12, i.e. H = h ≈ 2a, we find P > 1/B,
so the equilibrium is unstable if B < Bc; the critical value of B = 1/P ≈ 32 s. Moreover,
the bifurcation is Hopf since 4UQ > (P + 1/B)2, so for small amplitudes the squirmers’
positions will oscillate, as observed in both the current computations and the experiments,
with a predicted oscillation period of 2π/λi ≈ 17 s; this is close to that shown for Gbh = 2
in figure 13. However, the predicted value of Bc (about 32 s) corresponds to a value of Gbh
of approximately 0.79; this is significantly lower than the range of critical values shown
in figure 14. The discrepancy is more marked if we keep the same values of h and H but
change the value of F(1)

g from 7.5π to 6.5π, as for the computations leading to figure 15.
Now P takes a very small negative value, so the system is stable for all values of Gbh,
however small, which is not consistent with the results shown in figure 15. These findings
emphasize how sensitive the theory is to the precise parameter values.

Lastly, we reapply the far-field theory to the experiments of Drescher et al. (2009),
using the parameter values quoted there: h/a = 2,H/a = 1.5 and F(1)

g = F(2)
g = 6π (in

our notation). Then P = 0.0756 > 0, so the equilibrium is unstable for large enough
reorientation time B, with a critical value of Bc = 13.2 s (Gbh ≈ 2.0; this is close to the
value quoted by Drescher et al. (2009) and close to a typical value in our simulations.
However, the assumption of equal Fg values but different equilibrium heights casts doubt
on the applicability of the model with these parameters.

We should mention here an interesting recent paper by Bolitho, Singh & Adhikari
(2020), in which the dynamics of a pair of identical, self-propelling, self-spinning, active
spheres between widely separated parallel planes is modelled as Stokeslets and rotlets,
with built-in swimming speed and rotation rate, and their images in the plane boundaries.
The analysis is thus also a far-field theory, but is more general than the above because
the third dimension is not ignored. The nonlinear dynamical system that arises from the
equations leads to limit-cycle oscillations, similar to those shown by Drescher et al. (2009),
when the third dimension is ignored and only the bottom boundary is included. These
authors also show that, far from either boundary, the system is Hamiltonian and also
describes periodic orbits.

5. Discussion

The boundary-element computations in this paper, using the ‘shear-stress and no-slip’
spherical squirmer model for a swimming micro-organism, have succeeded in simulating
the dancing motions performed by colonies of V. carteri in the experiments of Drescher
et al. (2009). From a broader perspective, they further illustrate how non-trivial
time-dependent motions can arise in systems closed to external flows, purely as a
consequence of energy injection at the smallest scales. This is the essence of ‘active
matter’, as seen in systems ranging from bacterial suspensions to cytoskeletal dynamics.

In the case of the waltzing bound state of pairs of Volvox colonies near the top wall
of the chamber, the computations confirm the approximate analysis of Drescher et al.
(2009), based on the earlier work of Squires (2001), which utilizes point Stokeslets
and rotlets at the centres of the two colonies, and lubrication theory for the space
between them when they are close together. In addition we examined the stability of the
waltzing state, and found that it is stable if the bottom-heaviness parameter Gbh exceeds a
critical value between 5 and 10, more or less independently of the gravitational Stokeslet
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parameter Fg. A typical experimental value of Gbh was estimated from the data in
figure 1 to be approximately 1.8, which is below the computed critical value although the
‘waltzing’ appeared stable; the reason for this discrepancy has not been firmly established,
though it seems likely that (a) the flagellar beating is reduced in the narrow gap between
the colonies and the plane wall above, due to mechano-sensing and a reduction of the
flagellar beat frequency, or due to the flagella sticking to the glass, as has been observed
for Tetrahymena (Ohmura et al. 2018), and (b) only colonies with larger values of Gbh
would stay near the top surface for long enough to attract a neighbour into the waltz.

For the minuet bound state near the bottom boundary, the computational simulations of
§ 4.1 for two squirmers of different masses (i.e. different Fg) show that a bound state, in
which the squirmers oscillate two- or three-dimensionally around each other, tends to arise
when Gbh is below one critical value (above which the vertically aligned state is stable)
and above another, less well-defined one, below which the motion is totally unstable and
the squirmers do not remain close to each other (figures 12–15). These findings are in
qualitative agreement with both the observations and the far-field analysis of § 4.2, but not
quantitative agreement since the critical values of Gbh are larger in the simulations than in
the analysis. A key feature of the minuet simulations, absent from the far-field model, is the
three-dimensionality of the motion, as well as the significant tilt angles that the squirmers’
axes make with the vertical.

