
J. Fluid Mech. (2021), vol. 907, A21. © The Author(s), 2020.
Published by Cambridge University Press

907 A21-1

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and
reproduction in any medium, provided the original work is properly cited.
doi:10.1017/jfm.2020.815

Suppression of viscosity enhancement around a
Brownian particle in a near-critical binary

fluid mixture

Youhei Fujitani†

School of Fundamental Science and Technology, Keio University, Yokohama 223-8522, Japan

(Received 23 March 2020; revised 5 August 2020; accepted 20 September 2020)

We consider the Brownian motion of a rigid spherical particle in a binary fluid mixture,
which lies in the homogeneous phase near the demixing critical point, assuming that
neither component is more attracted by the particle surface. In a recent study, it was
experimentally shown that the self-diffusion coefficient first decreases and then reaches
a plateau as the critical point is approached. The decrease should reflect the critical
enhancement of the viscosity, while the plateau was interpreted as representing the
suppression of the enhancement due to the shear around the particle. To examine this
interpretation, we take into account the local shear rate to calculate the dependence of the
drag coefficient on the particle speed, and then utilize a Langevin equation to calculate
the self-diffusion coefficient.

Key words: colloids

1. Introduction

We consider the Brownian motion of a colloidal rigid particle in a binary fluid mixture
lying in the homogeneous phase near the demixing critical point. In some combinations
of the mixture and particle material, one of the components is preferentially attracted
by the particle surface and the preferred component is remarkably adsorbed near the
particle surface because of the near-criticality (Beysens & Leibler 1982; Beysens & Estève
1985). The particle motion deforms the adsorption layer, which affects the force exerted
on the particle (Lee 1976; Omari, Grabowski & Mukhopadhyay 2009; Okamoto, Fujitani
& Komura 2013; Fujitani 2018; Tani & Fujitani 2018; Yabunaka & Fujitani 2020). In other
combinations exhibiting negligible preferential adsorption, the particle motion remains
still influenced by the near-criticality because of the critical enhancement of the viscosity
(Ohta 1975; Ohta & Kawasaki 1976). This enhancement can also be influenced by the
particle motion, as is pointed out in a recent experimental work (Beysens 2019). We briefly
mention its background in some paragraphs below.

Let us first assume there are no particles in an equilibrium near-critical binary fluid
mixture. The composition can be represented by the difference between (or the ratio of)
the mass densities of the two components. The order parameter, which we can take to be
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proportional to the deviation of the local composition from the critical one, fluctuates
about the equilibrium value on length scales smaller than the correlation length, ξ .
Correlated clusters, where the order parameter keeps the same sign on average, range over
these scales, and are convected to enhance the interdiffusion of the components on larger
length scales (Kawasaki 1970; Onuki 2002). Thus, ξ affects how the two-time correlation
function of the order-parameter fluctuation decays. Writing Γk for the relaxation coefficient
of its spatial Fourier transform, with k denoting the magnitude of the wavenumber vector,
we have

Γk = Ω(kξ) × kz, (1.1)

for small k with kξ being finite. Here, z denotes the dynamic critical exponent for the
order-parameter fluctuation and Ω represents a scaling function, which approaches a
constant multiplied by (kξ)2−z as kξ becomes much smaller than unity (Siggia, Hohenberg
& Halperin 1976; Hohenberg & Halperin 1977). This leads to Γk ∝ k2 for sufficiently small
k, which is expected for the hydrodynamic mode of a conserved quantity. We write kB for
the Boltzmann constant and T for the temperature of the mixture. The mode-coupling
theory for a three-dimensional mixture gives

Ω(kξ) = kBT
6πη̃

K(kξ)

(kξ)3
, (1.2)

where K denotes the Kawasaki function with K(x) ≈ 3πx3/8 for x � 1 and K(x) ≈ x2

for x � 1, and η̃ represents the shear viscosity (Kawasaki 1970; Onuki 2002). In this
theory, the weak critical singularity of the viscosity is neglected, and the dynamic critical
exponent is found to be three. This theoretical result turns out to be in good agreement
with the experimental results (Swinney & Henry 1973). In the refined calculation of the
dynamic renormalization group, the critical enhancement of η̃ is considered, and the value
of z is found to be slightly larger than three (Folk & Moser 2006).

The mixture is assumed to be at equilibrium in the preceding paragraph. The critical
enhancement of the transport coefficients, i.e. the Onsager coefficient for the interdiffusion
and the shear viscosity, can be suppressed when a shear is imposed on the mixture.
Influences of a simple shear flow are studied theoretically (Onuki & Kawasaki 1979;
Onuki, Yamazaki & Kawasaki 1981) and experimentally (Beysens, Gbadamassi & Boyer
1979; Beysens & Gbadamassi 1980). In an example of this flow, the x component of the
velocity is y multiplied by the constant shear rate s (>0), with (x, y) denoting two of
the three-dimensional Cartesian coordinates. A correlated cluster of the order-parameter
fluctuation would be deformed by the shear when its lifetime is longer than a typical time
scale of the shear, 1/s. The lifetime for a cluster with the size of 1/k is evaluated to be
1/Γk, while the cluster size ranges up to ξ . Hence, if the shear is strong enough to satisfy

s > Γ1/ξ , (1.3)

the enhancement is suppressed. This condition of strong shear is also derived in terms of
the renormalization group, as mentioned in appendix A.

A simple shear flow is a kind of linear shear flow, where the velocity V at a position
is proportional to the positional vector, and can be regarded as a linear combination of a
stagnation-point flow and a purely rotational flow (Rallison 1984). These linear shear flows
are two-dimensional. A pure-extension flow, being a three-dimensional linear shear flow,
and a stagnation-point flow are referred to as elongational flows in Onuki & Kawasaki
(1980a,c), where the suppression is studied for some linear shear flows. In a linear shear
flow, the time derivative of a directed line segment X linking two fluid particles is equal
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Suppression of viscosity enhancement 907 A21-3

to (∇V )T · X , where the matrix ∇V represents the homogeneous velocity gradient and
superscript T indicates the transposition. Thus, the exponential of the product of (∇V )T

and the time t determines how X is stretched and shrunk with time. In the elongational
flow, the shear rate s in (1.3) is given by the largest stretching rate, i.e. the largest eigenvalue
of ∇V ; some details are mentioned in the penultimate paragraph of appendix A.

The mean square displacement of a Brownian particle becomes proportional to the time
interval as it becomes sufficiently long. The self-diffusion coefficient of the particle is
defined as the constant of proportionality divided by twice the spatial dimension. In the
study mentioned at the end of the first paragraph (Beysens 2019), it is shown that the
self-diffusion coefficient of a Brownian particle in a near-critical binary fluid mixture first
decreases and then reaches a plateau as T approaches the critical temperature Tc along the
critical isochore in the homogeneous phase. The first decrease should reflect the critical
enhancement of η̃, while the plateau can be regarded as representing the suppression of
the enhancement due to the shear caused by the particle motion. Using (1.2) and replacing
s in (1.3) with the average particle speed divided by the particle radius, Beysens (2019)
estimates the temperature range exhibiting the suppression; the estimated range appears
consistent with the observed one. In the present study, we calculate the self-diffusion
coefficient for direct comparison with the experimental results.

In the first three subsections of § 2, we calculate the hydrodynamic force exerted on a
rigid spherical particle moving translationally in a fluid mixture quiescent far from the
particle. Assuming a typical length scale of the flow to be much larger than ξ , we need
not consider dynamics of the order-parameter fluctuation, which is significant only on
length scales smaller than ξ (Furukawa et al. 2013; Okamoto et al. 2013). The mixture
is assumed to be incompressible, as in the previous studies mentioned above (Folk &
Moser 1998; Onuki 2002). This assumption usually works well in a near-critical mixture
prepared experimentally (Anisimov et al. 1995; Onuki 2002; Pérez-Sanchez et al. 2010).
When the viscosity is homogeneous, the magnitude of the force is proportional to the
particle speed. The constant of proportionality (the drag coefficient) is given by Stokes’
law (Stokes 1851) and is linked with the self-diffusion coefficient of its Brownian motion
through the Sutherland–Einstein relation (Einstein 1905; Sutherland 1905), although the
Brownian motion is not always translational. This relation can be derived from the
Langevin equation for the particle velocity (Bian, Kim & Karniadakis 2016), and is further
founded on the fluctuating hydrodynamics (Bedeaux & Mazur 1974), even near the critical
point (Mazur & van der Zwan 1978). In our problem, the suppression of the viscosity
enhancement is locally determined by the inhomogeneous shear around the particle, and
the drag coefficient can depend on the particle speed in its range to be considered in the
Brownian motion. Neither Stokes’ law nor the Sutherland–Einstein relation is applicable
when the suppression occurs. Assuming the suppression to remain weak even if it is
brought about by the local strong shear, we calculate the drag coefficient. In § 2.4, we use
a one-dimensional Langevin equation to link the drag coefficient with the self-diffusion
coefficient. Our results are shown and discussed in § 3, and summarized in § 4.

