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Weighted Norm Inequalities for a Maximal
Operator in Some Subspace of Amalgams

Justin Feuto, Ibrahim Fofana, and Konin Koua

Abstract. We give weighted norm inequalities for the maximal fractional operator Mq,β of Hardy–

Littlewood and the fractional integral Iγ . These inequalities are established between (Lq, Lp)α(X, d, µ)

spaces (which are superspaces of Lebesgue spaces Lα(X, d, µ) and subspaces of amalgams

(Lq, Lp)(X, d, µ)) and in the setting of space of homogeneous type (X, d, µ). The conditions on the

weights are stated in terms of Orlicz norm.

1 Introduction

Consider the fractional maximal operator mq,β (1 ≤ q ≤ β ≤ ∞) defined on R
n by

mq,β f (x) = sup
Q∈Q:x∈Q

|Q|
1
β −

1
q ‖ f χQ‖q,

where Q is the set of all cubes Q of R
n with edges parallel to the coordinate axes,

|E| stands for the Lebesgue measure of the subset E of R
n and ‖ · ‖q denotes the

usual norm on the Lebesgue space Lq(R
n, dx). Weighted norm inequalities for m1,β

have been extensively studied in the setting of Lebesgue, weak-Lebesgue and Morrey

spaces (see [3, 14, 15] and the references therein). The following result is contained

in [14].

Theorem 1.1 Assume that 1 ≤ q < β ≤ ∞, 1
t

=
1
q
− 1

β and v is a weight function

satisfying

sup
Q∈Q

|Q|
1
β −1‖vχ

Q
‖t‖v−1χ

Q
‖q ′ < ∞.

(
1

q ′ + 1
q

= 1
)
.

Then there exists a constant C such that for any Lebesgue measurable function f

(∫

{x∈Rn:m1,β f (x)>λ}

v(y)t dy
) 1/t

≤ Cλ−1‖ f v‖q λ > 0.

The spaces (Lq, ℓp)α(R
n) (1 ≤ q ≤ α ≤ p ≤ ∞) have been defined in [7] as

follows:

• Ir
k =

∏n
i=1[kir, (ki + 1)r), k = (ki)1≤i≤n ∈ Z

n, r > 0,
• Jr

x =
∏n

i=1(xi −
r
2
, xi + r

2
), x = (xi)1≤i≤n ∈ R

n, r > 0,
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• a Lebesgue measurable function f belongs to (Lq, ℓp)α(R
n) if ‖ f ‖q,p,α < ∞, where

‖ f ‖q,p,α = sup
r>0

rn( 1
α−

1
q

)
r‖ f ‖q,p,

r‖ f ‖q,p =

{[∑
k∈Zn

(
‖ f χ

Ir
k
‖q

) p] 1
p if p < ∞,

supx∈Rn ‖ f χ
Jr
x
‖q if p = ∞.

The (Lq, ℓp)α(R
n) have been introduced in connection with Fourier multiplier prob-

lems, but they are also linked to Lq − Lp multiplier problems. We refer the readers

to [11], where spaces of Radon measures containing (L1, ℓp)α(R
n) are considered.

Notice that these spaces are subspaces of amalgam spaces introduced by Wiener and

studied by many authors (see [9] and the references therein).

It has been proved in [6] that given 1 ≤ q ≤ α < ∞, {(Lq, ℓp)α(R
n)}p≥α

is a monotone increasing family of Banach spaces, (Lq, ℓα)α(R
n) = Lα(R

n) and

(Lq, ℓ∞)α(R
n) is clearly the classical Morrey space denoted by Lq,n(1− q

α )(R
n) in [3].

Moreover, if q < α < p, then the weak-Lα(R
n) space is embedded in (Lq, ℓp)α(R

n).

Due to this remarkable link between the spaces (Lq, ℓp)α(R
n) and the Lebesgue ones,

it is tempting to look for an extension of Theorem 1.1 to the setting of (Lq, ℓp)α(R
n)

space. The following result is contained in [8].

Theorem 1.2 Assume

• 1 ≤ q ≤ α ≤ p and 0 < 1
s

=
1
α − 1

β ,

• q ≤ q1 ≤ α1 ≤ p1 and 0 < 1
t

=
1
q1
− 1

β ≤ 1
p1

,
• v is a weight function satisfying

sup
Q∈Q

|Q|
1
β −

1
q ‖vχQ‖t‖v−1χQ‖1/( 1

q
− 1

q1
) < ∞.

Then there exists a real constant C > 0 such that

(∫

{x∈Rn:m1,β f (x)>λ}

v(y)t dy
) 1/t

≤ Cλ−1‖ f v‖q1,p1,α1
(λ−1‖ f ‖q,∞,α)

s( 1
q1
− 1

α1
)

for any real λ > 0 and Lebesgue measurable function f on R
n.

