Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-25T00:09:41.470Z Has data issue: false hasContentIssue false

Real-Time Monitoring by Spectroscopic Ellipsometry and Desorption Mass Spectroscopy During Molecular Beam Epitaxy of AlGaAs/GaAs at High Substrate Temperatures

Published online by Cambridge University Press:  10 February 2011

W. T. Taferner
Affiliation:
Materials & Manufacturing Directorate (AFRL/MLPO), Bldg. 651, 3005 P St. Ste. 6, Wright-Patterson Air Force Base, OH 45433-7707
K. Mahalingam
Affiliation:
Materials & Manufacturing Directorate (AFRL/MLPO), Bldg. 651, 3005 P St. Ste. 6, Wright-Patterson Air Force Base, OH 45433-7707
D. L. Dorsey
Affiliation:
Materials & Manufacturing Directorate (AFRL/MLPO), Bldg. 651, 3005 P St. Ste. 6, Wright-Patterson Air Force Base, OH 45433-7707
K. G. Eyink
Affiliation:
Materials & Manufacturing Directorate (AFRL/MLPO), Bldg. 651, 3005 P St. Ste. 6, Wright-Patterson Air Force Base, OH 45433-7707
Get access

Abstract

A series of AlGaAs/GaAs depositions were monitored in-situ by spectroscopic ellipsometry and desorption mass spectroscopy, under various substrate temperatures (890 K - 990 K) where non-unity sticking conditions occur. An upper bound on the temperature where AlGaAs/GaAs heterostructures may be grown was determined. Ex-situ cross-sectional transmission electron microscopy verified that the AlGaAs/GaAs layer thicknesses grown by molecular beam epitaxy were accurately determined by spectroscopic ellipsometry at these elevated temperatures. The substrate temperature dependence on Ga desorption rates was consistent with Monte Carlo simulation where desorption from both physisorbed and chemisorbed states were included.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Foxon, C. F., Heterojunctions and Semiconductor Superlattices, edited by Allen, G., Bastard, G., Boccara, N., Lannoo, M., and Voss, M. (Springer, Berlin, 1986), 27.Google Scholar
2 Taferner, W. T., Eyink, K. G., Brown, G. J., Szmulowicz, F., Hegde, S. M., Walck, S. D., Tomich, D. H., Seaford, M. L., and Lampert, W. V., submitted for publication in J. Electron. Mat. (1999).Google Scholar
3 Evans, K. R., Stutz, C. E., Lorance, D. K., and Jones, R. L., J. Vac. Sci. Technol. B 7 (1989) 259; and K. R. Evans, C. E. Stutz, E. N. Taylor, and J. E. Ehret, J. Vac. Sci. Technol. B 9 (1991) 2428.10.1116/1.584729Google Scholar
4 Fischer, R., Klem, J., Drummond, T. J., Thorne, R. E., Kopp, W., Morkoç, H., and Cho, A. Y., J. Appl. Phys. 54 (1983) 2508.10.1063/1.332317Google Scholar
5 Nouaoura, M., Lassabatere, L., Bertru, N., and Bonnet, J., J. Vac. Sci. Technol. B13 (1995) 83.10.1116/1.587990Google Scholar
6 Aspnes, D. E., Quinn, W. E., and Gregory, S., Appl. Phys. Lett. 56, 2569 (1990).10.1063/1.102868Google Scholar
7 Kuo, C. H., Anad, S., Droopad, R., Choi, K. Y., and Maracas, G. N., J. Vac. Sci. Technol. B 12 (1994) 1214.10.1116/1.587047Google Scholar
8 Kuo, C. H., Anad, S., Fathollahnejad, H., Ramamurti, R., Droopad, R., and Maracas, G. N., J. Vac. Sci. Technol. B13 (1995) 681.10.1116/1.587941Google Scholar
9 Mahalingam, K., Dorsey, D. L., Evans, K. R., and Venkat, R., Appl. Phys. Lett. 70 (1997) 3143; and J. Cryst. Growth 175/176 (1997) 211–215.10.1063/1.119115Google Scholar