2. Formulation and calculation

We write d for the spatial dimension; our calculations in the text are limited to the
case of d = 3. The values of the static critical exponents are shown in Pelisetto & Vicari
(2002); we use ν ≈ 0.630 and η ≈ 0.0364. The exponent η represents the deviation from
the straightforward dimensional analysis of the static, or equal time, correlation function
of the order-parameter fluctuation at the critical point. When the shear is not so strong as
to suppress the critical enhancement, the correlation length ξ is homogeneously given
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by ξ = ξ0τ
−ν on the critical isochore, where τ is defined as |T − Tc|/Tc and ξ0 is a

non-universal constant. Then, the singular part of the shear viscosity is proportional to
τ ν(d−z) in a flow whose typical length is much larger than ξ , as described at (A 2). This
exponent is measured to be around −0.042 (Berg & Moldover 1989, 1990), which leads
to z = 3.067. Because |ν(d − z)| is small, the viscosity exhibits a very weak critical
singularity. Thus, for the viscosity, the dependence of the regular part on τ is also
significant unless the mixture is very close to the critical point, unlike for the Onsager
coefficient of the interdiffusion. As in Beysens (2019), we use

η̃B(T)τ ν(d−z) (2.1)

as the viscosity free from the shear effects. In this form of multiplicative anomaly, the
regular part η̃B is defined as

η̃B(T) = η̃0 exp
(

Ea

kBT

)
, (2.2)

where η̃0 is a non-universal constant and Ea denotes the activation energy (Sengers 1985;
Mehrotra, Monnery & Svrcek 1996). Molecules would be required to overcome some
energy barrier to shift their locations in a dense liquid. Equation (2.1) supposes τ < 1 and
the singular part represents the enhancement.

We define τs so that a given shear rate s affects the critical enhancement for τ < τs, and
define s∗ so that

τs =
( s

s∗

)1/(νz)
(2.3)

holds. Because of (1.1) and (1.3), s∗ is independent of the imposed shear. We will later
apply our results to a mixture of isobutyric acid and water. For this mixture under no
shear, measured values of Γk/k2 for small k in the neighbourhood of the critical point are
shown in figure 10 of Chu, Schoenes & Kao (1968). These values and ξ0 = 0.3625 nm
(Beysens, Bourgou & Calmettes 1985) give s∗ = 3.7 × 108 s−1 with the aid of (A 4)
and (A 6).

From § 2.1 to § 2.3, we calculate the drag coefficient of a spherical rigid particle with
radius r0, by assuming it to move translationally with the velocity Uez in a binary fluid
mixture in the absence of the preferential adsorption (figure 1). Here, ez denotes a unit
vector. The mixture is on the critical isochore in the homogeneous phase with T being
close to Tc, and is quiescent far from the particle. Assuming ξ to be much smaller than
a typical length scale that the flow changes, we regard the local velocity field as a linear
shear flow having the same velocity gradient to determine the local viscosity.

2.1. Assumption on the viscosity
We assume that the suppression of the critical enhancement of η̃ is perfect if it occurs, and
thus the viscosity is assumed to be given by

η̃ =
{

η̃B(T)τ ν(d−z) for τ > τs,

η̃B(T)τ ν(d−z)
s for τ < τs,

(2.4)

which supposes τ < 1 and τs < 1 because (2.1) underlies (2.4). This assumption is
discussed in § 3. We write η̃(0) for (2.1), and define η̃(1) so that η̃ = η̃(0) + η̃(1) holds.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

81
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.815


Suppression of viscosity enhancement 907 A21-5

Uez

r0

ξ

FIGURE 1. A drawing of a situation for our calculation of the drag coefficient from § 2.1 to
§ 2.3. A particle with the radius r0 moves translationally with the velocity Uez in a mixture
fluid quiescent far from the particle. A part of a cross-section containing the z axis is shown;
the dashed curve represents half of the cross-section of the particle surface. The velocity field,
represented by arrows outside the particle, is calculated with a homogeneous viscosity, although
the viscosity becomes inhomogeneous when the suppression of the critical enhancement occurs
somewhere. A magnified view of the smaller rectangular region is given in the larger one, where
clusters are schematically drawn in black and white with some being deformed by the local shear.
The correlation length ξ is assumed to be sufficiently small as compared with a typical length of
the flow.

Introducing τ̌s ≡ τs/τ , we have

η̃(1) ≡ η̃(0)
(
τ̌ ν(d−z)

s − 1
)
Θ(τ̌s − 1), (2.5)

where Θ denotes the step function; Θ(x) vanishes for x < 0 and equals unity for x > 0.
The shear rate is inhomogeneous, as shown later. Thus, the suppression makes the
viscosity inhomogeneous. Subtracting the homogeneous part η̃(0) from the whole viscosity
η̃ gives η̃(1), which is non-positive because of d = 3 < z.

The velocity and pressure fields, v and p, satisfy the incompressibility condition and
Stokes’ equation, i.e.

∇ · v = 0 and − ∇p + 2∇ · (η̃E) = 0, (2.6a,b)

where E is the rate-of-strain tensor. Here, a low Reynolds number is assumed, as discussed
in § 2 of Yabunaka & Fujitani (2020). The no-slip boundary condition is imposed at the
particle surface, while v tends to zero and p approaches a constant, denoted by p∞, far
from the particle.

2.2. Approximation for a weak suppression
We consider a particular time and take the spherical coordinates (r, θ, φ) so that the origin
is at the particle’s centre and that the polar axis (z axis) is along ez; the coordinate z should
not be confused with the dynamic critical exponent. The unit vectors in the directions of r
and θ are denoted by er and eθ , respectively. The no-slip condition gives v = Uez at ρ = 1,
where ρ denotes a dimensionless radial distance, r/r0. We can assume vφ = 0. The drag
force is along the z axis; its z component, denoted by Fz, is given by the surface integral
of (2η̃E · er − per) · ez over the particle surface. The drag coefficient is given by −Fz/U,
and can depend on U in our problem. Thus, we write γ (U) for the drag coefficient.
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We, respectively, write v(0) and p(0) for the velocity and pressure fields obtained when
the viscosity is forced to be η̃(0) homogeneously. Equation (2.6a,b) yields

∇ · v(0) = 0 and − ∇p(0) + η̃(0)v(0) = 0. (2.7a,b)

The boundary conditions are v(0) = Uez at ρ = 1, and v(0) → 0 and p(0) → p∞ as ρ → ∞.
The solution is well known (Stokes 1851) and is given by

p(0) = p∞ + 3η̃(0)

2r0ρ2
U cos θ, v(0)

r = 3ρ2 − 1
2ρ3

U cos θ, v
(0)
θ = −3ρ2 + 1

4ρ3
U sin θ

(2.8a–c)

and v
(0)
φ = 0. The arrows outside the particle in figure 1 represent v(0) for U > 0. The

superscript (0) is also added to a quantity calculated from v(0) and p(0). The drag coefficient
calculated from (2.8a–c) is given by

γ (0) = −F (0)
z

U
= 6πη̃(0)r0, (2.9)

which is independent of U and represents Stokes’ law. We define v(1) and p(1) as v − v(0)

and p − p(0), respectively. They satisfy ∇ · v(1) = 0 and

− ∇p(1) + η̃(0)v(1) = −2∇ · (η̃(1)E
)
. (2.10)

The boundary conditions are

v(1) = 0 at ρ = 1 and

v(1) → 0 and p(1) → 0 as ρ → ∞.