In the far-field model, of two vertical Stokeslets near the bottom wall, the vertically
aligned equilibrium state remains stable if the two values of Fg differ by too great an
amount; when it does become unstable Gbh falls below a critical value, but this value
is lower than that found in the simulations. (If the far-field model is applied to two
squirmers of equal Fg, as was done by Drescher et al. (2009), the results agree quite
well with the simulations, although assuming two different vertical heights in equilibrium
is not consistent.) A difference between the far-field model and the simulations is to be
expected, because the former does not allow for significant tilt angles or the consequent
three-dimensional motions. Further reasons for the discrepancy between the simulations
and the model, as discussed in § 4, could be (a) that the heights of the two colonies in a
three-dimensional minuet can vary with time, which is not accounted for in the model,
and (b) that the far-field assumption is not accurate enough when the distance between the
colonies is less than 10a. Indeed, a major finding of § 4 is that near-field interactions are
usually important at some stage during the minuet motions.

Finally, it is appropriate to give further discussion to the ‘shear-stress and no-slip’
squirmer model itself; here we neglect the density difference between the sphere and the
fluid, so Fg = 0 and sedimentation is absent. The formulae (2.1a,b) relating the mean
swimming speed U and the mean angular velocityΩ to the shear stresses fθ and fφ exerted
at r = (1 + ε)a give

fθ = 4
π

μU
εa

and fφ = 8
3π

μΩ

ε
, (5.1)

to leading order in ε for ε � 1. These are not the same as given by Drescher et al. (2009),
quoted in (1.1a,b) above. Our model recognizes that the shear stress is effectively exerted
by the beating flagella, at their tips in the power stroke, and lower down in the recovery
stroke. The model requires that the resultant velocity field satisfies the no-slip condition on
the (rigid) spherical surface of the Volvox colony, as well as the zero-Stokeslet condition for
a self-propelled body. The earlier model balanced the total force exerted by the shear stress
against the viscous (Stokes) drag on an inert sphere pulled through the fluid at the same
speed. This ignores the fact that the force on the rigid sphere at r = a consists of both the
hydrodynamic (shear stress and pressure) force and the equal and opposite reaction force
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Region 2

Region 1

p

a

(1 + ε)a

fθ

FIGURE 16. Schematic of the flow field around the ‘shear-stress and no-slip’ squirmer model.
There is a no-slip spherical boundary at r = a, and uniform tangential stresses fθ and fφ are
applied to the fluid at radius (1 + ε)a. Region 1 is defined as a < r < (1 + ε)a, whereas region
2 is defined as (1 + ε)a < r.

experienced by the flagella and transmitted by them to the rigid sphere. The force exerted
by the flagella not only drives the outer flow, but also the high-shear flow in the flagella
layer. Put another way, the previous model balanced the rate of viscous energy dissipation
in the flow in r > a0 driven by the shear stress against the rate of working of the Stokes
drag on the inert sphere, but ignored the energy dissipation between the shear-stress shell
and the no-slip spherical boundary, i.e. in the flagella layer. If we model the flow in this
layer as a uniform shear flow, as in figure 16, the total rate of energy dissipation in the layer
is D1 = μ× 4πa2 h × ( fθ/μ)2, where h = εa, which scales as εa3f 2

θ /μ. The dissipation in
the outer flow, assumed to scale similarly to that for a translating rigid sphere, i.e. 6πμaU2,
which from (5.1) scales as D2 ∼ ε2a3f 2

θ /μ, is formally an order of magnitude smaller than
that in the layer. In V. carteri ε is between 0.05 and 0.1 (Solari et al. 2011), which is not
extremely small, so in view of numerical factors we cannot say that D1 
 D2. But we can
be confident that the dissipation rate in the layer is at least as important as that outside
it. It follows that a greater shear stress is required to achieve the same swimming speed
than in the previous model. Similar considerations apply to the angular velocityΩ and the
zero-torque condition.