It turns out that the (Lq, ℓp)α(R
n) setting is particularly well adapted for the search

of controls on Lebesgue norm of fractional maximal functions mq,β f . Actually we

have the following result whose first part is a consequence of Theorem 1.2 (see [8]).

Theorem 1.3 Assume that 1 ≤ q ≤ α ≤ β and 1
s

=
1
α − 1

β .

(i) If α ≤ p and 1
q
− 1

β ≤ 1
p

, then there is a real constant C such that for all Lebesgue

measurable functions f on R
n,

‖mq,β f ‖∗s,∞ ≡ sup
λ>0

λ|{x ∈ R
n : mq,β f (x) > λ}|1/s ≤ C‖ f ‖q,p,α.
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(ii) If 1 ≤ u ≤ s ≤ v, then there is a real constant C such that for any Lebesgue

measurable function f on R
n,

(1.1) ‖ f ‖q,p,α ≤ C‖mq,β f ‖u,v,s.

It follows from inequality (1.1) and the embedding of the weak-Ls(R
n) space into

(Lu, ℓv)s(R
n) for u < s < v that f has its fractional maximal function mq,β f in a weak

Lebesgue space only if it belongs to some (Lq, ℓp)α(R
n).

Let X = (X, d, µ) be a space of homogeneous type which is separable and satisfies

a reverse doubling condition (see (2.2) in Section 2 for a definition).

For 1 ≤ q ≤ β ≤ ∞ we set, for any µ-measurable function f on X,

Mq,β f (x) = sup
B

µ(B)
1
β −

1
q ‖ f χB‖q x ∈ X,

where the supremum is taken over all balls B in X containing x and ‖ · ‖q denotes the

norm on the Lebesgue space Lq
= Lq(X, d, µ). As we can see, Mq,β is clearly a general-

ization of mq,β . In the last decades, much work has been dedicated to obtaining Mor-

rey and Lebesgue norm inequalities for Mq,β and other operators of fractional maxi-

mal type on spaces of homogeneous type. We refer the reader to [1,2,4,16,17,19,21]

and the references therein.

As in the Euclidean case, Lebesgue and Morrey spaces on homogeneous type

spaces may be viewed as the end points of a chain of Banach function spaces

(Lq, Lp)α(X) defined as follows: a µ-measurable function f represents an element

of (Lq, Lp)α(X) if

‖ f ‖q,p,α = sup
r>0

, r‖ f ‖q,p,α < ∞,

where

r‖ f ‖q,p,α =





[∫
X

(
µ(B(y,r))

1
α−

1
p
− 1

q ‖ f χ
B(y,r)

‖q

) p
dµ(y)

] 1
p

if p < ∞,

sup ess
y∈X

µ(B(y,r))
1
α−

1
q ‖ f χ

B(y,r)
‖q if p = ∞.

The (Lq, Lp)α(X) are generalizations of the (Lq, ℓp)α(R
n), and the main properties

extend to them (see [5]).

In this paper we are interested in continuity properties of Mq,β and the fractional

integral operator Iγ (as defined by relation (1.3)) involving the spaces (Lq, Lp)α(X)

and weights fulfilling condition of A∞ type stated in terms of Orlicz norm as in [16].

The main result is Theorem 2.3, which is an extension of Theorem 1.2 and con-

tains, as a special case, the following result.

Theorem 1.4 Assume

• there is a positive non decreasing function ϕ defined on [0,∞) and positive constants

a and b such that

(1.2) aϕ(r) ≤ µ(B(x,r)) ≤ bϕ(r) x ∈ X 0 < r,
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• q, α, p, and β are elements of [1,∞] such that q ≤ α ≤ p and 0 < 1
s

=
1
α − 1

β ≤
1
q
− 1

β ≤ 1
p

.

Then there is a real constant C such that, for any µ-measurable function f on X we have

‖Mq,β f ‖∗s,∞ ≡ sup
θ>0

θµ({x ∈ X : Mq,β f (x) > θ})1/s ≤ C‖ f ‖q,p,α.

Note that condition (1.2) is satisfied in the following cases:

• X is an Ahlfors n regular metric space, i.e., there is a positive integer n and a pos-

itive constant C which is independent of the main parameters such that C−1rn ≤
µ(B(x,r)) ≤ Crn,

• X is a Lie group with polynomial growth equipped with a left Haar measure µ and

the Carnot–Carathéodory metric d associated with a Hörmander system of left

invariant vector fields (see [10, 13, 20]).