}
(2.11)

In the flow field of v and p, we define κ as the maximum value of a dimensionless
ratio |η̃(1)/η̃(0)|. Equation (2.5) is proportional to κ . From (2.10) and (2.11), v(1) is also
proportional to κ . The particle speed supposed here lies in the range involved in the
Brownian motion. We assume that τ is not so small as to cause strong suppression, and
assume κ to be so small that the calculation up to the order of κ makes sense. At this order,
(2.10) becomes

− ∇p(1) + η̃(0)v(1) = −η̃(1)v(0) − (
2∇η̃(1)

) · E (0). (2.12)

Here, s contained in η̃(1) is replaced by s(0), which is the shear rate calculated from v(0).
Likewise, we can evaluate κ by using s(0) instead of s in (2.5). We define F (1)

z so that
Fz = F (0)

z + F (1)
z holds. At the order of κ , F (1)

z equals the surface integral of

2η̃(1)E (0)
rz + 2η̃(0)E (1)

rz − p(1)er · ez (2.13)

over the particle surface, where E (1) is the rate-of-strain tensor for v(1) and p(1).
On the z axis, the components of ∇v(0) with respect to the Cartesian coordinates (x, y, z)

is expressed by ∂zv
(0)
z multiplied by a traceless diagonal matrix, whose diagonal elements

are −1/2,−1/2 and 1 from the top. Here, ∂z indicates the partial derivative with respect
to z. Thus, noting the description at the end of the preface of § 2, we can regard v(0) on
the z axis as a pure-extension flow locally. In particular, at a point with θ = π for U > 0,
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Suppression of viscosity enhancement 907 A21-7

the largest stretching rate occurs in the z direction, i.e. the radial direction, and is given
by ∂rv

(0)
r . As θ approaches π/2, periodic motion becomes predominant over elongational

motion in v(0), as is suggested by figure 1 and is explicitly shown in appendix B. A
rotational flow is found to be weak in suppressing the critical enhancement (Onuki &
Kawasaki 1980c). Thus, considering the discussion on the elongational flow in the fourth
paragraph of § 1, we assume that s(0) is given by the largest real-part of the eigenvalues of
∇v(0). Calculating them directly from (2.8a–c), we find s(0) to be given by

s(0)(ρ, θ) =
∣∣∣∣3cU

4r0

(
1
ρ2

− 1
ρ4

)
cos θ

∣∣∣∣ , (2.14)

where a positive factor c, depending on θ , ranges from 1/2 to 2. Equation (2.14) with c = 2
equals |∂rv

(0)
r |. We proceed below with calculations by regarding c as a constant, in spite of

the actual dependence of c on θ . It will be shown later that our result of the self-diffusion
coefficient is rather insensitive to the value of c.

2.3. Expansions with respect to the spherical harmonics
The flow we consider here is symmetric with respect to the polar axis, and thus the angular
part of v(1) can be expanded in terms of the vector spherical harmonics,

PJ0 = YJ0er and BJ0 = r∇YJ0√
J(J + 1)

(2.15a,b)

for J = 1, 2, . . . (Morse & Feshbach 1953; Barrera, Estévez & Giraldo 1985; Fujitani
2007). Here, YJ0(θ) is one of the spherical harmonics,

√
(2J + 1)/(4π)PJ(cos θ), with

PJ denoting the Legendre polynomial, e.g. P1(x) = x . The mode J = 0 need not be
considered because of the incompressibility. We define functions ΠJ , RJ and TJ so that

p(1) =
∑

J

ΠJ(ρ)YJ0(θ) and v(1) =
∑

J

[RJ(ρ)PJ0(θ, φ) + TJ(ρ)BJ0(θ, φ)] (2.16a,b)

hold. We expand the negative of the right-hand side of (2.12) as∑
J

[FJ(ρ)PJ0(θ, φ) + HJ(ρ)BJ0(θ, φ)] , (2.17)

whereby FJ and HJ are defined. They are obtained with the aid of the orthogonality of the
vector spherical harmonics. The incompressibility condition gives

TJ(ρ) = 1
ρ
√

J(J + 1)
∂ρρ

2RJ(ρ). (2.18)

We use (2.18) to delete TJ from the r and θ components of (2.12), which are combined to
give (

ρ∂ρ + J
) (

ρ∂ρ + J + 2
) (

ρ∂ρ − J + 1
) (

ρ∂ρ − J − 1
)

RJ(ρ) = −XJ(ρ). (2.19)

Here, XJ is defined as

XJ(ρ) = r2
0ρ

2

η̃(0)

[√
J(J + 1)∂ρρHJ(ρ) − J(J + 1)FJ(ρ)

]
. (2.20)
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Similar calculations can be found in deriving (2.17) of Fujitani (2007) and in deriving
(3.20) of Yabunaka & Fujitani (2020). Equations (2.11) and (2.18) give

RJ(ρ) = ∂ρRJ(ρ) = 0 at ρ = 1 and RJ(ρ) → 0 as ρ → ∞. (2.21)

Applying the method of variation of parameters, we can rewrite (2.19) as

RJ(ρ) =
∫ ∞

1
dσ ΓJ(ρ, σ )XJ(σ ), (2.22)

where the kernel ΓJ is given in appendix C.
The first term of (2.13) does not contribute to F (1)

z because (2.14), and thus (2.5), vanish
at the particle surface. With the aid of (2.18), we use the θ component of (2.12) to delete
ΠJ and TJ from the last two terms of (2.13). These terms are thus rewritten as the sum of
terms involving RJ and HJ over J. Only the terms involving R1 are left after the surface
integration of (2.13), as shown by (C 4) and described below (C 5). Substituting (2.22) into
the result of the surface integration, we use(

1
2
∂3

ρ + 2∂2
ρ

)
Γ1 (ρ, σ ) = 3σ 2 − 1

4σ 3
at ρ = 1. (2.23)

The right-hand side above is related to the fraction appearing in (2.8b) because of the
Lorentz reciprocal theorem (Lorentz 1896), as shown in appendix B of Fujitani (2018) and
mentioned at (A2) of Yabunaka & Fujitani (2020). We thus arrive at

F (1)
z = F (0)

z

∫ ∞

1
dρ

3ρ2 − 1
ρ3

X̌(ρ), (2.24)

where X̌ is defined as

X̌(ρ) ≡
√

3
π

X1(ρ)

36U
. (2.25)

As shown by (C 7), X̌ is given in terms of the integral with respect to θ because (2.20)
involves F1 and H1, which are calculated from the right-hand side of (2.12) with the aid
of the orthogonality of the vector spherical harmonics. Thus, (2.24) contains a double
integral with respect to ρ and θ . We have analytical results for the integrals with respect
to ρ, as described at the end of appendix C, and thus what to calculate numerically is the
integration with respect to θ .

We find X̌ to depend on U only through τs(0) . With U∗ denoting s∗r0, the ratio
γ (U)/γ (0) = 1 + (F (1)

z /F (0)
z ) is a function of a dimensionless speed |U|/U∗ because of

(2.3) and (2.14), and is denoted by γ̌ (U/U∗). Using the value of the critical exponents
stated in the preface of § 2, we numerically calculate the integral of (2.24) to obtain γ̌ (u).
In figure 2, γ̌ (u) decreases as u increases, which represents that the critical enhancement
of η̃ is suppressed more as the faster particle causes stronger shear. At the smaller value
of τ , the suppression is shown to be stronger, which can be explained by the existence of
larger clusters deformable for smaller u.

2.4. Description of the Brownian motion
When the viscosity is homogeneous in the absence of the suppression, as mentioned in
§ 1, a simple description of the Brownian motion is given by the Langevin equation for
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u

γ̌
 (
u)

0.001

0.85

0.90

0.95

1.00

0.0040

FIGURE 2. We plot γ̌ (u) for τ = 1.008 × 10−3 (◦) and 1.26 × 10−4 (+). As mentioned in
the text, γ̌ represents the drag coefficient non-dimensionalized by (2.9), while u represents the
particle speed non-dimensionalized by U∗ ≡ s∗r0.

the particle velocity, where the force exerted on the particle is separated into the thermal
noise and the instantaneous friction force (Bian et al. 2016). The former represents the
force varying much more rapidly than the latter and vanishes after being averaged over
a macroscopic time interval (Sekimoto 2010), while the friction coefficient in the latter
equals the drag coefficient given by Stokes’ law. This is founded in terms of the fluctuating
hydrodynamics (Bedeaux & Mazur 1974; Mazur & van der Zwan 1978) and is numerically
verified (Keblinski & Thomin 2006). The components of the thermal noise in the three
orthogonal directions are statistically independent, and thus the self-diffusion coefficient
can be calculated in one dimension. To calculate the self-diffusion coefficient in our
problem, we still use the drag coefficient γ (U) as the friction coefficient in the Langevin
equation, considering that the viscosity can be only weakly inhomogeneous depending on
the particle speed. This amounts to assuming γ (U) to be most probable friction coefficient
when the particle velocity is U in the Brownian motion at the time resolution of the
Langevin equation.