The consequence of the new formulae (5.1) is that the shear stresses for a sphere
with a = 200 μm, U = 380 μm s−1 and Ω = 1.3 rad s−1 (figure 1), and flagella length
εa = 15 μm, are fθ ≈ 1.9 × 10−2 N m−2, fφ ≈ 1.6 × 10−2 N m−2. Noting that 1 N m−2 =
103 fN μm−2, we see that these values are nearly a factor of 2 greater than the
corresponding quantities in figure 1( f ); this is mainly a consequence of the additional
energy dissipation and the ε−1 factors in (5.1).

The old steady-squirmer model, in which the tangential velocity is prescribed
on the sphere surface, is very simple to apply and has therefore been used in
numerous investigations of hydrodynamic interactions between micro-swimmers and
bounding surfaces or each other. In particular, accurate computations of near-field
interactions between pairs of such squirmers has been the essential first step in studies
of suspensions of squirmers at non-dilute volume fractions (Ishikawa et al. 2006;
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Ishikawa & Pedley 2007a,b; Ishikawa et al. 2008). The prescribed shear-stress model of
Short et al. (2006) has not been used so often, and the ‘shear-stress and no-slip’ model has
not been used at all. A useful development would be to see how predictions of suspension
rheology, coherent structures (clustering), and nutrient transport properties are changed by
the explicit inclusion of no-slip on the inner sphere of radius a, given that the active shear
stress is applied at radius r = a(1 + ε). The new model focusses attention back onto the
ciliary layer and hence on the boundary conditions to be applied, for example for nutrient
uptake. Magar, Goto & Pedley (2003) considered two possible boundary conditions, one
of constant solute concentration at r = a, and one of constant solute consumption rate in
0 < r < a. The time dependence of ciliary beating would interact nonlinearly with the
mass transfer if the Péclet number Pe were large enough. In this case the relevant Péclet
number would be based on the length of a flagellum, εa, the velocity of the flagellar
tip, σεa, where σ is the beating frequency, and the solute diffusivity, D. For Volvox,
εa ≈ 15 μm, σ ≈ 200 rad s−1, and D lies somewhat below 103 μm2 s−1, so the Péclet
number is of the order of 50 or greater, which is large enough for the mass transfer problem
to be interesting (cf. Magar & Pedley 2005).
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Appendix A

Here we derive (2.1a,b), with reference to figure 16. There is a no-slip spherical
boundary at r = a and uniform tangential stresses fθ and fφ are applied to the fluid at
radius a0. The squirmer is taken to swim at speed U in the θ = 0 direction so, relative to
the sphere, the velocity at infinity is −U (in the θ = π direction). The sphere rotates with
angular velocity Ω about the axis of symmetry; there is no azimuthal velocity at infinity.
The squirmer swims freely, so the force and torque exerted on it by the fluid are zero. We
solve the axisymmetric Stokes equations separately for the radial and meridional velocity
components, and for the swirl velocity component.

We consider the flow in two regions, a < r < a0 (region 1) and a0 < r < ∞ (region 2),
and represent it by streamfunctions ψ(i)(r, θ), i = 1, 2. In region 1, the solution of the
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Stokes equation can be written

ψ(1) =
∞∑

n=1

1
2

sin θVn(θ)

×
[

A(1)n

(a0

r

)n−2
+ B(1)n

(a0

r

)n
+ C(1)

n

(
r
a0

)n+1

+ D(1)
n

(
r
a0

)n+3
]
, (A 1)

where Vn(θ) = 2(sin θP′
n(cos θ))/n(n + 1), the Pn being Legendre polynomials, and

A(1)n ,B(1)n ,C(1)
n ,D(1)

n are constants to be determined. In region 2 the streamfunction is

ψ(2) = −1
2

Ur2 sin2(θ)+
∞∑

n=1

1
2

sin θVn(θ)

×
[

A(2)n

(a0

r

)n−2
+ B(2)n

(a0

r

)n
+ C(2)

n

(
r
a0

)n+1

+ D(2)
n

(
r
a0

)n+3
]
. (A 2)

The first term incorporates the (unknown) uniform stream at infinity, and C(2)
n = D(2)

n = 0
for all n so the corresponding contributions to the velocity tend to zero at infinity.
Moreover, A(2)1 is also zero, because this is the Stokeslet term, proportional to the net force
on the sphere, which is zero.

