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Abstract. Various possible cases of spherically systems the matter of which is localized in a domain smaller 
than the corresponding gravitational radius is considered. 

The metic of the Friedmann closed world or of a part of it with an external continuation is suggested as 
a model of these systems. 

There can exist black holes which are described by semi-closed metrics (black holes of the second kind). 
The class of systems in question may be both in the state of collapse and in the state of anti-collapse (in
cluding the state of 'white holes'). 

There are some grounds to suppose that collapse of celestial bodies should stop in the domain h/mvc, 
where mv is the mass of the vector meson, and that the pair production effect due to collapse of a charged 
sphere should conserve the Laplace determinism of the process. 

The role of the charges of sources of different fields (electromagnetic, meson vector, scalar long-range, 
scalar meson, various versions of neutrino fields) in the deformation of the external and internal metric of 
black and white holes is analysed. 

In this consideration a number of problems arises (the absence of horizon in the case of any small 
charges of scalar fields, the presence of the generalized Gauss theorem for vector meson field etc.), which 
provide evidence that the assertion 'Black hole has no hair' needs further investigations. In particular, 
the inverse process of formation of hair (e.g. vector-meson, scalar fields) in the process of anti-collopose 
has not been studied yet. 

For the limiting case of the Nordstrom-Reissner metric m = e (more correctly m^e) two essentially 
different possibilities of continuing to the internal metric are considered (the Papapetrou case and the case 
which we called 'friedmon metric' describing charged black holes of the second kind(friedmons)). 

In the case of charged holes of the second kind (friedmons) the occurance of quantum effects (pair 
productions) can reduce the horizon surface and violate the Hawking theorem. 

The notion of black holes may turn out to be essential in elementary particle theory: among the inter
mediate states in elementary particle theory there are states the characteristic feature of which is the localiza
tion of arbitrary large energies (masses) in a domain smaller than the gravitational radius. 

Collapse and anticollapse of material systems have long been the object of theoretical 
investigations. At the present time when astrophysics becomes gradually an ex
perimental science the interest in such systems increases greatly. Much attention is 
also paid to peculiar changes in the process of collapse of the global properties of 
matter which are being extensively discussed. In particular, a possible disappearance 
of some fields in the external metric of similar systems in the process of collapse 
(when the collapsing matter is behind the Schwarzschild sphere) is widely discussed. 

This situation figuratively is defined by Wheeler (1971) as follows: 'A black hole 
has no hair'. 

In what follows we are dealing with the systems in which matter is localized in 
regions smaller than the corresponding gravitational radii. The state of these systems 
has a certain variety. It can, in particular, be a both a collapse and an anticollapse. 
The systems under discussion have also other differences if sources of different fields 
are included into them. It seems advisable to make a certain classification of possible 
objects of this kind in the framework of general relativity. In what follows we restrict 
ourselves in the main to the consideration of the systems when the appropriate 
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metric in the region of localization of gravitating matter is described by a linear 
element of the closed Fr iedmann world (Hoyle et al, 1965), and the external solution 
matched with this ' internal' solution at a given moment is the Schwarzschild solution. 
We exclude thereby a very interesting class of external metrics of the Kerr type 
because the appropriate internal metrics matched with them have not been con
structed yet. In the discussion of the fate of short-range forces in the external metric 
of these systems it is advisable to employ also systems of small total masses. Such 
systems are, in principle, allowed by theory. The gravitational radius of the systems 
in question may be e.g. of the order h/mvc, where mv is the mass of, e.g., a vector 
meson. The quantity h/mvc is of the order 1 0 " 1 3 cm: here we are still in the range 
of applicability of the non-quantum theory of gravitational field. In other words, 
the given length h/mvc is by 20 orders of magnitude larger than the corresponding 
gravitational length (lgr=(hcx)1/2 c~2~ 1 0 " 3 2 cm), where we may suspect the in
validity of the classical Einstein gravitational theory. In addition, we may always, 
if needed, put formally mv to be very small, i.e. h/mvc to be arbitrary large. There is 
no real physical sense of considering short-range external fields of celestial bodies 
at distances h/mvc~ 1 0 " 1 3 cm and discussing whether it is possible to detect them 
experimentally. It should be stressed that systems with gravitational radius of an 
order of 1 0 " 1 3 cm are by no means related to microworld objects. Such a gravitational 
radius is assigned to the mass 

h c2 

M 0 ~ 1 0 1 4 g = 1 0 8 ton . (1) 
mvc 2x 

The Friedmann linear element 

ds2 = a2 (rj) drj2-a2 (rj) dx2 - a2 (rj) s in 2 x{d92 + s in 2 6 dcp2) 

or 

d s 2 = c2 dt2 - a2 (t) {dX

2 + s in 2

 X (d92 + s in 2 6 dcp2) (2) 

is known to describe one of the models of the closed world. 
Here the variable x changes in the limits 

O ^ x ^ t t , a(r]) = a0(l-cosrj). (3) 

The variable rj is connected with the time t by a simple relation: 

f = - ( * / - s i n , / ) . 
c 

The same Equation (2) can describe the internal metric of the so-called black hole, 
more strictly, of a certain model of the black hole, provided the matter of the system 
is distributed in such a manner that the region x is filled only to # m < 7 i / 2 . And then 
the external metric, e.g. (Euclidean at infinity), should be 'matched' with the internal 
Friedmann metric in an appropriate manner. The black hole is usually viewed as 
the final state of a collapsing system when the matter of the system is behing the 
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Schwarzschild sphere. We imply here the state which the collapsing system tries 
to reach at the Schwarzschild t ime increasing to infinity. We call this limiting state 
of the system black hole of the first kind. 

We may define strictly this object in the framework of the abovementioned metric 
with the above-mentioned restriction on the range of the x values. Namely, 

(1) Black hole of the first kind: 

As far as the metric is nonstatic and the question is to discuss collapse, further fate 
of the system is related to decreasing a(t) xm value, i.e. to reducing sizes of the system 
which 'is' already behind the Schwarzschild sphere. 

The variety of the objects described by the internal metric (2) is not limited by the 
state-black hole of this kind. 

In fact, if matter fills in the region / so that n/2<xm<n then there arises a space 
with a semi-closed metric. This space has the following properties. If spheres or 
X>0 are circumscribed around the point x = 0 at a given moment then the surface 
of the sphere is 

The surface of the sphere 5 increases with increasing x to / = 7 r / 2 . However, when 
X > n/2, the sizes of the sphere decrease and for x = n the sphere reduces to a point 
which implies that the world becomes closed. 