The effective mass, denoted by m, is the sum of the particle mass and half the mass
of the displaced fluid (Lamb 1932; Bian et al. 2016; Fujitani 2018). Here, unlike in the
preceding subsections, U is a stochastic variable depending on the time t. The Langevin
equation is

m
dU
dt

= −γ (U)U + b(U) ◦ dW
dt

, (2.26)

where W represents the Wiener process and the symbol ◦ indicates that (2.26) should be
interpreted in the Stratonovich sense (Risken 2002; Sekimoto 2010). The positive function
b(U) is fixed so that (2.26) is consistent with the Boltzmann distribution, as shown in
appendix D. The self-diffusion coefficient of the particle D is given by (Bian et al. 2016)

D =
∫ ∞

0
dt 〈U(t)U(0)〉, (2.27)

where 〈· · · 〉 means the equilibrium average. Defining M as mU∗2/(kBT), we utilize the
Laplace transformation to obtain

D = kBT
γ (0)

√
1

2πM

∫ ∞

0
du

[∫ ∞

u
du1 γ̌ (u1)u1e−Mu2

1

]−1

e−3Mu2/2, (2.28)

as shown in appendix D. This equation can be also derived from (2.26) by using not the
Laplace transformation but some of the equations in § S.9 of Risken (2002). Converting the
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integration variables u and u1 to u
√

M and u1

√
M, respectively, we find that D depends on

M only through the variable of γ̌ .
Equation (2.28) involves γ̌ (u) for infinitely large u because (2.26) formally supposes

any particle speed, including the particle speed larger than assumed in the hydrodynamic
formulation. This is also the case with the Langevin equation supposing a constant drag
coefficient, where Stokes’ law is assumed even for particle speeds so large as to break
the validity of the Stokes approximation. In either case, we can avoid this inconvenience
in computing the self-diffusion coefficient, to which such large speed never contributes.
An effective cutoff speed is implicitly imposed on the Langevin equation. This point is
discussed in the next section.

3. Results and discussion

Latex beads with radius 80 nm are put in a mixture of isobutyric acid and water in the
experiment of Beysens (2019), where we have m = 3.32 × 10−18 kg and U∗ = 29.6 m s−1.
The mixture can be regarded as incompressible near the demixing critical point (Clerke
& Sengers 1983; Onuki 2002). The thermal average of U is 3.53 × 10−2 m s−1, which
is denoted by Ū. The improper integrals in (2.28) can be replaced by definite integrals
involving only particle speeds smaller than approximately 4Ū, as described in the latter
half of appendix D. Because the viscosity of the mixture is around 2.5 × 10−3 kg m−1 s−1

(Allegra, Stein & Allen 1971), the Reynolds number is 1.4 × 10−2 for U = Ū, and remains
sufficiently small as compared with unity even if multiplied by four. This is consistent with
our hydrodynamic formulation. The variable u in figure 2 represents U/U∗, which equals
1.19 × 10−3 for U = Ū. Thus, the range of the horizontal axis in figure 2 approximately
coincides with the integration interval of the definite integrals used in our numerical
calculation.

The data of the self-diffusion coefficient in Beysens (2019), ranging over 6.31 ×
10−5 ≤ τ ≤ 6.81 × 10−2, are replotted with open circles in figure 3. The viscosity of the
near-critical mixture of isobutyric acid and water, containing no particles, is measured
in Allegra et al. (1971). From the data in their table 2, with the ones for four values
of τ from the smallest being excluded according to Oxtoby (1975), we calculate the
self-diffusion coefficient by applying Stokes’ law and the Sutherland–Einstein relation,
i.e. by dividing kBT/(6πr0) by the viscosity, and plot the results with crosses in figure 3.
The crosses, ranging over 1.14 × 10−4 ≤ τ ≤ 2.78 × 10−2, agree with the open circles for
τ > 7 × 10−3. These open circles and the crosses should be explained by using (2.1), i.e.
η̃(0), which is free from the suppression due to the shear.

Conversely, we can calculate the viscosity from the open circles for τ > 7 × 10−3

by applying Stokes’ law and the Sutherland–Einstein relation. In a graph (not shown
here) where these results and the data of Allegra et al. (1971) with the exclusion
above are linearly plotted against τ , we perform the curve-fit to η̃(0) with the aid of
‘NonlinearModelFit’ of Mathematica (Wolfram Research) by using Tc = 300.1 K (Toumi
& Bouanz 2008) and the values of the critical exponents stated in the preface of § 2.
Estimated values are η̃0 = 3.38 × 10−6 kg m s−1 and Ea/(kBTc) = 6.35 with the standard
deviations being 5.11 × 10−7 kg m s−1 and 1.53 × 10−1, respectively. We use the estimated
values to calculate γ̃ (0) = 6πη̃(0)r0 and plot kBT/γ (0) with the dashed curve in figure 3; the
curve agrees well with the data applied to the curve-fit. Employing γ̃ (0) thus obtained, we
calculate the prefactor of (2.28), whose integrals are numerically calculated after being
replaced by the definite integrals mentioned above. Our results of D for c = 1 are plotted
with solid circles in figure 3. It appears that the open circles saturate to reach a plateau as
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D
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m
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1
)

(×10–12)

2.0

1.0

0.9

10–4 10–3 10–2 10–1

τ

FIGURE 3. Plot of the self-diffusion coefficient against τ . Open circles represent the
experimental data of Beysens (2019), where Tc is estimated to be 301.1 K. Crosses come from
Allegra et al. (1971), with Tc being estimated to be 299.4 K. The dashed curve represents
kBT/(6πη̃(0)r0), which we calculate by using the parameter values estimated from the open
circles for τ > 7 × 10−3 and the crosses. Solid circles represent our results of (2.28) for c = 1.
The red short bar above (below) each of the solid circles for τ ≤ 1.61 × 10−2 represents (2.28)
for c = 4 (0.25).

τ decreases below 3.2 × 10−3, although they are distributed rather widely in the direction
of the vertical axis. Our results pass through the middle of the distribution. This strongly
suggests that the saturation should represent the suppression of the critical enhancement
of η̃ due to the local shear caused by the particle motion, as claimed by Beysens (2019).

Figure 4 shows that our calculation results of D increase as c increases, which can be
expected because the shear is then evaluated to be larger. In this figure, the ratios of the
change in D lie within 5 % when c changes from unity to 0.1 or to 10; dependences of
the ratio on c are almost the same for the two values of τ . For comparison with the data
of Beysens (2019), we plot (2.28) for c = 0.25 and 4 with red short bars in figure 3. It is
clear for τ > 10−3 that the two bars at the same τ are closer to each other as τ is larger;
(2.28) depends on c only when the suppression occurs. The range of c is considered as
1/2 ≤ c ≤ 2 in § 2.2. For c = 1/2 (2), each of the results indicated by solid circles for
τ ≤ 1.61 × 10−2 is shifted to the middle between the solid circle and the lower (upper)
short bar. These slight shifts show that our results for any value of c in the interval of
1/2 ≤ c ≤ 2 explain the experimental data well. It is also suggested that, if we take into
account the dependence of c on θ in this interval, the calculation results should remain in
good agreement with the experimental data.

Let us examine where the suppression occurs around a particle moving in the way
supposed in figure 1. In the approximation mentioned below (2.12), we use s(0) instead of
s in (2.5) to calculate |η̃(1)/η̃(0)| for c = 1 and U = Ū, and show the results in figure 5,
where the suppression occurs in coloured regions. The maximum of (2.14) is taken
at (ρ, θ) = (

√
2, 0) or (

√
2,π). The value of |η̃(1)/η̃(0)| equals κ at these points, and

becomes smaller at a point more distant from these points, as shown in figure 5. The
maximum of τs(0) is 0.0129 × c0.518 for U = Ū, and is 0.0264 × c0.518 for U = 4Ū, which is
approximately the effective cutoff in our numerical integration. The latter yields κ ≈ 0.13
at τ = 10−3 and ≈ 0.21 at τ = 10−4 for c = 1 and U = 4Ū. Thus, κ is adequately small
as compared with unity in the range of τ examined in figure 3, which would make our
formulation globally meaningful.
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FIGURE 4. Ratios of D for some c values to D for c = 1 are calculated with the aid of (2.28)
and plotted. The values of τ are 1.26 × 10−4 (+) and 1.008 × 10−3 (◦).

0 8 × 10–4 0 1 × 10–2

Ue Uezz

(a) (b)

FIGURE 5. Colour gradation represents the largest of zero and 1 − τ̌
ν(d−z)
s(0) for c = 1 and

U = Ū at each of τ = 1.26 × 10−2 (a) and 8.064 × 10−3 (b). The particle is assumed to move
translationally with the velocity Ūez. The region shown in each figure is the same as in figure 1;
the dotted curve represents the half of the cross-section of the particle surface. The curves outside
the particle are the stream lines of v(0), which are represented by arrows in figure 1.

