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Abstract. The Margulis measure for Anosov flows arises from a Hausdorff measure
for a natural distance on unstable leaves. This generalizes work of Ursula Hamenstadt
for the case of geodesic flows.

Introduction. Let M be a compact Riemannian manifold and cp':M->M a C2

Anosov flow. On W"(z) we define a distance and a spherical measure <r which
expand uniformly under the flow, a is equivalent to the conditional Margulis measure
[H, M, S] and for a Lyapunov metric a equals the conditional Margulis measure
on every leaf W(z).
DEFINITION 1. [A]. A flow <p':M^M is called an Anosov flow if <p 5*0 and the
tangent bundle is a Whitney sum TM = E"®ES®E°, where E" is generated by <p
and there are a > 0, b > 1 so that

\\D<p'u\\<b-\\u\\-eal for f sO , ueE"

and (*)

\\D<p'v\\<b-\\v\\-e-'" (oTt>0,veEs.

Remark. E", Es, £"":= E"®E° and Eos := ES®E° are tangent to foliations W",
Ws, Wou and Ws respectively, which are continuous in the C1 -topology. Every
unstable leaf W"(z) has a distance dz (and thus notions of openness and compact-
ness) induced by Riemannian lengths of curves in W(z).
DEFINITION 2. [M]. S<= W(z) and S'<= W(z') are called s-equivalent if there is
a continuous ^ : 5 x [ 0 , l ] ^ M s o that 0( • ,0) = id, <p:= 4>(-, l) :S-»S' is a homeo-
morphism, <£(*, [0,1]) is contained in W°s(x) and is a curve of length less than e
for all xeS.
Remark [A]. After possibly changing a there exists a Riemannian metric on M,
equivalent to the given metric and called a Lyapunov adapted metric, such that (*)
holds with b = \.

DEFINITION 3. Fix ReU. For x, yeW(z) let r}{x, y):= r)z,ii(x> y):=

exp (-sup {t € R: dvli(<p'(x), <p'{y))< R}).
Remark, -q ° <p'= e'• TJ, VZ\R = VZ,R for z'e W(z), 17SO, rj(x,y) = r)(y,x) and

= 0 iff x = y.

11 thank Anatoly Katok for raising this issue and Livio Flaminio for interesting discussions.
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LEMMA 1. For xlt x2, ye. W(z) and a, b as in (*) we have (r)(x1,x2))''/b

Remark. In particular 77" is a distance if M is equipped with a Lyapunov metric.

Proof. Let f = - log 17(x,, x2), r,, = dv'z{<p'Xi, <p'y). If any r,> Rb, r1
a(xi,y)>

v"(xi, X2), so we are done.
If rt<Rb then r)

a(xi,y)>e-'"ri/Rb since

<V+'r(?'+T*i, <P'+Ty)> R for T > - • l o g y > 0 .

(Join <p'+TXi and <p'+Tj> by a curve y c W"(«p'+Tz) so that l{y) = dv^z(9'
+T

Xi, <p'+ry).
By(*)

r, < /(<pT o y) < 6 • e—

Since rl + r2^dv'z(<p'xl,<p'x2) = R we obtain r)"(xl,x2)/b^e~'"(rl + r
x2,y). D

LEMMA 2. Omitting z in the subscript, we have TJR< 7jr<(/?6/r)1/a • r/R/or 0< r< i?.

Proo/ Clearly VR^Vr- dv'z(<p'x, <p'y) = r for f = -log r?r(x,y), so r}R(x,y)>
(r/Rb)1/aT]r(x, y) as in the proof of Lemma 1. •

DEFINITION 4. [H]. For 5 c W"(z) let

<re(S):= inf I I ej1: S c U Bn (xJt e,-) with x,€ Wu(z) and ej^

and

Here li is topological entropy and Bn(xj, e,) are e,-balls for 17 around Xj.

Remark, a is the /i/a-dimensional spherical measure [F] on W"(z) arising from the
distance rj". a^z ° <p' = ehl • crz and o- is Borel regular, i.e. <r(5) = sup {cr(C): C c 5
compact} (see [F]).