The velocity components, pressure and tangential shear stress in region 1 are

ur = −U cos θ +
∞∑

n=1

1
a2

Pn(cos θ)

×
[

A(1)n

(a0

r

)n
+ B(1)n

(a0

r

)n+2
+ C(1)

n

(
r
a0

)n−1

+ D(1)
n

(
r
a0

)n+1
]
, (A 3)

uθ = +U sin θ +
∞∑

n=1

1
2a2

Vn(θ)

[
(n − 2)A(1)n

(a0

r

)n
+ nB(1)n

(a0

r

)n+2

−(n + 1)C(1)
n

(
r
a0

)n−1

− (n + 3)D(1)
n

(
r
a0

)n+1
]
, (A 4)

p = 2μ
a4

∞∑
n=1

Pn(cos θ)

[
A(1)n

2n − 1
n + 1

(a0

r

)n+1
+ D(1)

n

2n + 3
n

(
r
a0

)n+3
]
, (A 5)

σrθ = −μ

a4

∞∑
n=1

Vn(θ)

[
A(1)n (n

2 − 1)
(a0

r

)n+1
+ B(1)n n(n + 2)

(a0

r

)n+2

+C(1)
n (n

2 − 1)
(

r
a0

)n−2

+ D(1)
n n(n + 2)

(
r
a0

)n+1
]
, (A 6)

with corresponding equations for region 2. The boundary conditions at r = a are ur =
uθ = 0 and at r = a0 are continuity of ur, uθ and the normal stress −p + 2μ∂ur/∂r, and
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the jump in σrθ from 1 to 2 is fθ . The constant fθ can also be expanded in a series of the Vn

fθ = fθ
∞∑

n=1

FnVn(θ), (A 7)

where

F2l = 0, F2l+1 =
(4l + 3)Γ

(
l + 1

2

)
Γ

(
l + 3

2

)
4Γ (l + 1)Γ (l + 2)

. (A 8a,b)

Now, the object of this analysis is to calculate U, which appears only in the cos θ and sin θ
terms in the above equations. Hence we need to use only the n = 1 terms in the equations;
for example, the relevant contribution to fθ is F1 = 3π/8. A simple calculation gives the
result

U = afθπ
μ

(4α3 − 3α2 − 1)
24α

, (A 9)

where α = a0/a.
It remains to perform a similar analysis for the swirl velocity uφ . The solution of the

azimuthal component of the Stokes equation in region 1 is

uφ = a0

∞∑
n=1

Vn(θ)

[
G(1)

n

(a0

r

)n+1
+ H(1)

n

(
r
a0

)n]
, (A 10)

with corresponding azimuthal shear stress

σrφ = μr
∂(u(1)φ /r)

∂r
= μr

a0

∞∑
n=1

Vn(θ)

[
−(n + 2)G(1)

n

(a0

r

)n+2
+ (n − 1)H(1)

n

(
r
a0

)n−1
]
.

(A 11)

Similar equations apply to region 2, except the H(2)
n terms are all zero because the swirl

velocity must tend to zero at infinity. Moreover, the torque on the squirmer is proportional
to G(2)

1 , so this too must be zero. The boundary conditions are that uφ is a sin θΩ at r = a
and continuous at r = a0, while the jump in azimuthal shear stress at r = a0 is fφF1. Hence
we deduce that

Ω = − fφ
μ

π

8
(α3 − 1). (A 12)

This completes the derivation of equations (2.1a,b).

Appendix B. Far-field model for a minuetting pair

We consider two squirmers, represented by Stokeslets of different strengths,
8πμF (m),m = 1, 2, located at the centres of the two spheres, x(m). Their orientations p(m)
are taken to be close to vertical, as depicted in figure 3. The motion of the fluid, occupying
the half-space x3 > 0, and of the squirmers is determined by the images of the Stokeslets
in the plane x3 = 0 (Blake 1971). Rotation of the squirmers about the vertical is ignored as
it does not influence the motion of their centres while the orientations are close to vertical.
For now we take both orientations to lie in the same x1x3 plane.
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The motion of sphere m is given by

dx(m)

dt
= u(m) + Up(m), (B 1)

where u(m) is the velocity at the centre of sphere m generated by the Stokeslet of the other
sphere and its image system in the plane, U = επafθ/4μ (the same for both squirmers),
and

p(m) = (sin θ(m), 0, cos θ(m)) (B 2)

is the unit orientation vector of sphere m. If we consider m = 1, take the Stokeslet strength
of each sphere to be (0, 0,−8πμF(m)), and consider the j-component of (1.3), then the
results of Blake (1971) give

u(1)j = −F(2)
k

[(
1
r

− 1
R

)
δjk + rjrk

r3
− RjRk

R3

+2H(δk1δ1l + δk2δ2l − δk3δ3l)
∂

∂R3

(
HRj

R3
− δj3

R
− RjR3

R3

)]
, (B 3)

where H is the height of the centre of sphere 2 above the plane, assumed constant.
Here, r = x(1) − x(2) = (r1, 0, r3) and R = x(1) − x(2