From the maximum of τs(0) for U = Ū mentioned above, κ is found to become non-zero
when τ is smaller than 1.29 × 10−2 for c = 1 and U = Ū. This value of τ approximately
agrees with the onset temperature of the suppression estimated in Beysens (2019), where
the shear rate, with its inhomogeneity and dependence on U being neglected, is evaluated
to be a typical shear rate, Ū/r0. The value of τ is slightly smaller than 1.29 × 10−2 in
figure 5(a), where a very weak suppression occurs in narrow regions around (ρ, θ) =
(
√

2, 0) and (
√

2,π) for c = 1 and U = Ū, as expected. However, at this temperature, the
suppression cannot be read in figure 3. In figure 5(b) with smaller τ , |η̃(1)/η̃(0)| becomes
larger in wider regions, which means that the suppression occurs more strongly and
extensively, although the suppression can be read only slightly from the solid circle at
this temperature and cannot be read from the open circle closest to this temperature in
figure 3. It is for τ < 3.2 × 10−3 in figure 3 that the suppression can be read explicitly
from the experimental data (◦); the suppression for c = 1 and U = Ū should occur more
strongly and extensively in this range of τ than in figure 5(b). Thus, we overestimate
the onset temperature of the suppression in the data of the self-diffusion coefficient
if we evaluate the shear rate to be Ū/r0.
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For U = 4Ū, as mentioned above, the maximum of τs(0) is 0.0264 × c0.518. The maximum
is smaller than unity in the range of c examined in figure 4, as supposed in our formulation.
This also shows that our results are free from the details of a formal rule for large
particle speed in appendix D. In the absence of the suppression, we have ξ = ξ0τ

−ν =
28 nm and 120 nm for τ = 10−3 and 10−4, respectively. The correlation length should be
reduced by the strong shear, which suppresses the order-parameter fluctuation with small
wavenumber. The correlation length under the shear effect is dependent on the direction,
and proportional to τ−0.5 at the largest in the stagnation-point flow (Onuki & Kawasaki
1980c). This exponent is the same as in the mean-field approximation. The curvature of the
stream line in figure 3 suggests that a typical length of the flow is several times larger than
the particle diameter. Thus, a typical length of the flow is sufficiently large as compared
with ξ in the range of τ examined in figure 3, as supposed in our formulation.

It is assumed in (2.4) that the suppression is perfect if it occurs. In terms of the
renormalization-group calculation, the singular part of the viscosity changes in the
coarse-graining procedure, which makes sense until the resolution reaches ξ , and the way
of the change is altered when the resolution exceeds a threshold determined by the shear
rate. Equation (1.3) can be derived from the condition of whether the threshold comes
before ξ or not, as mentioned in the latter half of appendix A. In the procedure after
the alteration, the singular part of the viscosity continues to be changed and becomes
anisotropic. Thus, the assumption in (2.4) does not hold exactly. The ratio of the correction
in the later stage, i.e. in the stage after the alteration, to the one in the earlier stage is
evaluated by averaging the former correction over the directions in appendix E. If d = 3 is
substituted into these results valid up to the linear order with respect to 4 − d, the evaluated
ratio is smaller than 4 (7) per cent for a pure-extension flow (a simple shear flow). These
small values would support the appropriateness of (2.4), which can explain the data for
the three-dimensional mixture of Beysens (2019) in figure 3.

In deriving (1.3), the lifetime of a correlated cluster and the range of the cluster size
are evaluated. However, some deviations are possible in these evaluations, and may be
required to compensate for the approximation in (2.4) mentioned above. For example, let
us consider replacing ξ with 1.5ξ in (1.3). This replacement is equivalent with putting c
equal to 1.5z ≈ 3.5. A change of (1.3) to this extent cannot be denied from the data of
Beysens (2019) in figure 3, considering that the red short bars above the solid circles still
lie in the middle of the distribution of the data.

We simply link the drag coefficient with the self-diffusion coefficient by means of the
one-dimensional Langevin equation for the particle velocity. Similar nonlinear Langevin
equations are used for different problems in Klimontovich (1994) and Lindner (2007).
Validity of the Langevin equation with the Stratonovich interpretation in our problem,
where the viscosity can be inhomogeneous and dependent on the particle speed, remains
to be founded on the fluctuating hydrodynamics, unlike in the cases studied by Bedeaux
& Mazur (1974) and Mazur & van der Zwan (1978). It still appears that the Langevin
equation can describe the data of Beysens (2019) well in figure 3, where a rather large
distribution of the data for small τ in the direction of the vertical axis may come from the
properties of the viscosity in our problem.

4. Summary and concluding remarks

Correlated clusters of the order-parameter fluctuation are generated in a near-critical
binary fluid mixture lying in the homogeneous phase near the demixing critical point.
The upper size of clusters, the correlation length, becomes larger as the critical point
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is approached. Then, as is well known, the convection of large and long-lived clusters
enhances the transport coefficients in the coarse-grained dynamics (Kawasaki 1970). It is
also well known that a sufficiently strong shear, if imposed, can deform long-lived clusters
to suppress the critical enhancement (Onuki & Kawasaki 1979). In a recent experiment
(Beysens 2019), shear around a Brownian particle in a near-critical mixture on the critical
isochore was suggested to cause this suppression to influence the motion. Deviation of the
self-diffusion coefficient from the Stokes–Sutherland–Einstein formula was observed in
the temperature range where the suppression is judged to occur from a typical shear rate
around a particle moving with a typical speed.

How the deviation depends on the temperature is calculated in the present study. We
first calculate the drag coefficient of a particle moving translationally in a mixture which
is quiescent far from the particle. The suppression is simply assumed to occur perfectly
when the cluster with the size of the correlation length becomes so long-lived as to be
deformed by the shear. The shear rate is inhomogeneous and depends on the particle
speed. Hence, the suppression makes the viscosity inhomogeneous and dependent on
the particle speed. The calculation supposes a low Reynolds-number and a sufficiently
weak influence of the shear on the viscosity, which are realized in the experiment. We
next employ the drag coefficient thus calculated, dependent on the particle speed, as the
frictional coefficient in a one-dimensional Langevin equation of the Stratonovich type
to calculate the self-diffusion coefficient. The calculation results agree well with the
experimental data, which is rather robust to changes in the threshold for the occurrence of
the suppression.
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Appendix A. Previous results of the renormalization-group calculations

For an equilibrium binary fluid mixture in the homogeneous phase on the critical
isochore near the critical point, as the renormalization steps are iterated, the Onsager
coefficient for the interdiffusion approaches a constant, denoted by λ∗. Rewinding the
rescaling procedure to decrease the cutoff wavenumber k at each iteration, we obtain the
coefficient coarse grained up to k. Writing λ for it, we have

λ = λ∗
(

ko

k

)4−η−z

if kξ � 1, (A 1)

that is, if kξ is larger than or comparable to unity. Here, ko(� k) is the cutoff wavenumber
before coarse graining and thus 1/ko has a microscopic length. If kξ is much smaller than
unity, 1/k in the parentheses of (A 1) should be replaced by ξ ; rewinding the rescaling
procedure makes sense up to the length scale of ξ . Likewise, the singular part of η̃ is given
by η̃∗(ko/k)z−d for ξ−1 <∼ k � ko and

η̃∗(koξ)z−d if kξ � 1, (A 2)
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where η̃∗ denotes a constant for η̃ corresponding with λ∗ (Onuki & Kawasaki 1979). These
exponents can be also derived from the dynamic scaling assumption (Folk & Moser 2006).

We define the order parameter so that the coefficient of the square-gradient term in the
dimensionless effective Hamiltonian is a half, as in Siggia et al. (1976), Onuki & Kawasaki
(1979) and Onuki (2002). In the Fourier transform mentioned above (1.1), we put the two
times equal to each other and write χk for the result, which is the static correlation function
or static susceptibility. We have χk ≈ ξ 2(k/ko)

η for kξ � 1. As k → 0 and ξ → ∞ with
kξ being an arbitrary positive number, the renormalization-group calculation gives (Siggia
et al. 1976)

Γk = RkBTc

η̃ξ d−2
k2Ω̄(kξ), (A 3)

where the Kawasaki amplitude R is a universal constant approximately equal to 1/(6π).
The dimensionless scaling function, Ω̄ , tends to unity as its variable approaches zero.
Considering that λη̃ξ d−2 divided by χk equals RkBTc for kξ � 1, we have

Γk

k2
→ λ∗k4−z

o ξ 2−z as k → 0 (A 4)

with kξ being fixed to be small (Siggia et al. 1976).
According to the renormalization-group calculation up to the order of ε ≡ 4 − d in the

presence of a simple shear flow (Onuki & Kawasaki 1979), (A 1) is found to break down
for k

<∼ ks, where ks is defined so that

λ∗k4−z
o kz

s = s (A 5)

holds. The shear is strong enough to suppress the critical enhancement if ksξ � 1 holds; ks
then comes before 1/ξ in the coarse-graining process of decreasing k (figure 6). Otherwise,
λ for kξ � 1 remains given by (A 1) with 1/k being replaced by ξ . With the aid of
(A 3)–(A 5), we find that this condition of strong shear approximately agrees with (1.3).
From (2.3) and (A 5), we have k−1

s = ξ0τ
−ν
s and

s∗ ≡ λ∗k4−z
o ξ−z

0 . (A 6)

Ambiguity on the condition of strong shear is discussed in § 3.
The above-mentioned breakdown of (A 1) occurs when the static susceptibility deviates

from the Ornstein–Zernike form in the mean-field approximation for an equilibrium fluid
mixture. Then, using the wavenumber vector k, we should write χk, not χk, for the
susceptibility because of its anisotropy. The method of characteristics is used to calculate
χk for a simple shear flow in § 3 of Onuki & Kawasaki (1979), and for other kinds of linear
shear flow in § 4 of Onuki & Kawasaki (1980a) and § 3 of Onuki & Kawasaki (1980c). In
this method, a wavenumber vector dependent on a parameter, with the dimension of the
time, is introduced, and the ‘time’ derivative of the vector equals the product of the matrix
of the velocity gradient and the vector. Thus, s in (1.3) can be determined in the way
described in § 1.