Semi-closed worlds were first studied by Klein (1961), Zel'dovich (1962), and 
Novikov (1962). Klein called the system of this kind Friedmann world with external 
continuation '(Mit AuBenwelt)'. 

When x < 7 r / 2 (black hole of the first kind) the surface of the spheres in question 
increases monotonically with increasing x at a given moment t. In the external metric 
the quantity a(t) s i n / = r assumes also the meaning of a monotonically increasing 
radius. The semi-closed metric (when n/2<xm<n) is characterized by the existence 
of a minimal surface, a minimal value of r in vacuum, where dr/dx = 0 and d2r/dx2 > 0 
(for details see Markov and Frolov, 1970; Markov, 1971). 

In other words, the semi-closed metric is characterized by the presence of a specific 
throat which links the internal and external metric. 

In principle, among celestial bodies there may be objects of the second class just 
mentioned. Thus 

(2) Objects with semi-closed metric: n/2<xm<n are black holes of the second 
kind. 

Although the objects of the second kind are, in their astrophysical nature, analogous 
to the black holes, they differ essentially from the black holes of the first kind. The 
objects of the former class can arise (for instance) in the process of evolution of 
white holes (see Appendix II). 

Finally, the third case: 
(3) Xm = n - the Friedmann closed world. 

(4) 

S=4na2(t) s i n 2 * . (5) 
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The matter density p,(t) integrated over the whole space of a closed world gives 
a 'bare ' mass of the system i.e. the total mass without taking into account the grav
itational defect: 

M0 = 2n2fi(t)a3(t). (6) 

This value of the 'bare ' mass defines the sized of the radius of the closed world at the 
moment of its maximum extension: 

a 0 = ^ (7) 

The latter expression is immediately obtained from the Einstein equation 

'd\2 2n c2 

- =—*H — 
\al 3 a (8) 

If we put in Equation (8) a = da/At=0, then according to Equation (6), JXQ = M0/2n2al. 
These relations show that a closed world can, in principle, contain an arbitrary small 

amount of matter and has arbitrary small sizes. It appears that quantum mechanichs 
alone can impose here definite restrictions. Thus, for 

[hcY2 

M0 = ( - J ~ l ( T 5 g 

the dimensions of the world 

(hex)112 

a 0~W 1 0 " 3 3 c m . (9) 

There are some grounds to believe that at these distances the notion of length losses 
its meaning due to quantum fluctuations of the metric (Regge, 1958; Blokhintsev, 
1960). 

The total mass of a part of a closed world, localized in the region from x = 0 to xm 

(i.e. the bare mass minus its gravitational defect) is given by the expression 

A*tot=-0osin 3 x m . (10) 
x 

(Klein, 1961; Zel'dovich and Novikov, 1967). 
Thus, the total mass of the closed system (xm

 = n) *s z e r o -
The semi-closed system is characterized by two lengths. One of the lengths / i n 

characterizes the internal sizes of the system 

/i„ = 0 ( O * . (11) 

The maximum value of the internal sizes may be arbitrary large 

Cx = aoXm, (12) 
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where a0 is the radius of the system defined by the bare mass, according to Equation (7). 
The other sizes are associated with the surface which surrounds a part of the Fried

mann world filled in with matter. This is the surface of the ' throat 1 S = a2 s in 2 x 0 

with its radius 

'<mt = « W s i n X o > Xo>Xm, (13) 

which, depending on the Xo value, may be arbitrary small. At /o-^O, 'out tends to zero. 
The quantity / o u t is the external dimension of the system, that is the dimensions of 
the system which an external observer sees. 

Systems like our Universe with numerous galaxies having ultramacroscopic 
internal dimensions (/ i n) may have arbitrary small external dimensions (/ o u t). Even 
this surface may be microscopic dimensions and, according to Equation (10), may 
possess a microscopic total mass*. In this sense, we may speak of a peculiar relativity 
of the notions of macro and micro (Markov, 1971). 

Further variety of the objects under discussion may be associated with the fact 
that they can be in two different states defined by the initial conditions. In other 
words, the internal dimensions of the system can eventually either decrease 

(da 
I — < 0 - collapse 
Vdt 

or increase 

(da 
I — > 0 - anticollapse 
\ d r 

These objects being in the state of collapse are systems absorbing matter from the 
surrounding space (black holes), while in the state of anticollapse there may, in prin
ciple, be radiating objects sources emitting matter (white holes). 

Strictly speaking, so far we are not aware of whether black holes exist and whether 
the collapsing systems are realized in nature. 

However, we may apparently assert with a great probability that there exists, 
at least, one system in the state of anticollapse, this is precisely our Universe. It is 
quite probable that our Universe is just a white hole. Very little is known about the 
end fate of the collapsing system. 

It is hard to say a priori whether it is possible to exclude the existence of periodic 
states when a collapse is changed by an anticollapse. In principle, such a possibility 
may be given by, e.g., long-range fields of the type of electrostatic fields (Novikov, 
1966). Short-range vector meson fields may play the same role provided in the process 
of collapse the system turns out to be in the region h/mvc (Berezin and Markov, 
1969), where mv is the vector meson mass. 

But studying this situation we see that the collapse changes by an anticollapse 

• 

* In the framework of the classical theory there are not restrictions on the smallness of the total mass. 
It may be, e.g. of the order of the mass of an elementary particle. 
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which however occurs not in the space where the collapse took place (Novikov, 
1966; de la Cruz and Israel, 1967; Bardeen, 1968). 

On the one hand, this unexpected and unusual situation forces us to search for 
the explanation may be in an insufficiently real description of the process (for in
stance, in neglecting e.g. the huge pair production effect in big meson fields of the 
final stage of collapse (see Appendix 1). On the other hand, the same situation gives 
a possibility of making nontrivial speculations concerning topological structure of 
our Universe (Sakharov, 1971). Should we exclude in this case the possibility that 
some of the objects in question might enter in this state of anticollapse in the state 
of a white hole only recently, as a result of its periodic development, and this might 
happen precisely in our space. 

These considerations would suggest an interpretation of the formation of galaxies 
in the spirit of the conceptions of Ambartsumian (1962) which, in his opinion, follow 
from astronomical observations. A similar hypothesis was proposed by Novikov 
(1964) and Ne'eman (1965). But finally, the problem reduces to different formulations 
of the appropriate initial conditions. 

It is obvious that spontaneous emergence of a white hole in our space is not a 
very easy understandable event. However, in a certain sense the same problem 
arises when discussing the original moment in the development of our Universe. 