′) = (r1, 0, r3 + 2H), where x(2
′) is

the image of x(2); r and R are the magnitudes of r and R, respectively.
We first consider the displacement in the horizontal, 1, direction. For small

displacements r1 and r3 − h, and small angles θ(m), (B 1) and (B 3) with m = 1 reduce
to

u(1)1 = −F(2)

[
r1r3

r3
− R1R3

R3
+ 2H

(
3HR1R3

R5
+ R1

R3
− 3R1R2

3

R5

)]
(B 4)

and hence
dx (1)1

dt
= −F(2)r1

h2
(1 − β1)+ Uθ(1), (B 5)

where

β1 = h2(h2 + 8hH + 6H2)

(h + 2H)4
. (B 6)

The corresponding expression for dx (2)1 /dt is also obtained from (B 3) by replacing
[r1,H, r3, h, θ (1)] by [−r1,H + h,−r3,−h, θ (2)], which leads to

dx (2)1

dt
= −F(1)r1

h2
(1 + β2)+ Uθ(2), (B 7)

where

β2 = h2(−h2 + 4hH + 6H2)

(h + 2H)4
. (B 8)

Changes to the angles θm arise from the gravity–viscous torque balance, for example

dp(1)

dt
= 1

B

{[
k − (k · p(1))p(1)

] + 1
2
ω(1) ∧ p(1)

}
, (B 9)
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where k is a vertical unit vector, and ω(1) is the vorticity at x(1) due to the sphere at x(2)

and the image system. Here, ω(1) = (0, ω(1)2 , 0) and

ω
(1)
2 = ∂u(1)1

∂x3
− ∂u(1)3

∂x1
= −2F(2)r1

h3
(1 − γ1), (B 10)

where

γ1 = h3

(h + 2H)4
(h + 8H). (B 11)

Similarly

ω
(2)
2 = +2F(1)r1

h3
(1 − γ2), (B 12)

where

γ2 = h3

(h + 2H)4
(7h + 8H). (B 13)

Thus (B 9) becomes

dθ(1)

dt
= − 1

B
sin θ(1) − F(2)r1

h3
(1 − γ1) ≈ −θ

(1)

B
− F(2)x (1)1

h3
(1 − γ1), (B 14)

and similarly
dθ(2)

dt
≈ −θ

(2)

B
+ F(1)r1

h3
(1 − γ2). (B 15)

Here, B = 6μ/(lρg), where l is the distance from a colony’s centre of buoyancy to its
centre of mass, is the time scale for gyrotactic reorientation.

If we write ξ = r1 = x (1)1 − x (2)1 , Θ = θ(1) − θ(2), the system of linearized equations
(B 5), (B 7), (B 14) and (B 15) reduces to

dξ
dt

= − ξ

h2
[F(2)(1 − β1)− F(1)(1 + β2)] + UΘ,

dΘ
dt

= − 1
B
Θ − ξ

h3
[F(2)(1 − γ1)+ F(1)(1 − γ2)].

⎫⎪⎪⎬
⎪⎪⎭ (B 16)

Assuming that ξ and Θ are proportional to eλt, (B 16) gives a quadratic equation for the
eigenvalues λ whose roots are

λ = 1
2

⎡
⎣− 1

B
+ P ±

√(
1
B

+ P
)2

− 4UQ

⎤
⎦ , (B 17)

where P and −Q are the coefficients of ξ in the first and second of equations (B 17),
respectively; note that Q is positive but the sign of P depends on the parameter values. Thus
the equilibrium steady state (ξ = Θ = 0) is unstable if P > B−1; moreover the bifurcation
when P = B−1 is a Hopf bifurcation if the quantity in the square root is negative. In
that case the imaginary part of λ gives the frequency of the resulting oscillations. These
predictions are compared with the full computations and to the experiments of Drescher
et al. (2009) in § 4 above.
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