
Foreword 

For about twenty years after its invention, quantum electrodynamics re
mained an isolated success in the sense that the underlying ideas seemed 
to apply only to the electromagnetic force. In particular, its techniques 
did not seem to be useful in dealing with weak and strong interactions. 
These interactions seemed to lie outside the scope of the framework of 
local quantum field theory and there was a wide-spread belief that the 
best way to handle them would be via a more general, abstract S-matrix 
theory. All this changed dramatically with the discovery that non-Abelian 
gauge theories were renormalizable. Once the power of the gauge princi
ple was fully recognized, local quantum field theory returned to the scene 
and, by now, dominates our thinking. Quantum gauge theories provide 
not only the most natural but also the only viable candidates we have for 
the description of electroweak and strong forces. 

The basic dynamical variables in these theories are represented by 
non-Abelian connections. Since all the gauge invariant information in 
a connection is contained in the Wilson loops variables (i.e., traces of 
holonomies), it is natural to try to briIlg them to the forefront. This is 
precisely what is done in the lattice approaches which are the most suc
cessful tools we have to probe the non-perturbative features of quantum 
gauge theories. In the continuum, there have also been several attempts 
to formulate the theory in terms of Wilson loops. In the perturbative 
approach, it is known that Wilson loop "Schwinger functions" are finite 
to all orders after renormalization. This is a strong indication that they 
may be also mathematically meaningful in a non-perturbative treatment 
of the continuum theory. Since these are functions on an appropriate 
space of loops, one can derive differential equations they satisfy on that 
loop space. The hope is that once a complete set of equations is obtained, 
physical "boundary conditions" will lead to unique solutions which in turn 
will determine the theory. Thus, the space of loops offers a natural arena 
for the quantum theories of connections. 
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XIV Foreword 

In the last few years, this relation between connections and loops has 
acquired another dimension. In these developments, the emphasis is on 
the Hamiltonian formulation. It turns out that there is a remarkable 
mathematical interplay between measures on the spaces of connections 
and functions on the loop space, which gives rise to a generalization of 
the Fourier transform, called the loop transform. This transform can be 
defined rigorously. As a result, quantum states can be regarded either 
as gauge invariant functions of connections or as suitable functions of 
loops. The loop picture suggests new strategies for defining operators 
and provides a number of new insights. 

Quite surprisingly, it turns out that these insights are especially useful 
while dealing with a force that one does not, normally, associate with 
theories of connections: gravity. General relativity is usually thought 
of as a theory of metrics and, therefore, quite removed from theories of 
other interactions. One can, however, think of it also as a dynamical the
ory of connections. This idea is not new. Indeed, such a reformulation 
was obtained already by Einstein and Schrodinger. In their new version, 
the Levi Civita connection is regarded as the basic variable; metric is a 
secondary, derived object. The problem was that the equations of the 
theory became more complicated. It turns out, however, that if one uses 
chiral connections in place of Levi Civita, the equations actually simplify. 
With this observation, general relativity moves closer to theories govern
ing other fundamental forces. As in other theories, one can now represent 
states of quantum gravity as functions of (chiral) connections or, via loop 
transform, of loops. Thus, the loop representation offers a unified arena 
for the quantum description of all four fundamental interactions. In the 
case of general relativity, further structures arise because physical states 
are required to be invariant under the action of diffeomorphisms. In the 
loop representation, they depend not on individual loops but also on the 
(generalized) knot to which the loop belongs. There is thus an unexpected 
interplay between loops, knots, gauge fields and gravity. 

This monograph is devoted to this interplay. The authors are eminently 
qualified to unfold this saga as they are among the leaders in the field. 
Indeed, many of the developments that I have alluded to are due to them 
and their close colleagues. They provide not only a comprehensive sum
mary of the entire subject, but, in the last few chapters, also a glimpse 
of two frontier areas of active research. Graduate students would find 
this unified treatment of a large subject extremely useful. More advanced 
researchers would be able to appreciate the fascinating confluence of ideas 
from particle physics general relativity and contemporary mathematics. 

University Park, 1996 Abhay Ashtekar 
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