Objects with semi-closed matric can be classified as an independent class of objects. 
A black hole of the first kind cannot turn to, e.g. a semi-closed system. The matter 

is that the black hole can only absorb matter from the surrounding space, can only 
increase its gravitational radius, while the formation of a system with semi-closed 
metric requires for the Schwarzschild sphere to decrease its sizes. 

Another situation arises if we deal with objects in the state of anticollapse (see 
Appendix 2). 

U p to this point of our presentation the subject of our consideration were elec
trically neutral systems. The introduction of even arbitrary small electric charges 
in the systems in question changes essentially the situation and thereby changes 
the classification of the objects we are interested in. 

First of all, the third case turns out to be impossible - system with closed metric. 
The closed Friedmann metric perturbed by the presence of an arbitrary small electric 
charge is the case of the semi-closed metric. 

In the Friedmann metric (2) we can formally find a solution for the electrostatic 
potential <p, for simplicity at the moment of maximum extension of the world. 

Such a solution is of the form 

const , v 

< P = — — (14) 
asmx 

As # - » 7 r the expression for the potential becomes infinite. For x = n there appears 
a particular feature characteristic of a point source the presence of which at this 
place has not been supposed by us. This is precisely the form in which the contradic
tion between the closed metric and the attempt to introduce in this metric the total 
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non-zero electric charge is revealed. In fact, at the place where x ^ n there arises 
something representing the image of the field source localized at # = 0 . The contra
diction with the closed metric disappears if we imply the charge of an opposite sign. 
Then the total electric charge of the system turns out to be equal to zero. If the strength 
lines go out from the charge at the point # = 0, then they must end in this case on the 
charge of an opposite sign at the point x = n> 

The character of the deformation of the closed world metric by a small electric 
charge was considered in detail by Markov and Frolov (1970). When the electric 
charge is arbitrary small a noticeable deviation from the Friedmann metric arises 
only for x arbitrary close to n. 

In other words, if we circumscribe spheres with # > 0 around a small charge e 
localized at / = 0 then these spheres are characterized by the expression (5) up to x 
very close to n. 

In the domain x > 7 c / 2 the spheres will greatly decrease with increasing as in 
the absence of the electric change. However, in this case (at x>7l/2) the spheres play 
the role of peculiar focusing lenses for strength lines of an electrostatic field. 

A detailed study shows that when the density of strength lines ('hair' of the electro
magnetic field) becomes such that the corresponding value for the electrostatic 
potential reaches a value close to 

c2 

<P = ^T2> (15) 
then with further increase of x the spheres in question begin growing again and the 
metric turns to a particular case of the well-known Nordstrom-Reissner metric. 
This particular case is characterized by the Schwarzschild mass 

M « o , = ^ (16) 

and the metric itself (outside throat) is 

d s 2 = <P2c2 dt2 - - r2 (d62 + s in 2 9 dcp2), (17) 
d r 2 

dsz = <P*c* dt'-

where 

•H 1 - 1 ^)- (18) c r 

The radius of a minimal sphere which is allowed by the electrostatic charge is pro
portional to the electric charge 

ex}12 

rmm=-p-. (19) 

The contradiction with the closed metric is 'created' by the Gauss theorem. Figur
atively speaking, the electric strength lines ('hair') become more dense for x close to n 
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so that they 'punch' in the closed metric a 'wormhole ' (throat) into which the electric 
vector flux rushes forming outside the given material system a particular case of the 
Nordstrom-Reissner metric. Outside the throat this metric is quite analogous to 
the metric suggested by Papapetrou (1945). 

But the physical object characterized by this metric and the complete space-time 
description of the metric at small distances (r<ex1/2/c2) are of quite different nature. 
Special attention should be paid to this fact. 

The Papapetrou metric describes the static case when gravitational attraction of 
particles is equilibrated by electrostatic forces of repulsion of their electric charges. 
Roughly speaking, from the equality xm2/r=e2/r it follows the relation (16) m=e/x1'2. 

A detailed analysis (Markov and Frolov, 1972) of the Papapet rou metric shows 
that in this case as one should except for the static case, matter cannot be behind the 
Schwarzschild sphere. In the Papapetrou model the sizes of the domain in which 
matter is localized is necessarily large than the gravitational radius of the system. 

In our case we are dealing with the system which is inside the Schwarzschild sphere. 
In this model the metric is nonstatic. The external metric in the form (18) is a limiting 
case of the Nordstrom-Reissner metric for M>e/xl/2 when M-+e/x1/2. 

The general case of the Nordstrom-Reissner metric is known to be described by 
the expression (17) as well, but now # is of the form 

In our limiting version of this metric, according to (16) Mtot = s/xi/2, r + and r_ are 
equal to each other. 

The physical picture of the Friedmann metric distorted by the presence of the 
small charge differs from the corresponding picture of the Papapetrou model by 
that in the latter the values of the total mass of the system and its bare mass coincide. 
While in our case the total mass is of essentially electrostatic nature. The value of 
the bare mass (say, the number of nucleons in the system) may be arbitrary. Here 
the bare mass is completely cancelled by the gravitational defect of the system. The 
internal metric together with the external metric (18) which at e^O transforms to 
the metric of the Fr iedmann closed world is given by us the name of friedmon metric 
and the object itself - 'friedmon'. 

We have considered in detail the friedmon metric and have introduced for the 
given object a special term 'friedmon' because in literature the case e2/x-*M2 is 
interpreted as the Papapetrou case, or which is the same, as the Bonnor case (1960) 
even when one considers an entire analytic continuation of the metric for s2/x = M2 

(Carter, 1966). According to (19) the radius of the throat increases proportionally 
to the total electric charge. 

(20) 

( 2 1 ) 
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This is the description of the throat from the point of view of classical (nonquan-
tum) physics. But from the viewpoint of quantum physics the state of the throat 
cannot be stable. 

Indeed, if at some initial moment a throat with the above mentioned properties 
arises then in its superstrong electrical field * there inevitably occurs a violent process 
of production of any kind of electrically charged pairs: proton-ant iproton pairs, any 
kind of meson pairs, and finally, electron-positron pairs. Charges of opposite signs 
will attempt to decrease the effective charge of the throat while the charges of the 
other component of pairs will flow to the euclidean infinity. 

The decrease of the electric charge of a system due to the production of charged 
particle pairs results in the decrease of the electric charge of the throat . The pecu
liarity of the quantum effect of electron-positron pair production consists in that the 
pair components may be spaced by a considerable space-like interval (Zel'dovich, 
1971). / / may happen that the electron and positron are created on opposite sides from 
the event horizon. A 'subbarrier ' penetration of particles with opposite charges 
through the event horizon (throat), particle pairs produced outside the throat, is 
also possible. 