Let us assume the hypotheses of Theorem 1.4 and that q < α < p. Theorems 2.11

and 2.12 of [5] assert that weak-Lα(X) is strictly included in (Lq, Lp)α(X). So we may

find an element f0 in (Lq, Lp)α(X) which is not in weak-Lα(X) space. Theorem 1.4

asserts that Mq,β f0 belongs to the weak-Ls space, while Theorem 2-7 of [16] gives no

control on it. This remark shows that, even if Mq,β is a particular case of the maximal

operator Mψ under consideration in Theorem 2-7 of [16], the range of application

of this last theorem is different from that of our Theorem 2.3.

It is worth noting that Mq,β satisfies a norm inequality similar to (1.1) (see The-

orem 2.4). This implies that if the maximal function Mq,β f belongs to some weak-

Lebesgue space, then f is in some (Lq, Lp)α(X).

Let us consider the following fractional operator Iγ (0 < γ < 1) defined by

(1.3) Iγ f (x) =

∫

X

f (y)dµ(y)

µ(B(x, d(x, y)))1−γ
.

This operator is clearly an extension of the classical Riesz potential operator in R
n.

As in the Euclidean case, Iγ is controlled in norm by M1,β where β =
1
γ (see Theo-

rem 3.1). Thus from the weight norm inequality on M1,β stated in Theorem 2.3, we

may deduce a similar one on Iγ .

The remainer of the paper is organized as follows: Section 2 is devoted to conti-

nuity properties of Mq,β and also contains background elements on homogeneous

spaces, Young functions, and (Lq, Lp)α(X) spaces. In Section 3 we extend the results

on Mq,β to Iγ . Throughout the paper, we will denote by C a positive constant which

is independent of the main parameters, but may vary from line to line. Constants

with subscripts such as Cµ, do not change in different occurrences.

2 Continuity of the Fractional Maximal Operators Mq,β

Let X = (X, d, µ) be a space of homogeneous type: (X, d) is a quasi-metric space

endowed with a non negative Borel measure µ satisfying the following doubling con-

dition

(2.1) µ(B(x,2r)) ≤ Cµ(B(x,r)) < ∞, x ∈ X, r > 0,
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where B(x,r) = {y ∈ X : d(x, y) < r} is the ball of center x and radius r in X. If B is

an arbitrary ball, then we denote by xB its center and r(B) its radius, and for any real

number δ > 0, δB denotes the ball centered at xB with radius δr(B).

Since d is a quasimetric, there exists a constant κ ≥ 1 such that

d(x, z) ≤ κ(d(x, y) + d(y, z)), x, y, z ∈ X.

If C ′
µ is the smallest constant for which (2.1) holds, then Dµ = log2 C ′

µ is called

the doubling order of µ. It is known [2, 21] that for all balls B2 ⊂ B1 of (X, d)

µ(B1)

µ(B2)
≤ Cµ

( r(B1)

r(B2)

)Dµ

,

where Cµ = C ′
µ(2κ)Dµ . A quasimetric δ on X is said to be equivalent to d if there

exist constants C1 > 0 and C2 > 0 such that

C1d(x, y) ≤ δ(x, y) ≤ C2d(x, y), x, y ∈ X.

We observe that topologies defined by equivalent quasimetrics on X are equivalent.

It is shown [12] that there is a quasimetric δ equivalent to d for which balls are open

sets.

In the sequel we assume that X = (X, d, µ) is a fixed space of homogeneous type

and

• all balls B(x,r) = {y ∈ X : d(x, y) < r} are open subsets of X endowed with the

d-topology and (X, d) is separable,
• µ(X) = ∞,
• B(x,R) \ B(x,r) 6= ∅, 0 < r < R < ∞, and x ∈ X, so that as proved in [22], there

exist two constants C̃µ > 0 and δµ > 0 such that

(2.2)
µ(B1)

µ(B2)
≥ C̃µ

( r(B1)

r(B2)

) δµ

for all balls B2 ⊂ B1 of X.

Now we recall some concepts necessary to express the conditions we impose on

our weights.

Definition 2.1 Let Φ be a non negative function on [0,∞).

(i) Φ is a Young function if it is continuous, non decreasing, convex and satisfies

the conditions Φ(0) = 0 and limx→∞ Φ(x) = ∞.

(ii) Assume that Φ is a Young function:

(a) It is doubling if there is C > 0 such that Φ(2t) ≤ CΦ(t) for all t ≥ 0.

(b) It satisfies the Bp condition (1 ≤ p < ∞) if there is a number ã > 0 such

that ∫ ∞

ã

Φ(t)

t p

dt

t
< ∞.