The renormalization correction of λ in the later stage with k < ks in a simple shear
flow becomes dependent not only on k but also on k, and is much smaller than the one
in the earlier stage with k > ks even when ε is put equal to unity, as shown by (4.62) and
(4.85) of Onuki & Kawasaki (1979). We draw figure 6 from figure 2 of Onuki & Kawasaki
(1979), where it is stated that the singular part of the viscosity behaves in the same fashion,
although the viscosity for k < ks is not only dependent on k but also expressed in terms of
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ks1/ξ

Deformation

Clusters in the critical fluctuation

ko

λ

k

FIGURE 6. A schematic graph showing how λ changes as the mixture is coarse grained, which
is made from figure 2 of Onuki & Kawasaki (1979). We define k so that the cutoff wavenumber
viewed on the original lattice equals k at the iteration number, l, in the renormalization-group
calculation. We have k/ko = b̃−l, where b̃ is the length rescaling factor. The curve follows (A 1)
for ko � k � ks, but deviates from (A 1) for ks � k.

an anisotropic tensor (Onuki & Kawasaki 1980b). Within a simplified picture of figure 6,
assuming (2.4) amounts to drawing the curve of the singular part of η̃ as if the curve for
k ≥ ks were perfectly free from the shear effect and linked to a horizontal line in k < ks.

Appendix B. Local shear rate

We here examine how ∇v(0) changes around a particle, which is briefly mentioned
above (2.14). From (2.8a–c), we can calculate the components of ∇v(0) with respect to
the three-dimensional Cartesian coordinates (x, y, z) at a point on the xz plane (φ = 0).
There, the (x, y), ( y, x), ( y, z) and (z, y) components vanish. The components can be
expressed in terms of a 3 × 3 matrix. We rewrite this matrix as the sum of two matrices;
one is the diagonal matrix with the diagonal elements being

(∇xv
(0)
x + ∇zv

(0)
z )/2, ∇yv

(0)
y and (∇xv

(0)
x + ∇zv

(0)
z )/2 (B 1a–c)

from the top. We rotate the (x, z) coordinates to have (x ′, z′) coordinates so that the
diagonal elements of the other matrix of the two vanish at the point; the diagonal matrix
mentioned above is not changed by this rotation. The components of the velocity gradient
with respect to the coordinates (x ′, y, z′) are given by

U
r0

⎡
⎢⎣
⎛
⎜⎝

−C/2 0 0
0 C 0
0 0 −C/2

⎞
⎟⎠+

⎛
⎜⎝

0 0 B − A
0 0 0

B + A 0 0

⎞
⎟⎠
⎤
⎥⎦ , (B 2)

where we use A ≡ 3 sin θ/(4ρ2). We define C as ∇yv
(0)
y = 3(ρ2 − 1) cos θ/(4ρ4), and

define B as 3/(8ρ4) multiplied by the square root of

[−2 + 2(5 − 3ρ2) cos2 θ ]2 sin2 θ + [3(ρ2 − 1) + 2(5 − 3ρ2) sin2 θ ]2 cos2 θ. (B 3)

Thus, A and B are non-negative. The first term in the square brackets of (B 2) represents a
pure-extension flow.
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FIGURE 7. We plot Ω2
e (solid curve) and C2 (dashed curve) at ρ = 1.5 against θ .

We define Ωe as
√

B2 − A2, and have

Ω2
e = 9(ρ2 − 1)

128ρ8
[5ρ2 − 13 + (13ρ2 − 5) cos 2θ], (B 4)

which vanishes at ρ = 1. As mentioned in the fourth paragraph of § 1, the exponential of
the product of (B 2) and the time t works as the time evolution operator for a convected
line segment. The long-wavelength fluctuations of the order parameter are suppressed in
the stretching direction. The exponential equals⎛

⎜⎝
e−Cť/2coshΩeť 0 (B − A)Ω−1

e e−Cť/2sinhΩeť

0 eCť 0

(B + A)Ω−1
e e−Cť/2sinhΩeť 0 e−Cť/2coshΩeť,

⎞
⎟⎠ (B 5)

where we use ť ≡ tU/r0 and note that the matrices in the square brackets of (B 2) commute.
In figure 7 with ρ = 1.5, we have A > B, i.e. purely imaginary Ωe, for 0.74 < θ < 2.4
approximately, and C2 > Ω2

e for 0.6 < θ < 2.5 approximately. Although data are not
shown, as ρ increases above unity, the θ region with A > B and the one with C2 > Ω2

e
are narrower. We find that A > B holds at θ = π/2 for any ρ larger than unity and that
Ωe = 1.5|C| holds at θ = 0 and π. As θ changes from 0 or π to π/2, Ω2

e decreases
more rapidly than C2, as shown in figure 7. The two-dimensional flow with C = 0 is
considered in Onuki & Kawasaki (1980c), where a rotational flow with A > B is shown
to be weak in suppressing the critical enhancement. For simplicity, we thus neglect the
periodic deformation of a cluster in determining the local shear rate.

We suppose U > 0 in this paragraph. In the components of (B 5), when Ωe is real, the
largest stretching rate is CU/r0 if C > 0 and is (2Ωe − C)U/(2r0) if C < 0. When Ωe is
imaginary, the largest stretching rate is CU/r0 if C > 0 and is −CU/(2r0) if C < 0. These
results agree with (2.14), considering that (2.14) with c = 1 equals |CU|/r0. We find for
U > 0 that c is unity for 0 ≤ θ ≤ π/2, is 1/2 for π/2 < θ ≤ π and Ω2

e < 0, and increases
up to 2 as θ increases in the region of π/2 < θ ≤ π and Ω2

e ≥ 0.

Appendix C. Some details in calculating the drag force

We introduce

Γ
(com)

J (ρ, σ ) ≡ 1
4ρJ+2σ J+2

[
1

2J + 3
− σ 2

2J + 1

]
+ 1

4ρJσ J+2

[
σ 2

2J − 1
− 1

2J + 1

]
, (C 1)
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and the kernel appearing in (2.22) is given by

ΓJ(ρ, σ ) ≡ Γ
(com)

J (ρ, σ ) + σ J−1

2ρJ+2 (2J + 1)

[
σ 2

2J + 3
− ρ2

2J − 1

]
for ρ > σ, (C 2)

together with ΓJ(ρ, σ ) = ΓJ(σ, ρ) for ρ < σ . The kernel above for J = 1 is equal to 1/30
multiplied by ΓR of Okamoto et al. (2013). Similar calculations are there in Fujitani (2018)
and Yabunaka & Fujitani (2020).

As mentioned above (2.23), we can delete ΠJ and TJ from the last two terms of (2.13).
A similar procedure can be found in deriving (4.19) of Okamoto et al. (2013). By using

− 1
2

∫ π

0
dθ sin2 θ

∂

∂θ
YJ0(cos θ) =

∫ π

0
dθ sin θ cos θYJ0(cos θ) = δJ1√

π (2J + 1)
, (C 3)

where δij implies the Kronecker delta, we find the surface integral of the last two term of
(2.13) to be given by

− 2
√

3π

3
η̃(0)r0

(
1
2
∂3

ρ + 2∂2
ρ

)
R1 −

√
6π

3
r3

0H1(1). (C 4)

Differentiating (2.5) with respect to ρ or θ yields a term having the derivative of the step
function, i.e. the delta function. Noting that this term vanishes because of its prefactor, we
find that the negative of the right-hand side of (2.12) can be rewritten as

3Uη̃(0)

r2
0

hΘ(τ̌s(0) − 1). (C 5)

Here, the vector h dependent on (ρ, θ) can be calculated by using (2.8a–c). Because (2.17)
is equal to (C 5), we use the orthogonality of the vector spherical harmonics to calculate
F1 and H1. For example, H1(ρ) is the integral of the inner product of vectors of (C 5) and
B10 over the surface of the unit sphere. We thus find that H1(ρ) vanishes at ρ = 1, where
(2.14), and thus τ̌s(0) vanish.