From the viewpoint of the Schwarzschild observer a particle approaches the grav
itational radius of the black hole during an infinitely long time. But in this process 
there is a striking peculiarity which should be borne in mind in a number of facts. 

The law of change of this spacing with time is given by the formula (Zel'dovich 
and Novikov, 1967). 

r = r g r + ( r 1 - r i r ) g " c ( f - r , ) / 2 r « ' , 

here r is the location of the particle at a moment r g r is the gravitational radius, 
(ri-rv)<rv. 

Here the numbers are very instructive. In fact, let r g r ~ 10 5 cm, and (r x — r g r ) ~ 10 3 cm. 
As is seen from the formula, even this short way, amount 10 m, is covered by the 

particle during an infinite time. The main thing is however that in a second the distance 
between the Schwarzschild sphere and the test particle becomes infinitely small: 

J r ~ 1 0 3 e - 1 0 5 c m < 1 0 - 1 0 0 0 0 cm, 

which is infinitely small even compared with the characteristic length of quantum 
fluctuations of the metric / ~ 10" 3 3 cm. 

Because of the presence of huge fields in the systems in question (friedmons) near 
the throat the pair production process under given initial conditions occurs mainly 
directly in the throat region. But spontaneous appearance of a charge of an opposite 
sign 'inside' the fridmon decreases the internal charge of the friedmon. Consequently, 
according to (19), the radius of the throat and the horizon surface, the Schwarzschild 
sphere surface, decrease as well. 

In other words, in quan tum domain quantum effects can violate the Hawking 
* The value of the potential^ = c2/jx appears to be the maximum one which is allows by nature in R space. 
This expression contain no electric charge (!!). 
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theorem. Another case of quantum violation of the Hawking theorem was recently 
indicated by Bekenstein (1973). If we suppose that the electron of a pair produced 
near the throat carried away at infinity an energy E=se/rgT = ex~1/2c2 when it pushes 
off from the throat charge (e), then the remainder conserves the characteristic prop
erty of the friedmon: 

Thus, in the process of spontaneous pair production near a given friedmon its 
total charge, total mass and the sizes of the throat can decrease. This process has not 
been studied yet in detail, but the estimates (Markov and Frolov, 1970) show that the 
pair formation process results in a decrease of the friedmon charge in the final state 
to a value Ze<\31 e. According to Landau (1955), further vacuum polarization 
appears to be capable of decreasing the charge to e = 1. It is essential that the same 
value of the electric charge of the final state arises for any charge value of the initial 
friedmon. In any case, the latter assertion holds for relatively small initial Z, namely 
for Z < 1 0 2 0 for initial 

ex1'2 

rh = —0 1 0 " 1 4 c m . 
cz 

The appearance of a friedmon state in the process of evolution of white holes 
accompanied by radiation of charges was considered by Frolov (1973) (see Appendix 
2). 

If in this process the Hawking theorem is not violated then the mass of the initial 
system may be only half of the original mass. It is however quite possible that the 
whole process occurs under these conditions with a complete violation of the Hawking 
theorem. 

In any case a friedmon with electric charge equal to unity is a stable object of 
friedmon metric. The parameters of this friedmon are as follows: mass me

f~ 1 0 " 6 g, 
sizes re

f~ 1 0 " 3 3 cm. 
If there exist baryon hair of black holes then in addition to the electrostatic fried

mon there might be meson friedmons: 
1/2 

where g2/hc~ 1, g is the baryon charge, the source of a vector meson field (Markov, 
1970). It should be stressed once more that r} and are the external sizes of the system. 
Its internal sizes a(t) Xo and its bare mass, the number of nucleons, may be expressed, 
e.g. by ultramacroscopic numbers. The particles under discussion and the particle 
characterized by the constants h, c, x, i.e. (hc/x)1/2 ~ 1 0 " 5 g - Plank-Wheeler particle -
may be regarded as possible 'elementary' particles of limiting maximum large masses, 
that is they can form a group of 'maximon' (Markov, 1965). Maximons may be 
of a relict origin, i.e. may exist in our Universe perpetually. Hawking (1971) has also 
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assumed the existence of such particles with charge ~ 30. But the object of such small 
sizes (~10~32 cm) with such a charge will turn out to be unstable due to vacuum 
polarization. 

Thus, we see that the presence of electric charges, sources of the electrostatic 
field changes essentially the classification of objects the internal metric of which is 
partially or completely characterized by the metric of Fr iedmann closed world. 
In the latter case there naturally and inevitably arises a semi-closed metric. There 
arises the question of what the effect of the change of the closed world metric is if 
it is perturbed by small charges of other fields: for example, scalar, massive vector 
fields or fields related to weak interactions. 

Numerous papers assert that the sources of other fields (for the exception of electro
magnetic field) localized in matter inside the Schwarzschild sphere (hole) do not 
excite appropriate fields outside given objects: 'Black hole has no hair'. But here many 
problems arise which are still open. 

1. The Meson Vector Field 

At first glance it seems that, as in the case of electrostatic, the presence of sources 
of the vector meson field is incompatible with the closed metric. 

Indeed, using the standard procedure, it is easy to obtain, at the moment of maxi
mum expansion, for the meson vector field potential the following expression 

</>o~^A l = (a2

0m2

v-\yi\ (22) 

where mv is the vector meson mass. This expression can naturally be thought of as 
an analog, in the euclidean space, to the ordinary expression cp0~ fl(e~mvr/r). On the 
basis of (22), it might be concluded that the potential q>0 at % - > 7 r is divergent as in 
the electrostatic case that the presence of vector meson field sources with non-zero 
total charge is incompatible with the closed metric, and that the given system must 
have a continuation - an external metric, i.e. an external meson vector field. 

But this assertion is wrong: it is based on the use of the boundary conditions 
which are ordinary for the euclidean space. These conditions of finiteness of the 
solution select solutions exponentially damping with increasing r. 

In the case of a closed world there is no spacial infinity, and therefore a more 
general type of the solution is possible (Markov and Frolov, 1973): 

fie-x* ye+** 
(Po = — : — + — : — • (23 

a smx cismx 

The requirement that the solution should be finite and continuous is satisfied by the 
condition imposed on the coefficients /? and y: 

peXn + ye-Xn = 0. (24) 
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Thus, outside the point source g0 the solution is 

(p — . 
a shArc s i n / 

(25) 

Now cp0 at x->n is finite, and the field dcp0/dx at / - • rc vanishes. 
Thus, we are led to the conclusion that the closed world may contain the total 

nonzero baryon charge (vector meson field source). This establishes the essential 
difference of the massless vector field (i.e. electrodynamics) from the meson vector 
field. The obtained results do not contradict the assertion that the meson vector 
field is absent outside black holes. At the same time, it is not a proof in favour of this 
assertion. 