(c) Its conjugate Φ
∗, is defined by Φ

∗(u) = sup{tu − Φ(t) : t ∈ R+}.
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(d) For any µ-measurable function f on X,

‖ f ‖Φ,B = inf
{

λ > 0 :
1

µ(B)

∫

B

Φ(λ−1| f |)dµ ≤ 1
}

for any ball B in X, and MΦ f (x) = supball B∋x ‖ f ‖Φ,B.

It is proved in [17, Theorem 5.1] that a doubling Young function Φ belongs to the

class Bp with 1 < p < ∞ if and only if there exists a constant C > 0 such that

(2.3)

∫

X

(MΦ f (x))pdµ(x) ≤ C

∫

X

f (x)pdµ(x)

for all non negative f . We also have the local version of the generalized Hölder in-

equality

1

µ(B)

∫

B

| f g|dµ ≤ ‖ f ‖Φ,B‖g‖Φ∗,B,

which is valid for all measurable functions f and g, and for all balls B. For more

information about Young function, see [18].

We will need the following covering lemma stated and proved in [2].

Lemma 2.2 Let F be a family of balls with bounded radii. Then there exists a count-

able subfamily of disjoint balls {B(xi ,ri ), i ∈ J} such that each ball in F is contained in

one of the balls B(xi ,3κ2ri ), i ∈ J.

We are now ready to state and prove our main result.

Theorem 2.3 Let q, α, p, q1, α1, p1,β be elements of [1,∞] such that

1 ≤ q ≤ α ≤ p with 0 <
1

α
−

1

β
=

1

s
,

and

q < q1 ≤ α1 ≤ p1 < ∞ with 0 <
1

q1

−
1

β
=

1

t
≤

1

p1

.

Let (w, v) be a pair of weights for which there exists a constant A such that

µ(B)−1/t‖wχB‖t‖v−q‖
1/q
Φ,B ≤ A

for all balls B in (X, d), where Φ is a doubling Young function whose conjugate func-

tion Φ
∗ satisfies the Bq1/q condition. Then there is a constant C such that for any µ-

measurable function f , and θ > 0, we have

(2.4)
(∫

Πθ

wt (x)dµ(x)
) 1/t

≤ Cθ−1‖ f v‖q1
,

and if we assume that µ satisfies condition (1.2), then

(2.5)
(∫

Πθ

wt (x)dµ(x)
) 1/t

≤ C
(
θ−1‖ f v‖q1,p1,α1

)
(θ−1‖ f ‖q,p,α)

s( 1
q1
− 1

α1
),

where Πθ = {x ∈ X : Mq,β f (x) > θ}.
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Proof Inequality (2.4) is immediate from [16, Theorem 2.7]. We just need to prove

inequality (2.5).

Let f be an element of (Lq, Lp)α(X). Fix θ > 0. For x in Πθ, there exists rx such

that

(2.6) µ(B(x,rx))
1
β −

1
q ‖ f χ

B(x,rx )
‖q > θ,

and therefore

(2.7) µ(B(x,rx
) ≤ (θ−1‖ f ‖q,∞,α)s.

Fix a ball B(x0,R) in X and set Π
R
θ = Πθ ∩ B(x0,R). For any x in Π

R
θ we have B(x0,R) ⊂

B(x,rx) provided rx > 2κR. It follows from the reverse doubling property (2.2) and

(2.7) that

r
δµ
x ≤ C−1

µ

Rδµ

µ(B(x0,R))
(θ−1‖ f ‖q,∞,α)s.

So we obtain that for any x in Π
R
θ ,

r
δµ
x ≤ max

{
2κR,C−1

µ

Rδµ

µ(B(x0,R))
(θ−1‖ f ‖q,∞,α)s

}
< ∞.

Thus by Lemma 2.2, the family F = {B(x,rx) : x ∈ Π
R
θ} has a countable subfamily

{Bi : i ∈ J} of disjoint balls such that each element B of F is contained in some

3κ2Bi .

Let i be an element of J. By (2.6) and the generalized Hölder inequality we have

θq ≤ µ(Bi)
q/β

( 1

µ(Bi)

∫

Bi

| f vv−1|dµ
)

≤ Cµ(Bi)
q/β‖( f vχBi

)q‖Φ∗,3κ2Bi
‖v−1χBi

‖Φ,3κ2Bi

≤ Cµ(Bi)
q/βMΦ∗( f vχBi

)q(y)‖v−qχBi
‖Φ,3κ2Bi

for any y in Bi . So we obtain

θqµ(Bi) ≤ Cµ(Bi)
q/β

∫

Bi

MΦ∗( f vχBi
)q(y)dµ(y)‖v−qχBi

‖Φ,3κ2Bi
.