Substituting (2.8a–c) into the right-hand side of (2.12) and defining ζ as (d/z) − 1, we
find that the components of h are given by

hr(ρ, θ) =
{

1 − τ̌ ν(d−z)
s

ρ3
+ ζ τ̌ ν(d−z)

[
1 − ρ2

ρ4s
∂s
∂ρ

+ 1
2ρ5s

∂s
∂θ

tan θ

]}
cos θ,

hθ (ρ, θ) =
{

1 − τ̌ ν(d−z)
s

2ρ3
+ ζ τ̌ ν(d−z)

[
1

2ρ4s
∂s
∂ρ

+ ρ2 − 1
2ρ5s

∂s
∂θ

cotθ
]}

sin θ,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(C 6)

and hφ = 0, where we write s for s(0) for conciseness. We have hr(ρ, θ) = −hr(ρ,π − θ)

and hθ (ρ, θ) = hθ (ρ, π − θ). From (2.20) for J = 1, we obtain

X̌(ρ) = −ρ2

2

∫ π/2

0
dθ [2 sin θ cos θhr(ρ, θ) + sin2 θ∂ρρhθ (ρ, θ)]Θ(τ̌s(0) − 1), (C 7)

where ∂ρ operates on all the following terms including the step function.
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Substituting (C 7) into (2.24), we employ integration by parts with respect to ρ, and the
resultant integrand contains the step function, not its derivative. Writing Ǔc for c|U|/U∗,
we have

τ̌s(0) (ρ, θ) = 1
τ

[
3
(
ρ2 − 1

)
4ρ4

Ǔc cos θ

]1/(νz)

(C 8)

in (C 7). Thus, the step function in (C 7) can be non-zero if

4ρ4 − 3τ−νzǓc(ρ
2 − 1) cos θ < 0, (C 9)

whose left-hand side is quadratic with respect to ρ2. Putting the left-hand side above equal
to zero gives ρ = ρ± and ρ = −ρ±, where ρ± is defined as

ρ±(θ) ≡
(

3Ǔc

8τ νz
cos θ ±

√
Δ(θ)

2

)1/2

. (C 10)

Here, Δ is the discriminant, given by

Δ(θ) ≡ 3Ǔc

τ νz

(
3Ǔc

16τ νz
cos θ − 1

)
cos θ. (C 11)

Equation (2.24) does not vanish if Δ is positive and if ρ− < ρ < ρ+, where we have 1 <
ρ− < ρ+ for Δ > 0.

We introduce

Gm,n(θ) ≡ Θ(Δ(θ))

∫ ρ+(θ)

ρ−(θ)

dρ

(
ρ2 − 1

ρ4

)ζ−m 1
ρn

, (C 12)

which is expressed in terms of Gauss’ hypergeometric function according to Mathematica
(Wolfram Research). The integral of (2.24) is found to be the sum of the integrals of the
following three integrands over 0 < θ < π/2. The integrands are

Θ(Δ(θ))

∫ ρ+(θ)

ρ−(θ)

dρ

(
3ρ2 + 1

4ρ4
sin3 θ + 1 − 3ρ2

ρ4
sin θ cos2 θ

)
, (C 13)

where the integration with respect to ρ is elementary,

−
(

3Ǔc

4τ νz

)ζ

1
4

[
3G0,2 + G0,4 + ζ

(
3G1,4 − 5G1,6 − G1,8 − 5G1,10

)]
cosζ θ sin3 θ (C 14)

and (
3Ǔc

4τ νz

)ζ [
3G0,2 − G0,4 − ζ

(
6G0,2 − 14G0,4 + 4G0,6

)]
cosζ+2 θ sin θ, (C 15)

where the variable θ of Gm,n is dropped for conciseness.
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Appendix D. Self-diffusion coefficient

The Fokker–Planck equation corresponding to (2.26) is

∂

∂t
P(U, t; U0) = 1

m
∂

∂U
(γ UP) + 1

2m2

∂

∂U
b

∂

∂U
bP, (D 1)

where P(U, t; U0) represents the probability density of U at a time t on condition that
U = U0 at t = 0. The variables of the functions are dropped on the right-hand side above
for conciseness. The stationary solution, denoted by Peq(U), is proportional to (Risken
2002)

m2

b2
exp

[∫
dU

(
1

2b2

db2

dU
− 2mγ U

b2

)]
, (D 2)

which should be proportional to the Boltzmann distribution (Zwanzig & Bixon 1975),

√
m

2πkBT
e−mU2/(2kBT). (D 3)

Considering that b2 equals 2γ kBT if γ (U) is independent of U, we find

b(U)2 = 4memU2/(kBT)

∫ ∞

U
dU1 γ (U1)U1e−mU2

1/(kBT). (D 4)

We can rewrite the right-hand side above by changing the integration interval to the one
from U to −∞ because the integral from −∞ to ∞ vanishes. Then, using integration by
parts, we find that |b(U)2 − 2kBTγ (U)| equals

2kBTemU2/(kBT)

∣∣∣∣
∫ ∞

−U
dU1 γ ′(U1)e−mU2

1/(kBT)

∣∣∣∣ , (D 5)

where the prime indicates the derivative. We can assume that γ̌ (u) decreases to a positive
constant as |u| increases to ∞ for the reason mentioned in the next paragraph. Thus, for
U < 0, (D 5) becomes larger if we replace γ ′(U1) with a suitable positive constant. Using
an asymptotic form of a complementary error function, we find that (D 5) vanishes, and
thus b(U)2 remains finite, in the limit of U → −∞. This result is used later.

We can make a convenient formal rule for the particle speed larger than assumed in the
text, because we later find its influence on (2.28) negligible. In other words, making such
a rule is a substitute for introducing an upper cutoff of the particle speed to the model in
the text. For definiteness, we here specify a formal rule. In (2.1), we should replace τ with
unity for τ > 1. Accordingly, (2.4) is supplemented with the rule η̃ = η̃B(T) for τ > 1 if
τs < 1 and for any τ otherwise. As the particle speed is larger, because the region with
τs > 1 approaches the whole mixture region, γ (U) approaches Stokes’ law of 6πη̃B(T)r0

from the larger side. This means that γ̌ (∞) is not smaller than τ ν(z−d), which is 0.75 and
0.68 for τ = 10−3 and 10−4, respectively. Thus, the assumption mentioned in the preceding
paragraph holds in the range of τ of figure 3.
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Introducing a Laplace transform, defined as

Q̂(U, σ ; U0) ≡
∫ ∞

0
dt
[
P(U, t; U0) − Peq(U)

]
e−σ t, (D 6)

we use 〈U0〉 = 0 to rewrite (2.27) as

D =
∫ ∞

−∞
dU

∫ ∞

−∞
dU0 UU0Q̂(U, 0; U0)Peq(U0). (D 7)

From the Laplace transform of (D 1), we use (D 2) and (D 3) to obtain

− δ(U − U0) + Peq(U) = 1
2m2

∂

∂U
b2(U)Peq(U)

∂

∂U
Q̂(U, 0; U0)

Peq(U)
, (D 8)

where δ represents the delta function. With O indicating the Landau symbol, we have
Q̂(U, σ ; U0) < O(|U|−1) as |U| → ∞ because the normalization conditions of P and Peq
give ∫ ∞

−∞
dU Q̂(U, σ ; U0) = 0. (D 9)

As mentioned above, b(U)2 remains finite in the limit of U = −∞. Integrating (D 8) with
respect to U from −∞ gives

2m2

b2(U)Peq(U)

[
−Θ(U − U0) +

∫ U

−∞
dU1 Peq(U1)

]
= ∂

∂U
Q̂(U, 0; U0)

Peq(U)
. (D 10)

Integrating (D 10) with respect to U from a value smaller than U0, substituting the result
into (D 7) and using 〈U0〉 = 0, we arrive at

D = −2m2
∫ ∞

−∞
dU

∫ ∞

−∞
dU0 UU0Peq(U)Peq(U0)

∫ U

U0

dU1
1

b(U1)2Peq(U1)
. (D 11)

Interchanging the order of the integrals above, we use γ̌ (u) = γ̌ (−u) to obtain (2.28).
Some details on numerical calculations of (2.28) are mentioned below. We define L as

L(ua, ub) =
∫ ub

ua

du1 γ̌ (u1)u1e−Mu2
1 . (D 12)

We can choose uc(> 0) so that |γ̌ ′(u)| is smaller than |γ̌ ′(uc)| for u > uc. The integral in
the square brackets of (2.28) is given by L(u,∞). Using integration by parts, we obtain

L(uc,∞) = γ̌ (uc)

2M
e−Mu2

c

[
1 + eMu2

c

γ̌ (uc)

∫ ∞

uc

du1 γ̌ ′(u1)e−Mu2
1

]
. (D 13)