Meanwhile, as in the case of electrodynamics, the previous consideration is a 
rigorous proof of the presence of an electrostatic field sources are found behind the 
Schwarzschild sphere the vector meson field outside the Schwarzschild sphere 
vanishes (Bekenstein, 1972; Teitelboim, 1972; Thorne, 1971). 

It is worth noting that, in the case of the meson vector field as well, there is a certain 
peculiar analog of the Gauss theorem, more correctly, its peculiar generalization. 
More detailed consideration of the available relations leads us to the conclusion 
that the situation is really more complicated than seems at first. 

We consider a mesodynamic analog of the Gauss electrodynamic theorem in an 
Euclidean metric, for simplicity (Markov, 1970). 

Let a baryon charge Q be localized in a certain domain so that 

0 ^ 0 , r < r 0 , 
0 = 0, r > r 0 . 

For the mesodynamic vector En flux through a closed surface surrounding the 
charge, on the basis of the equation 

After circumscribing a sphere of radius r>r0 about the charge we obtain En flux in 
the form 

we get the following expression 

(26) 

(27) 

(28) 

o 

If 
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£ n d s = 47T0^m 2 J e _ m - r r dr— l j . (29) 

o 

In electrodynamics the vector En flux has the same value on the sphere of any 
radius, while in mesodynamics decreases with increasing radius of the sphere. When 
the sphere radius tends to infinity, the r.h.s. of Equation (29) vanishes; the flux En 

is completely damped. If in mesodynamics the term 'strength lines' is allowed then 
in the case of vector meson field the strength lines do not end, as in electrodynamics, 
in charges of opposite signes. Instead, they are damped in an original manner, by 
the 'field charge', if it is possible to say so, which is realized by the field potential, 
namely by the term 47rm 2 jo <P°(r) r2 & playing the role of such a charge opposite 
in sign. This 'charge' is distributed over the whole space. 

The sphere of finite radius r is crossed by a nonzero vector flux - this is the 'hair' 
of the vector meson field. In this case it is useful to consider (as we have agreed earlier) 
collapse of small masses, whose gravitational radius is much smaller than h/mvc~ 
~ 1 0 " 1 3 cm. The possibility of principle of collapse of small masses was discussed 
by Hawking (1970) and Zel'dovich (1962), An arbitrary small mass of a neutral 
matter can be brought into collapsing state by means of a huge pressure. 

If the problem is to 'organize' a collapse of, e.g. one gram of neutrons then when 
neutrons are localized in a domain far smaller than h/mvc the numerical value of 
the second term in Equation (28), 'field charge', becomes negligible. When the domain 
of localization is still larger than the gravitational radius of the system ( r g r ~ 10" 2 8 cm) 
by many orders of magnitude, when the gravitational forces may still be neglected 
the generalized Gauss theorem is of the form 

j \ d s ^ - 4 7 U 0 . (30) 

In other words, there arises a purely electrodynamic analog of the Gauss theorem 
with all its consequences, in particular, and with respect to the baryon field of a 
system of neutrons, i.e. the vector meson field. If such a system was brought into a 
collapsing state then, in virtus of (30), this black hole would possess baryon 'hair ' . 

The assertion that outside a black hole the vector flux En vanishes implies that 
inside the black hole this flux vanishes too when approaching the surface of the event 
horizont. This means that the 'field charge' integrated over the internal space of the 
black hole increases in some way to the extent that it becomes able of compensating 
the disappearance of the potential which has occured outside the black hole. We 
cannot let the flux En vanish near the Schwarzschild sphere without an appropriate 
increase of the potential inside the black hole. 

If we consider the situation with the flux in question in a closed world then it is 
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easy to check that the potential (25) provides vanishing of the flux E„ on the 'bound
ary' for # = 7c. This possibility is explained by the fact that inside the closed world 
a term with increasing exponential is added to the expression for the potential. At 
this expense the density of the 'field charge' increases to the extent needed for the 
baryon charge to be compensated. In this sense the total 'baryon charge' (r.h.s. of Equa
tion (27)) in a closed world is zero. In this sense the closed world is also neutral in the 
baryon charge too. Due to the change of the potential 'hair ' of the vector meson field 
goes into the closed world. 

The problem arises as to what is the reason for which the integral of the vector 
meson field potential inside a black hole increases when this object emerges in the 
process of collapse. The fact is that the boundary conditions at the euclidean infinity 
for a collapsing system are known to remain unchanged. 

In other words, it is impossible to make the external field of a black hole only 
vanish. We should, figuratively speaking, 'drive' it inside the black hole so that to 
increase the integral ml $ q>° dV inside the black hole up to a value which would 
compensate the total baryon charge (9). 

In any case it is still unclear how the generalized Gauss theorem is fulfilled in the 
process of collapse. It is impossible for the time being to assert that black holes have 
no external baryon field. 

On the other hand, the evidence that black holes have no external vector meson 
field under definite initial assumptions seems also to be convincing. The initial as
sumptions for this proof seem also to be quite natural : it is assumed that the weak 
meson vector field does not change the Schwarzschild metric, that there exists an 
event horizon and that the potential is finite at the event horizon. 

The problem would be completely resolved if we succeeded in finding matchable 
internal and external solutions. Unfortunately, we have not yet derived an external 
static solution of the Nordstrom-Reissner type for the short-range, i.e. meson vector 
field. Until this programme is realized the above questions cannot be answered. An 
exact solution of the problem can give rise to some surprises. The example of the 
scalar field is, in this case, the most instructive one. In the case of the scalar field it 
is surprising that the event horizon is absent, and in those exceptional cases when it 
exists the field potential on the Schwarzschild sphere is found to be divergent. 

For the scalar field a problem similar to the Nordstrom-Reissner one was solved by 
Fischer (1948) a quarter of a century ago. Fischer obtained the metric in the form 

2. The Scalar Long-Range Field 

ds2 = dr2-r2(d92 (d0 2 + sin 29d(p2), (31) 

here 

Z0tl=(x2m2 + xG2)ll2 + (32) 
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G is the scalar charge, 

p = xm(x2m2 + x G 2 ) ~ 1 / 2 , 

Z(r) = re^-^2 - r , </oo = e v , ^ 1 1 = - ^ , (33) 
r ~* 00 

and 

( Z - Z 0 ) 1 - p ( Z + Z 1 ) 1 + p = r 2 . (34) 

The calculations of Fischer were independently obtained by Janis et al. (1968). By 
a simple transformation the metric of the latter authors transforms into the metric 
(31). According to (31) gxl nowhere becomes infinite. Both gxl and g00 tend to zero, 
at Z - > Z 0 . 