Applying the Hölder inequality and (2.3) we get

θq ≤ Cµ(Bi)
−q/t [

∫

Bi

{MΦ∗( f vχBi
)q(y)}q1/qdµ(y)]q/q1‖v−qχBi

‖Φ,3κ2Bi

≤ Cµ(Bi)
−q/t‖ f vχBi

‖q
q1
‖v−qχBi

‖Φ,3κ2Bi
,

https://doi.org/10.4153/CMB-2010-015-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2010-015-x


270 J. Feuto, I. Fofana, and K. Koua

that is,

1 ≤ Cθ−1µ(Bi)
−1/t‖ f vχBi

‖q1
‖v−qχBi

‖
1/q

Φ,3κ2Bi
.

As Π
R
θ ⊂

⋃
i∈ J 3κ2Bi and

p1

t
≤ 1, we have

‖wχΠ
R
θ
‖t ≤

(∑

i∈ J

‖wχ3κ2Bi
‖

p1

t

) 1/p1

≤ Cθ−1
[∑

i∈ J

(µ(Bi)
−1/t‖ f vχBi

‖q1
‖v−qχBi

‖
1/q

Φ,3κ2Bi
‖wχ3κ2Bi

‖t )
p1

] 1/p1

.

Thus, according to assumption (2.7),

(2.8) ‖wχΠ
R
θ
‖t ≤ Cθ−1

(∑

i∈ J

‖ f vχBi
‖p1

q1

) 1/p1

.

Let n be a positive integer and set

• Jn = {i ∈ J : 1
n
≤ r(Bi)},

• mn and k̄ the integers satisfying respectively

ρmn+1 ≤
1

2κn
< ρmn+2 and ρk̄+1 ≤

r

2κ
< ρk̄+2,

where r = sup{r(Bi), i ∈ J} and ρ = 8κ5.

It was proved in [19] that there are points xk
j and Borel sets Ek

j , 1 ≤ j < Nk,

k ≥ mn (where Nk ∈ N ∪ {∞}), such that

(i) B(xk
j ,ρ

k) ⊂ Ek
j ⊂ B(xk

j ,ρ
k+1), 1 ≤ j < Nk, k ≥ mn,

(ii) X =
⋃

j Ek
j , k ≥ mn, and Ek

j ∩ Ek
i = ∅ if i 6= j,

(iii) given i, j, k, ℓ with mn ≤ k < ℓ, then either Ek
j ⊂ Eℓ

i or Ek
j ∩ Eℓ

i = ∅.

Let i be an element of Jn. Denote by ki the integer satisfying

ρki +1 ≤
r(Bi)

2κ
< ρki +2

and set Li = { j : 1 ≤ j < Nki
, Eki

j ∩ Bi 6= ∅}.

We know that the number of elements of Li is less than a constant N depending

only on the structure constants (κ,Cµ, Dµ, C̃µ, δµ) (see [5, (3.3) and (4.3)]). Denot-

ing by ji an element of Li satisfying

∥∥ f vχ
Bi∩E

ki
ji

∥∥
q1

= max
j∈Li

∥∥ f vχ
Bi∩E

ki
j

∥∥
q1

,

we have

‖ f vχBi
‖q1

≤ N
∥∥ f vχ

Bi∩E
ki
ji

∥∥
q1

.
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Hence

(∑

i∈ Jn

‖ f vχBi
‖p1

q1

) 1/p1

≤ N

(∑

i∈ Jn

‖ f vχ
E

ki
ji
∩Bi

‖p1
q1

) 1/p1

= N

( Nk̄∑

ℓ=1

∑

i∈ Jn:E
ki
ji
⊂Ek̄

ℓ

‖ f vχ
E

ki
ji
∩Bi

‖p1
q1

) 1/p1

≤ N

( Nk̄∑

ℓ=1

‖ f vχ
Ek̄

ℓ∩(∪i∈ Jn Bi )
‖p1

q1

) 1/p1

= N

[ Nk̄∑

ℓ=1

(µ(Ek̄
ℓ)

1
α1

− 1
q1 ‖ f vχ

Ek̄
ℓ∩(∪i∈ Jn Bi )

‖q1
)p1µ(Ek̄

ℓ)
p

q1
− p

α1

] 1/p1

.

Notice that for any 1 ≤ ℓ < Nk̄, we have

µ(Ek̄
ℓ) ≤ µ(B

(xk̄
ℓ ,ρ

k̄+1)
) ≤ bϕ(ρk̄+1) ≤ bϕ

( r

2κ

)
≤ b sup

i∈ J

ϕ
( r(Bi)

2κ

)

≤ b sup
i∈ J

a−1µ
( 1

2κ
Bi

)
≤ ba−1(θ−1‖ f ‖q,∞,α)s.