LEMMA 3. [M, S]. For a C2 Anosov flow <p' with dense leaves W and Ws we can
construct the Margulis measure /A. Its restriction ft" to W(z) is positive on open and
finite on compact sets. /i£<r»<p' = e1" • /x" and for 8 > 0 there exists e > 0 such that if
S<=W(z) and S'<= W(z') are e-equivalent then (1-5) • fj,u(S)<n"(S')<
(1 + 5) • /i"(S). Furthermore fi" is Borel regular.

LEMMA 4. There exist 0<a1<a2<°o such that a, • eh<(*."(Bn(x, e))<a2 • eh for
all xeM.

Proof. Suppose fi"(Bv(xit 1)) -* 0 for some {x,}°l, <= M. By compactness of M assume
Xi~*x. For 1 large S = Bv(x, 5) is e-equivalent to some S'<= Bv(xt, 1) and
Hu(Bv(Xi, l))^fiu(S')>^- nu(S)>0 by Lemma 3, a contradiction. So 0 < a , <
fi"(Bv(x, 1)) and similarly ^"(B,,(x, I))<a2<oo. The claim follows, since

Hu{Bv(x, e)) = nu(^{Bv^-^x, 1))) = eh • ^(B^-^'x, 1)). •
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LEMMA 5.

Proof. (1) Let S<= W(z). By definition of o-E there is a covering

Scz U B,(X,, e.), e. < e, Xj e W"(z),
J = I

so that

Let S -» 0 and e -» 0.
(2) Let S c Wu(z) be compact, e>0, Se={x€Wu(z): 3yeS:T1(x,y)<

e/(2b)1/a} and {x,}j"=, c S a maximal subset so that the Bv(xj, e/(2b)l/a) are pairwise
disjoint. Since S c l j j l , Bv(xj, e) by Lemma 1,

< I eh ^

by Lemma 4 and disjointness of Bn(xj, e/(2b)1/a)cz Sc. Letting e-*0 gives o-(S)<
(2b)h/a • oti1 • fi"(S) and Borel-regularity of cr and fiu yields the second inequality.

•
LEMMA 6. Ifa is constructed from a Lyapunov metric then for S > 0 there is an e > 0
50 that i / Sc Wu(z) and S'c W(z') are e-equivalent then (1-6) • cr(S)<tr(S')<
(1 + 5)-o-(S).

Ptoo/ We will use that if {x}, {x1} are e-equivalent and {*"}:= vyou(x')n Ws(x)
then x" = <pTx' for some reU, so there is a CeR such that <p'x, <p'x' are C- e-
equivalent for t>0. For 8J<8<1 cover 5<=UJi, Bv.(x,, 5̂ ) so that YJLi8j-
o-(S) + S.

Claim. S'c Uf=, B,,,(I)(^(x,), i(e) • «,) with lim^0 i(e) = 1.

Proof of Claim. If ye Sn BV:(x, S) then dv-wz(<p-loliSx, (p~logSy) < R.

d^-^Mv'^x), Hf~XoiSy)) <R + e(Ce)

with lim^^o ^(e) = 0 by uniform continuity of E". By Lemma 2

R + 6(CF)\ I / /a

^ i j -5.

Therefore il/(SnBvz(Xj,-8j))<= S'nBv^z)(tl>(Xj),i(e)8j) and the claim follows. •

Thus <r(S')< i(e)h • o-(S). The other inequality follows similarly.

THEOREM. Let M be a compact C2-manifold and <p' as in Lemma 3. Equip M with
a Lyapunov metric. Then after normalization the measures cr of Definition 4 agree
with the conditionals of the Margulis measure on every leaf.

Proof. The ft" are defined up to a global constant (not just up to a constant on each
leaf [M]). a- has measurable densities fz: W"(z)-»R with respect to n". Since /i is
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ergodic and/:M-*R, z>-»/z(z) <p'-invariant (/x" ° <p' = e1" • fiu and a° (p' -eht • <r!)
and measurable by Lemmata 3 and 6, / = constant fi—a.e. By Lemmata 3 and 6,
after normalizing, fz=l /J."—a.e. on each leaf W(z). •

Remarks. (1) If M carries an arbitrary Riemannian metric then after normalization
the measure o- agrees with the conditionals of the Margulis measure on /x -almost
every leaf. (The above proof goes through: / is measurable since (x, y, z, /?)>->
VZ,R(X> y) is lower semicontinuous.)

(2) The above results are also true for the /i-dimensional Hausdorff measure [F].
(3) It is interesting to compare this construction with the one in [B].
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