Both papers contain some errors in the analysis of the asymptotic behaviour of 
the metric, but these errors do not concern the form of the linear element (31) which 
is calculated correctly. The metric (31) privides evidence that in the case of the long-
range scalar field the horizon is absent, the Schwarzschild sphere is absent. In this 
case an object like the black hole is impossible. 

It is remarkable that the event horizon is absent for any weak scalar field. But it 
is interesting that the transition to the limit (for a scalar charge G = 0 ) transforms 
finally the metric (31) to the Schwarzschild metric although not continuously. 

In fact, for G = 0 , 

p = l , Z 0 = 0 , _ 
Z1 = 2xm, Z + 2xm = r. 

Inserting the values for G = 0 in the expression (31), we obtain the Schwarzschild 
metric. The metric (31) at r -*0 and G-+0 behaves in a nonanalytic way: Z as r->0, 
tends to zero too, but at the very limit (r = 0) according to (35), Z assumes by jump 
the value (see Figure 1) 

Z = — 2xm. (36) 

If the external metric (31) is considered as valid for arbitrary small distances, then 
at r -»0 there arises the case of a bare singularity with all serious consequences 
following from it. 

Such a behaviour of the metric for small r testifies rather in favour of the invalidity 
of the metric (31) in vacuum for any small r. 

It is appropriate to give certain simple considerations which stress particular 
features of the systems charged by the scalar field source. Let the bare mass of a 
matter distributed over a domain of radius r 0 be M 0 and the total scalar charge be 
given by G. Generalizing to this case the well-known relation (Arnowitt et a/., 1960) 
for the total mass we get 

"Mtot G2 , x 

A*tot = M o - ; r ^ , or 37 
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(38) 

According to (38), the total mass of the system vanishes for 

The system in question cannot be localized in the domain r < r m i n . Here we meet one 
of the numerous peculiar properties of the scalar field. 

Fig. 1. Fischer's solution for a point source of massless scalar field and the corresponding 
Schwarzschild solution. 

From the above considerations concerning the metric (31) and the specific prop
erties of the scalar field we draw the conclusion that the problem of the scalar field 
in the process of collapse (let us be careful) is still waiting for its solution. All the 
aspects of this problem will are clarified when one finds the internal solution of a 
collapsing system (taking into account the effect of the scalar field on the metric) 
and the external solution matched with it, and, which is essential, outside the frame
work of perturbation theory. 

This problem is essentially nonstatic. It becomes more complicated by that, con
trary to electrodynamics, here the central symmetric motion of matter can give rise 
to a monopole emission of a scalar field which alters the mass of the system. Above 
we were dealing with the scalar field, more exactly, with the traditional equation of 
the scalar field 

Z ( r ) 

( Asanov, 1971) 

But there exists another form for the scalar field equation (Penrose, 1963; Chernikov 
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and Tagirov, 1968) 

R 
+ - U = 4nj, (40) 

G 

where R is the scalar curvature. 
The problem is as to whether certain surprising results of the foregoing considera

tion may be due to the unfortunate form of the scalar equation or not. Sometimes 
authors stress that the conformal invariant Equation (40) has some advantages. 
However, the analysis of the problem with recourse to Equation (40) makes the situa
tion more critical. 

In this case the event horizon is also absent (Bocharova et a/., 1971). 
But in a particular case for 

G2 = 3xm2 (41) 

there arises the event horizon (the Schwarzschild sphere). There arises an external 
metric of the type (18): 

g00 = e" = e A = ( 1 - -
r 

(xG2^2 

a = xm = \ ^ 

2 

(42) 

However, contrary to the electrostatic case, in this metric, the scalar potential on 
the event horizon surface becomes infinite: 

U=-—. (43) 
r — a 

In this case we have explicitly a couner-example which provides direct evidence 
that the black hole possesses an external scalar field. 

As far as at the event horizon the potential U becomes infinite then the theorem 
that the field should vanish outside the black hole is inapplicable to the present case 
(Chase, 1970): it is essentially associated with the assumption about the finiteness 
of the potential on the Schwarzschild sphere. 

We should bear in mind that the scalar curvature R in Equation (40) for the given 
case (in vacuum) vanishes. The equation for the scalar potential takes on the usual 
form. This fact gives, however, no grounds for concluding that a conformal invariant 
case of the theory must not differ from the ordinary one. 

The matter is that we should consider the system of equations as a whole, while 
the Einstein equations have in this case, essential differences. So, one of the Einstein 
equations, in the writing G*= — SnxT^ is of the form 
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While, in a nonconformal invariant case: 

1 X e~x 

-2 r=-xU'2. 
r r rz 

The difference between these equations is a consequence of different expressions 
for the energy-momentum tensor T*. 

Attempts to consider the problem in a consistent way, find the appropriate internal 
and external solutions for a nonstatic metric, were made by Price (1971). Unfor
tunately these at tempts were made in the framework of perturbation theory, under 
the assumption that it is possible to disregard the effect of the scalar field on the 
metric. If the metric (31) holds then this consideration is invalid. When using perturba
tion theory we should bear in mind that the peculiarity of the metric (31) consists 
in that the event horizon disappears for any value of the charge of the scalar field, 
for the exception of the limiting value G = 0. However, using a particular example, 
the author comes to the conclusion that any catastrophic values of the scalar potentials 
do not arise at the horizon. But one should bear in mind that the properties of the 
scalar field are very perculiar (Dicke, 1964), and the particular example considered 
by the author is not free of objections (Markov, 1972). Besides, there is an explicit 
counter-example (42). This example gives also evidence for the invalidity of perturba
tion theory since any small violation of equality (41) results in vanishing of the horizon. 

The instability of this solution recalls the instability of the Papapetrou solution. 
In fact, any small violation of the rigorous equality of gravitational attraction and 
electrostatic repulsion leads to a collapse. But the main point is that there is an 
explicit counter-example (43). 

The most essential critical remark that can be made concerning the metric (31) 
is the following. It is doubtful whether the consideration of a purely static problem 
in the collapse of a matter charged by the scalar field sources is valid. The possibility 
of a monopole radiation of the scalar field can just change essentially the situation. 