Therefore,

(2.9)
(∑

i∈ Jn

‖ f vχBi
‖p1

q1

) 1/p1

≤ C
[ Nk̄∑

ℓ=1

(
µ(Ek̄

ℓ)
1

α1
− 1

q1 ‖ f vχ
Ek̄

ℓ
‖q1

) p1
] 1/p1

(θ−1‖ f ‖q,∞,α)
s( 1

q1
− 1

α1
).

Since the last formula does not depend on n, we get from (2.8) and (2.9)

‖wχΠ
R
θ
‖t ≤ Cθ−1

[ Nk̄∑

ℓ=1

(
µ(Ek̄

ℓ)
1

α1
− 1

q1 ‖ f vχ
Ek̄

ℓ
‖q1

) p1
] 1/p1

(θ−1‖ f ‖q,∞,α)
s( 1

q1
− 1

α1
).

We recall that Proposition 4.1 of [5] asserts that there are positive constants C1 and

C2 not depending on r and f v such that

C1 r‖ f v‖q1,p1,α1
≤

[ Nk̄∑

ℓ=1

(
µ(Ek̄

ℓ)
1

α1
− 1

q1 ‖ f vχ
Ek̄

ℓ
‖q1

) p1
] 1/p1

≤ C2 r‖ f v‖q1,p1,α1
.

So we have

‖wχΠ
R
θ
‖t ≤ Cθ−1

r‖ f v‖q1,p1,α1
(θ−1‖ f ‖q,∞,α)

s( 1
q1
− 1

α1
)

≤ Cθ−1‖ f v‖q1,p1,α1
(θ−1‖ f ‖q,∞,α)

s( 1
q1
− 1

α1
).
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As (x0, R) is arbitrary in X × (0,∞), we obtain

‖wχΠθ
‖t ≤ Cθ−1‖ f v‖q1,p1,α1

(θ−1‖ f ‖q,∞,α)
s( 1

q1
− 1

α1
).

In the proof of the above theorem, the condition q < q1 is needed only when we

have to use the Bq1/q characterization. When w = v = 1, this characterization is not

necessary. So Theorem 1.4 follows immediately from Theorem 2.3.

The next theorem is some kind of reverse for Theorem 1.4

Theorem 2.4 Let q, α,u, and v be elements of [1,∞] such that

q ≤ α, 0 ≤
1

α
−

1

β
=

1

s
, and u ≤ s ≤ v.

Then there is a constant D such that for any µ-measurable function f

‖ f ‖q,v,α ≤ D‖Mq,β f ‖u,v,s.

Proof Let f be such that ‖Mq,β f ‖u,v,s < ∞. We notice that under the hypothesis,

we have q ≤ α ≤ s ≤ v and α ≤ β.

Case 1: q = ∞. Then α = β = s = v = ∞ and therefore, it follows from the

definitions that

‖ f ‖∞,∞,∞ = ‖ f ‖∞ = ‖M∞,∞ f ‖∞ ≤ C‖M∞,∞ f ‖u,∞,∞.

Case 2: q < ∞.

(i) If u = ∞, then s = v = ∞, α = β and therefore,

‖ f ‖q,∞,α = sup
r>0

sup ess
x∈X

µ(B(x,r))
1
α−

1
q ‖ f χ

B(x,r)
‖q

= sup
r>0

sup ess
x∈X

µ(B(x,r))
1
β −

1
q ‖ f χ

B(x,r)
‖q = ‖Mq,β f ‖∞ = ‖Mq,β f ‖∞,∞,∞.

(ii) Suppose that u < ∞, and consider two positive real numbers r and r1 satisfying

r1 =
r

2κ . For any y ∈ X and x ∈ B(y,r1), we have B(y,r1) ⊂ B(x,r) and therefore, by

the doubling condition

Mq,β f (x) ≥ C
1
β −

1
q

µ µ(B(y,r1))
1
β −

1
q ‖ f χ

B(y,r1)
‖q.

From this, it follows that for any y ∈ X, we have

‖Mq,β f χB(y,r1)
‖u ≥ C

1
β −

1
q

µ µ(B(y,r1))
1
u

+ 1
β −

1
q

∥∥ f χ
B(y,r1)

∥∥
q

and therefore,

µ(B(y,r1))
1
s
− 1

v
− 1

u

∥∥Mq,β f χB(y,r1)

∥∥
u
≥ C

1
β −

1
q

µ µ(B(y,r1))
1
α−

1
v
− 1

q

∥∥ f χ
B(y,r1)

∥∥
q
.

This yields immediately the desired inequality.
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3 Continuity of the Fractional Integral Iα f

It is known in the Euclidean case that the fractional integral Iγ f is controlled in norm

by the fractional maximal function m1, 1
γ

f (see [14, Theorem 1]). We give the ana-

logue of this control in the setting of spaces of homogeneous type.