The absolute value of the second term in the square brackets above is smaller than∣∣γ̌ ′(uc)
∣∣ eMu2

c

γ̌ (uc)
√

M

∫ ∞

uc
√

M
dx e−x2 ≈

∣∣γ̌ ′(uc)
∣∣

2Mucγ̌ (uc)
, (D 14)

where the approximation is good for uc

√
M � 1. In our numerical calculations, we choose

uc so that uc

√
M ≈ 4, and find that the right-hand side above is smaller than 10−3, which

enables us to neglect the second term in the square brackets of (D 13).
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The integral with respect to u in (2.28) is rewritten as

∫ uc

0
du

e−3Mu2/2

L(u,∞)
+
∫ ∞

uc

du
e−3Mu2/2

L(u,∞)
, (D 15)

where uc is chosen as indicated above. In the first term above, we can use

L(u,∞) ≈ L(u, uc) + γ̃ (uc)

2M
e−Mu2

c . (D 16)

In the second term of (D 15), because of u > uc, L(u,∞) can be approximated to be
the second term on the right-hand side of (D 16) with uc being replaced by u for the
same reason as described in the preceding paragraph. Thus, the second term of (D 15)
is approximately equal to

2M
γ̌ (uc)

∫ ∞

uc

du e−Mu2/2. (D 17)

Here, we use γ̌ (uc) ≈ γ̌ (∞). In our numerical calculation, with uc being chosen as
indicated above, the ratio of (D 17) to the first term of (D 15) is much smaller than 10−3,
and thus the first term is regarded as equal to the integral with respect to u in (2.28).
Hence, we can calculate (2.28) by using γ̌ (u) with u ≤ uc, or in other words, by using
γ (U) with U smaller than 4Ū approximately. Thanks to this effective cutoff speed, our
calculation results are free from the details of the rule for a large particle speed, as checked
quantitatively in § 3.

Appendix E. Renormalization correction under the shear effect

A simple shear flow in four dimensions is used in the calculation mentioned above (A 5).
The components of its velocity gradient with respect to the Cartesian coordinates vanish
except for ∇2v1, which is a positive constant. As mentioned at the end of appendix A, the
singular part of the viscosity changes as k decreases from ko. The ratio of the change in
the later stage with k < ks, to the change in the earlier stage with k > ks, is given by the
second term in the square brackets of (4.64) of Onuki & Kawasaki (1979). To evaluate this
ratio, we take average of the term over the orthogonal components and average over the
directions of the wavenumber vector. The former average is obtained by dividing (4.65)
of Onuki & Kawasaki (1979) by three – the dimension of the divergence-free space. In
this equation, the dot immediately after the fraction should be deleted to validate the
equality, and the right-hand side, as it is, represents the trace of the left-hand side. The
latter average is obtained by replacing k̂ in (4.65) of Onuki & Kawasaki (1979) by one of
the four orthogonal unit vectors, summing the results over the four vectors, and dividing
the sum by the spatial dimension, four. The result derived from theses averages is denoted
by δs. As in deriving the right-hand side of (3.6) of Onuki & Kawasaki (1979), we use the
method of characteristics to find δs to be given by 4ε/(19π2) multiplied by the integral of

2
q1

(q2
1q2

3 + q2
1q2

4 + q2
3q2

4)I(q) (E 1)

with respect to the four-dimensional vector q over half the unit sphere with q1 > 0, where
I(q) is defined as the integral of the following integrand over p running from q2 to ∞.
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The integrand is given by

exp
[

2
3q1

{
3
5
(q5

2 − p5) + (q2
1 + q2

3 + q2
4)[2(q3

2 − p3) + 3(q2 − p)]
}]

(E 2)

divided by (0.97|q1|2/5 + q2
1 + p2 + q2

3 + q2
4)

2. If we replace this denominator by q4, where
q denotes |q|, (E 1) becomes larger. Putting q3 = q4 = 0 and changing the variable p to
Z ≡ 2( p − q2)/q1 in (E 2), we obtain a new exponential function. Its integral over 0 <

Z < ∞ is denoted by I1(q1, q2), and we have

δs <
4ε

19π2

∫
dq

q2
1q2

3 + q2
1q2

4 + q2
3q2

4

q4
I1(q1, q2), (E 3)

where the integral is taken over half the unit sphere mentioned above. In the square
brackets of (E 2) after the above-mentioned conversion, the leading term for large Z is
given by −q4

1Z5/80. Thus, as q1 approaches zero from the positive side, the leading term
of I1(q1, q2) is proportional to q−4/5

1 , which justifies that we neglected the contribution
from the integrand with q1 = 0 to the integral of (E 1). This integral shows δs > 0.

Introducing the polar coordinates of q, we can numerically perform the integral of (E 3)
over the angular components. We write J(q, Z) for the result, and have

δs <
4ε

19π2

∫ 1

0
dq
∫ ∞

0
dZ J(q, Z). (E 4)

If we retain only the leading term in (E 2), J(q, Z) in (E 4) is replaced by

J1(q, Z) ≡ 2πq3

15

∫ π/2

0
dθ1 e−q4

1Z5/80(20 − 18 sin2 θ1) sin4 θ1, (E 5)

where θ1 is defined so that q1 = q cos θ1 holds. The integral in (E 5) can be expressed in
terms of generalized hypergeometric functions, and the integral of J1(q, Z) over 0 < Z <
∞ turns out to be proportional to q11/5, according to Mathematica (Wolfram Research).
Numerically, J(q, Z) is shown in figure 8 to be smaller than J1(q, Z). The double integral
in (E 4) with J replaced by J1 equals 3.44, which leads to 0 < δs < 7.33 × 10−2ε.

In a pure-extension flow in four dimensions, the off-diagonal elements of the velocity
gradient vanish and ∇1v1 = −3∇2v2 = −3∇3v3 = −3∇4v4 is a positive constant. For this
flow, we below evaluate the ratio of the changes in the later and earlier stages by taking
averages in the same way as mentioned above, and write δe for the result corresponding
with δs. The ratio should be given by (4.65) of Onuki & Kawasaki (1979) with the
denominator being replaced by q4 − (q1/2)∂q1 + (q2/6)∂q2 + (q3/6)∂q3 + (q4/6)∂q4 and
with the expression of the normalized susceptibility, denoted by χ∗(q), being replaced by
the one for the flow considered here. With the aid of (3.4) of Onuki & Kawasaki (1980a),
χ∗(q) is approximated to be

√
π/2 for q1 /= 0 in the pure-extension flow, as is consistent

with (3.23b) of Onuki & Kawasaki (1980c). Thus, we find δe to be given by 4ε/(19π2)

multiplied by the double integral of the following integrand over the unit sphere of the
four-dimensional vector q and over w = 0 to ∞. With q2

⊥ denoting q2 − q2
1 ≡ q2 sin2 θ1,
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Z

J,
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101 1022 3 34 435 56 67 72 2

FIGURE 8. From the top, three solid curves, respectively, represent J1(1.0, Z), J1(0.5, Z)

and J1(0.05, Z), while three series of circles, respectively, represent J(1.0, Z), J(0.5, Z) and
J(0.05, Z). We calculate J(q, Z) by means of numerical integration in Mathematica (Wolfram
Research) with Method → {‘GlobalAdaptive’, ‘MaxErrorIncreases’ → 10 000, Method →
‘GaussKronrodRule’}, MaxRecursion → 20.

the integrand is the product of

exp
[

q4
1

2
(1 − e4w) + 3q2

1q2
⊥(1 − e4w/3) + 3q4

⊥
2

(e−4w/3 − 1)

]
, (E 6)

which is larger if we delete the last two terms in the square brackets, and

π

4

[
e2w/3q2

1q2
⊥ + e−2w/3(q2

2q2
3 + q2

2q2
4 + q2

3q2
4)
]
, (E 7)

which is larger if we replace e−2w/3 with e2w/3 in the second term in the square brackets.
This expression shows δe > 0. Using a new variable ζ1 ≡ e2w/3, and performing the
integration with respect to the angular components of q other than θ1, we have

δe <
4ε

19π2
× 3π2

10

∫ 1

0
dq q7

∫ π

0
dθ1 I3(q, θ1)(5 − 4 sin2 θ1) sin4 θ1. (E 8)

Here, I3(q, θ1) is defined as the integral of exp [−q4(ζ 6
1 − 1)(cos4 θ1)/2] over ζ1 = 1 to

∞. This integral is written in terms of the generalized exponential integral function,
while the integration with respect to θ1 in (E 8) yields an expression involving generalized
hypergeometric functions, according to Mathematica (Wolfram Research). Here, we note
that q7I3(q, θ1) tends to 0 as q approaches zero, and that I3(q, θ1) diverges, more slowly
than 1/|θ1 − π/2|, as θ1 approaches π/2. We thus have 0 < δe < 4.00 × 10−2ε.
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