It may be noticed that the consideration of long-range scalar forces is of purely 
abstract interest, since it is very likely that this kind of forces does not exist in nature. 
May be, of more importance are the short-range scalar fields, scalar meson fields. 
Recently, these fields have been discussed in elementary particle theory and are of 
fundamental importance when attempting to construct a unified theory of weak 
and electromagnetic interactions (Weinberg, 1967). But the monopole radiation of 
scalar mesons in the process of collapse can be arbitrarily strongly suppressed by the 
large mass of the quanta of this field, and thus in this case the reproach for ignoring 
monopole radiation is cancelled. Moreover, the Price considerations about the role 
of the effective potential barrier are no longer applicable to this 'short-wave' field. 

The finding of the external metric of a spherical symmetric source of the meson 
scalar field still encounter unsolved difficulties. 

Recently Asanov (1973) obtained a numerical solution for the system of the Ein
stein equations and the Klein equation 
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V * V ' + u = 4 n j ( 4 4 ) 

for the spherical symmetrical case we are interested in. 
The numerical solution was found for the following values of the parameters 

xG2 = x2m2, _ 1 _ 
^ xm x 

1 
1/2/ 

(45) 

The results of calculations are given in Figure 2. The function ex of its values at 
infinity (e~x& 1 — (2xm/r)) increases smoothly and reaches its maximum (ex&9.5) 

2 = r g / n m 3 

(Asanov, 1973) 

r//cm 

Fig. 2. g00 =ev and 9\\—ek in the case of scalar field of a point source of mass \x. ev and 
eAare equal to zero at r->0. 

near ' the gravitational radius' rgr = 2xm. Then ex falls tending smoothly to zero for 
r = 0 . The function ex is equal to unity for r « 1.8 xm. The function ev is monotonous, 
it is equal to zero for r = 0 and to unity at the spacial infinity. 

If we assume that at present the existence of the black hole is confirmed by ex
perimental data, and that on the other hand, the above theoretical results concerning 
the specific properties of the scalar field, incompatible with the existence of black 
holes, are valid, then we should conclude that the presence of black holes would 
testify to the absence of scalar mesons in nature. This would mean that the well-
known theoretical at tempts trying to unify weak and electromagnetic interactions 
on the basis of symmetry breaking are groundless. And, on the contrary, if the pre
sence of scalar mesons is confirmed by experiment then the objects which at present 
are thought of as black holes will be interpreted in some other manner. In the theo-
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retical aspect we should be led to the conclusion that in real situations there never 
arise T± domains the possibility of which we have already got accustomed to, and 
the metrics of Figure 3 becomes much simpler. At the same time, there arise objects 
close to bare singularities with all the consequences resulting from this. In general, 

the 'price' of the proof of the validity or invalidity of the static metric (31) up to 
distances smaller than the gravitational radius is very high, and we should be very 
careful in estimating all arguments for and against. The numerical solution for, 
e.g. a model with scalar and electrostatic field sources, shows that up to r = 0.9xm, 
where ex > 1 and it is possible to match the internal and external solutions, the horizon 
is absent. (Asanov, 1972.) 

The situation with neutrino forces is far more complicated. In fact, if there is a direct 
interaction of the type (ev) (ev) then the system consisting e.g. of hydrogen should 
induce in the surrounding space a neutrino-antineutrino field with potential (Tamm, 

There is a direct calculation (Hartle, 1971) for the vector-pseudovector case where 
it is shown that when neutrino field sources come nearer the Schwarzschild sphere 
the neutrino field in the external space tends to zero. But the calculation of the 
scalar case by this method does not result in the disappearance of neutrino hair 
outside the black hole (Berezin, 1973). Moreover, for a point of neutrino forces of 
the vector case localized at the point / = 0 of a closed world, as in electrostatics, 
there arises a mirror image of the sorce for / = n (Berezin). 

T 

T = T Q L J - ™ I 

(Novikov, 1966) 
Fig. 3. The evolution of a charged sphere after collapse behind the Schwarzschild 

surface without taking into account the process of pair creation. 

3. The Neutrino Field 

1934): 
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In other words, one would think that the appropriate neutrino hair should not 
disappear. On the other hand, it would seem that Hartle (1971) gives for the Kerr 
metric a general proof of the absence of the external neutrino field of holes inde
pendently of the type of forces. This proof is also valid for the Schwarzschild metric. 

If in further investigation we do not find errors in the calculations for the scalar 
case then the general consideration of Hartle contains some defects. 

Unfortunately, the field under discussion is not the solution of some equation 
of the Maxwell type, and the conservation law for leptons is not associated with any 
analog of the Gauss theorem. It appears that in the case of the neutrino field, as in 
the foregoing cases of meson fields, the ultimate solution for the behaviour of these 
fields outside black holes arises in the process of finding matchable internal and 
external solutions for the systems in questions. 

The foregoing consideration of the external metrics of black holes with different 
charges should be supplemented with one general, and in our opinion, essential 
remark. 

In fact, as yet studies have not been made of the inverse process, process of forma
tion of hair (e.g. vector meson field, scalar field) which inevitably occurs in the process 
of anticollapse, when matter goes out of the Schwarzschild sphere. 

4. Black Holes as Intermediate States in Elementary Particle Theory 

We are not aware of whether black holes exist in nature. But there some grounds 
to suppose that these objects and the corresponding notions may turn out to be 
essential in elementary particle theory. 

In fact, in contemporary theory of elementary particles the calculation of proper 
masses leads to divergent values. This is due to the fact that the intermediate states 
in these calculations may have energy, and consequently, mass of arbitrary large 
values. 

In contemporary elementary particle theory a striking violation of logic became 
historically legitimate: one introduces in consideration intermediate states with 
arbitrary large masses and, at the same time, entirely ignores their gravitational 
effects. It is of special importance that these masses must be localized in a very 
small domain so that there arises the possibility of huge gravitational mass defects 
capable of changing in a cardinal manner the energy spectrum of intermediate states. 