Theorem 3.1 Let 0 < q < ∞, 0 < γ < 1 and a weight w in A∞. There is a constant

C such that for any µ-measurable function f

sup
λ>0

λq

∫

Ea

w(x) dµ(x) ≤ C sup
λ>0

λq

∫

Fλ

w(x) dµ(x),

where Eλ = {x ∈ X : |Iγ f (x)| > λ} and Fλ = {x ∈ X : M1, 1
γ

f (x) > λ}.

Proof In our argumentation, we shall adapt the proof of [14, Theorem 1], keeping

in mind that we do not have a Whitney decomposition available.

(1) Let f be a µ-measurable, non negative, bounded function, with a support

included in a ball B0 = B(x0,k0). According to [21, Lemma 6], there exists a constant

C0 > 0 not depending on f , such that Iγ f ≤ M(Iγ f ) ≤ C0Iγ f , where M = M1,∞.

Let θ be a positive number and set

Ẽθ = {x ∈ X : M(Iγ f )(x) > θ} and Eθ = {x ∈ X : Iγ f (x) > θ}.

The set Eθ is included in Ẽθ which is opened and satisfies µ(Ẽθ) < ∞. According to

[21, Lemma 8], there exists a countable family {B(xi ,ri ) ; i ∈ J} of pairwise disjoint

balls and two positive constants M and c depending only on the structure constants

of X, such that

(3.1)

Ẽθ =
⋃
i∈ J

B(xi ,cri ),
∑

i∈ J

χB(xi ,2κcri )
≤ MχeEθ

,

B(xi ,4κ2cri ) ∩ (X \ Ẽθ) 6= ∅ for all i ∈ J.

Let us consider an element (a, ε) of (1,∞) × (0, 1], and set

Fθε = {x ∈ X : M1,1/γ f (x) > θε}, J1 = {i ∈ J : B(xi ,cri ) ⊂ Fθε},

J2 = I \ J1 = {i ∈ J : B(xi ,cri ) \ Fθε 6= ∅}.

Arguing as in the proof of [14, Lemma 1], we obtain two constants K > 0 and

B > 1 depending only on the structure constants of X, such that if a ≥ B and i ∈ J2,

then

(3.2) µ
(
{x ∈ B(xi ,cri ) : Iγ f (x) > aθ}

)
≤ Kµ(B(xi ,cri ))

( ǫ

a

) 1
1−γ

.

Since Eθa ⊂ Eθ ⊂ Ẽθ =
⋃

i∈ J B(xi ,cri ), we have

Eθa =
[ ⋃

i∈ J1

(Eθa ∩B(xi ,cri ))
]
∪

[ ⋃
i∈ J2

(Eθa ∩B(xi ,cri ))
]
⊂ Fθε ∪

[ ⋃
i∈ J2

(Eθa \ Fθǫ)∩B(xi ,cri )

]
,
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and therefore

(3.3)

∫

Eθa

w(x) dµ(x) ≤

∫

Fθε

w(x) dµ(x) +
∑

i∈ J2

∫

(Eθa\Fθε)∩B(xi ,cri )

w(x) dµ(x).

Now fix a ≥ B and ρ > 0. Since w is in A∞, there exists δ > 0 such that for any

ball B in X and any subset E of B satisfying µ(E) ≤ δµ(B), we have
∫

E

w(x) dµ(x) ≤ ρ

∫

B

w(x) dµ(x).

Choose ε ∈ (0, 1] such that K( ε
a
)

1
1−γ < δ and take 0 < ε < min(ε, 1

C0L
), where

L = Cµ(2κ + 4κ2)(1−γ)Dµ . According to (3.2) we have for any i ∈ J2,

µ(B(xi ,cri ) ∩ Eθa) < δµ(B(xi ,cri )),

and therefore ∫

B(xi ,cri )∩Eθa

w(x) dµ(x) ≤ ρ

∫

B(xi ,cri )

w(x)µ(x).

From this inequality, (3.3), and (3.1) we obtain

(3.4)

∫

Eθa

w(x) dµ(x) ≤

∫

Fθε

w(x) dµ(x) + ρM

∫

eEθ

w(x) dµ(x).

Let x ∈ X \ 3κB0. Assume that 0 < t < 1
2

infy∈B0
d(x, y) and ut ∈ B0 satisfies

d(x, ut ) − t ≤ d(x, y), y ∈ B0.