In fact, if a particle in the intermediate state emits a quantum of mass m = hv/c2 

then, according to the Heisenberg relation*, this mass is localized in the domain 

* When emitting a quantum ot an energy E—h\ a particle, using the Fermi terminology, 'borrows' an 
energy E=mc2. According to the uncertainty relation, the time of 'borrowing' may not be longer than 
h/mc2. During this period the emitted quantum cannot go away from the particle not far than at a distance 
~ h/mc. 

mc 
(46) 
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When a mass of the order of 

m~l — ] 

appears in the intermediate state, then the gravitational radius of this system is 

2xm 2(xhcY" 
gr c2 c2 ' 1 ' 

On the other hand, with this mass the dimension of the domain in which, according 
to (46), the mass is localized 

, 4 8 , 
mc cL 

coincides with the gravitational radius of the object in this state. With further in
creasing intermediate state energy the gravitational radius should have increased. 
But, on the other hand, the domain of localization of the intermediate state energy 
should, according to the Heisenberg relation, have decreased and for m>(hc/x)112 

should have became smaller than the gravitational radius. 
If such a situation arose in the range of applicability of classical physics we would 

say that we are dealing with a system whose mass is behind the gravitational Schwarz
schild sphere. In other words, we would imply a system in the collapsing state. This 
might be either the state of black hole of the first kind or rather the state of systems 
with semi-closed matric if the bare mass of the intermediate state decreases strongly 
due to gravitational defect. F rom this viewpoint it would seem that the states of 
semi-closed systems or the states of black holes must belong to the complete set of 
states that can arise spontaneously in these cases. Moreover, energetically these 
states are the lowest states. Although at present we do not know to what extent our 
understanding of the metric remains valid in this state. However, in modern theory 
one got accustomed to use the euclidean metric at arbitrary small distances from 
the point particle. If black holes have really no hair then in the spectrum of the 
mediate states such states must in a cardinal manner, affect the results of calculations, 
since in these states there are no longer interactions with the given fields. 

Appendix 1 

(The role of the vector meson field in a distant stage of collapse of stars). 
Novikov (1966) considered the evolution of a charged sphere after collapse behind 

the Schwarzschild sphere. The spacetime picture of this evolution is given by Novikov 
in Figure 3 in the Cruscal type coordinates. The region occupied by matter is shaded. 

In the course of contraction its boundary crosses the Schwarzschild sphere. For 
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a charged sphere of mass M and charge e 

xM[ ( s2 Y / 2 1 

where x is the gravitational constant, c - the light velocity. F rom the external domain 
(R'out) the system falls in a contracting T_ - domain. 

For the sizes 

contraction can be changed by expansion. This occurs in the internal (Rin) domain. 
After passing the expanding T+ domain the sphere boundary crosses again the 
Schwarzschild sphere and goes out in the external (R^ut) domain (Figure 3). How
ever, as is seen from the figure, the domain /^ ' u t is not the same in which the con
traction of the sphere occurs. The /?£ u t domain lies in an absolute future with respect 
to R'out. The peculiarity of the situation consists in that the behaviour of the system 
after crossing the surfaces r_ is not defined by the initial conditions in the R'out space. 
Thus, in mechanics there first arises the possibility for the Laplace determinism to 
be violated*. 

As it happens always in these cases, congenial scientific conservatism searches 
naturally for possibilities of solving the problem in some other way, namely in the 
framework of usual regularities. It is a cruel necessity alone that can affect in a car
dinal way the existing viewpoints. 

In fact, it seems that there is such a natural possibility. The matter is that in the 
process of contraction of a charged sphere there arise outside it electric fields of a 
so high intensity that a purely classical consideration of the problem neglecting the 
production of different kinds of charged particle pairs in these fields is quite inadmissible. 

In fact, for s2<^xM2, due the process of contraction, a charged sphere on the 
boundary of the 7L domain acquires dimensions r_ ~e2/2Mc2. 

The electric potential on the surface of this sphere should have taken the value: 

For M = M Q - 1 0 3 4 g, e < 1 0 2 0 e. 
In other words, the electrostatic field energy, localized outside a sphere of radius r, 

turns out to be equal to the total energy of the system. However, in reality, such a 
potential cannot be realized due to electron-positron pairs production effect. Elec
tron-positron pairs are produced long in advance until the charged sphere reduces 
to dimensions r_. 

Thus, the situation arises when because of production of new particles we are 

* The reference of Penrose (1968) to the fact that in quantum theory we have got accustomed to indeter-
minism is a misunderstanding: the behaviour of the wave functions is completely defined by the initial data. 

https://doi.org/10.1017/S0074180900236206 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900236206


O N B L A C K A N D W H I T E HOLES 129 

deprived of the convenient comoving coordinate system for describing the process 
of collapse and, moreover, the classic space-time description losses its meaning when 
a pair emerges, electrons and positrons may be spaced from one another by an 
essential space-like interval (Zel'dovich, 1971). It is possible that electrons should 
not reach the surface r'_ if, (for instance) in 7 1 , and Rin domains will appear a charge 
of opposite sign (Novikov, 1970) or the all picture may be essential the other. 

It should be noticed that the inclusion of the electric charge in the system is a very 
artificial method and bears no direct relation to a really collapsing star. However, 
the really collapsing star is immediately associated with the meson vector field. 

The vector meson field is a short-range one, therefore until a collapsing system 
turns out to be contracted up to dimensions of the order h/mvc (mv - the vector meson 
mass), this field may not be of importance in the process of collapse. However, with 
further contraction (r<h/mvc) the vector field becomes practically a long-range one, 
but at the same time it is stronger than the electromagnetic field. The meson field 
is capable of producing nucleon-antinucleon pairs. 

The model of the electrically charged sphere has the shortcoming that the electric 
charges are, in this model, a mechanical admixture to neutral matter. Strictly speaking, 
the whole previous consideration of collapse of electrically charged matter is meaning
ful when each particle of this matter is electrically charged. 

In the case of an electrically neutral star, each of its nucleons is a carrier of the 
meson vector field charge. 

It should also be added that the collapsing mass of a star of the order of the solar 
mass has a density Q~ 1 0 7 2 g c m " 3 at dimensions ~h/mvc~ 1 0 " 1 3 cm which is by 
20 orders of magnitude smaller than the critical 'quantum' density at which, as one 
hopes without any definite grounds, collapse of a star can change by anticollapse. 
Thus, there are serious grounds to assume that the appearance of Rin and R^ut in 
Figure 3 and the violation of the Laplace determinism is a consequence of an abstract 
approach to the process. 

It is remarkable that the critical density Qq~l093 g c m - 3 would be reached for 
collapsing masses 

A possible appearance of a semi-closed metric in the process of anticollapse (in 
particular, white holes) was considered by Frolov (1973). 

Frolov considered a more general case of motion of a massive charged, radiating 
spherically symmetrical shell. The external metric of a radiating system found by 
Vaidya (1971, 1953) was used in his paper. The equations of motion of the shell are 
derived following Israel (1967, 1968). A detailed analysis is given for the case, when 

i.e. of the order of the mass of the whole Universe. 

Appendix 2 
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radiation occurs during a short period of the proper time. In this case the connection 
is found of the parameters of the system before and after radiation or absorption 
of both energy and charges of the system. 

The effect of these processes on the total mass of the system for different types of 
the shell (anticollapse, collapse, usual motion) is analysed. It is shown that in the 
case of an open system with small charge, a transition to'semiclosed state can occur 
due to energy radiation. If the radiation transfers the charge, then the final states 
can have the friedmons metric. 
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