We have 2r(B0) ≤ d(x, y) ≤ κ[d(x, ut ) + 2κr(B0)], y ∈ B0 and therefore

Iγ f (x) ≤

∫

B0

f (y)

µ(B(x,d(x,y)))1−γ
dµ(y)

≤
1

µ(B(x,d(x,ut )−t))1−γ

∫

B(x,κ(d(x,ut )+2κr(B0)))

f (y) dµ(y)

≤ Cµ

[ κ(d(x, ut ) + 2κr(B0))

d(x, ut ) − t

] (1−γ)Dµ

M1, 1
γ

f (x) ≤ LM1, 1
γ

f (x).

Hence, Ẽθ ⊂ Eθ/C0
⊂ (Eθ/C0

∩ 3κB0) ∪ Fθ/C0L. We obtain from (3.4)

∫

Eθa

w(x) dµ(x) ≤

∫

Fθε

w(x) dµ(x) + ρM

∫

E θ
C0

∩3κB0

w(x)dµ(x)

+ ρM

∫

F θ
C0L

w(x) dµ(x)

≤ (1 + ρM)

∫

Fθε

w(x) dµ(x) + ρM

∫

E θ
C0

∩3κB0

w(x) dµ(x).
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That is,

(θa)q

∫

Eθa

w(x) dµ(x) ≤ (1 + ρM)
( a

ε

) q

(θε)q

∫

Fθε

w(x) dµ(x)

+ ρM
( θ

C0

) q

(C0a)q

∫

E θ
C0

∩3κB0

w(x) dµ(x).

Let N be a positive integer. From the preceding inequality we obtain

sup
0<s<N

sq

∫

Es

w(x) dµ(x) ≤ (1 + ρM)
( a

ε

) q

sup
0<s<N ε

a

sq

∫

Fs

w(x) dµ(x)

+ ρM(C0a)q sup
0<s< N

aC0

sq

∫

Es∩3κB0

w(x) dµ(x).

As

sup
0<s< N

aC0

sq

∫

Es∩3κB0

w(x) dµ(x) ≤ sup
0<s<N

sq

∫

Es∩3κB0

w(x) dµ(x) < ∞,

by taking ρ =
1

2M(C0a)q in the last inequality, we get

1

2
sup

0<s<N

sq

∫

Es

w(x) dµ(x) ≤
(

1 +
1

2(C0a)q

)( a

ε

) q

sup
0<s<N ε

a

sq

∫

Fs

w(x) dµ(x).

The desired inequality follows by letting N go to infinity.

(2) Let f be an arbitrary µ-measurable function f . For any positive integer k, set

fk = f χEk
with Ek = {x ∈ B(x0,k) : | f (x)| ≤ k}. By part (1) of the proof, for any

k > 0, we have

1

2
sup

0<s<N

sq

∫

{x∈X:Iγ fk(x)>s}

w(x) dµ(x)

≤
(

1 +
1

2(C0a)q

)( a

ε

) q

sup
0<s<N ε

a

sq

∫

{x∈X:M
1, 1

γ
fk(x)>s

}

w(x) dµ(x).

So letting k go to infinity, we obtain the result.

Remark 3.2 Assume that

• µ satisfies condition (1.2),
• q, α, p, p1, q1, α1, γ are elements of [0,∞] such that

1 ≤ q ≤ α ≤ p with 0 <
1

α
− γ =

1

s

and

q < q1 ≤ α1 ≤ p1 < ∞ with 0 <
1

q1

− γ =
1

t
≤

1

p1

,

https://doi.org/10.4153/CMB-2010-015-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2010-015-x


276 J. Feuto, I. Fofana, and K. Koua

• Φ is a doubling Young function whose conjugate function Φ
∗ satisfies the Bq1/q

condition,
• v and w are two weights for which there exists a constant A such that

µ(B)−1/t‖wχB‖t‖v−q‖
1/q
Φ,B ≤ A, B ball

and wt satisfies A∞ condition.

Then there is a constant C such that for any µ-measurable function f and θ > 0, we

have (∫

Eθ

wt (x) dµ(t)
) 1/t

≤ C(θ−1‖ f v‖q1,p1,α1
)(θ−1‖ f ‖q,p,α)

s( 1
q1
− 1

α1
),

where Eθ = {x ∈ X / |Iγ f (x)| > θ}.

Proof Let f be a µ-measurable function. From Theorem 2.3, it follows that there

exists a constant C such that

sup
θ>0

θ1+s( 1
q1
− 1

α1
)
(∫

Eθ

wt (x) dµ(x)
) 1/t

≤ C sup
θ>0

θ1+s( 1
q1
− 1

α1
)
(∫

Fθ

wt (x) dµ(x)
) 1/t

,

with Fθ = {x ∈ X : M1, 1
γ

f (x) > θ}. Since M1,β ≤ Mq,β for q > 1, the result follows

from Theorem 2.3.
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