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PRODUCTS OF REFLECTIONS IN THE GROUP 
SO*(2n) 

DRAGOMIR Z. DJOKOVIC AND JERRY MALZAN 

Introduction. Let SO*(2n) be the group of quaternionic n X n matrices 
A satisfying A* J A = / , where / is a fixed skew-hermitian invertible 
matrix. An element R G SO*(2n) is called a reflection if R2 = In and R — 
In has rank one. We assume that n ^ 2, in which case S*(2n) is generated 
by reflections. The length of A G SO*(2n) is the smallest integer k(^0) 
such that ,4 can be written as A = R\R2 . . . R^ where R\, . . . , Rk are 
reflections. In this paper, for each A G SO*(2n), we compute its length 
1(A). Set r(v4) = rank (A — In). Already in Section 3 we are able to show 
that the difference 8 = 1(A) - r(A) can take only three values 0, 1, or 2. 
The remainder of the paper deals with the problem of separating these 
three possibilities. The main results are stated in Section 4 and proved in 
Section 6. The intermediate Section 5 consists of a sequence of lemmas 
which are needed for the proof. Clearly 1(A) depends only on the 
conjugacy class of A and the main results in Section 4 are stated in terms 
of conjugacy classes. For the description of conjugacy classes in SO*(2n) 
we refer the reader to [1]. The present paper relies heavily on our previous 
paper [5] where the analogous problem was solved for the groups U(p, q). 
It is worth remarking that only the various lemmas from that paper were 
used but not the main theorem. 

So far we have solved the above problem for the following groups: U(n) 
in [3], Sp(n) in [4], U(p, q) in [5], and 0(py q) in [6] (see also [2] ). The 
groups U(p, q) contain two conjugacy classes of reflections and the 
problem is solved for a single conjugacy class of reflections as well as for 
the set of all reflections. In the case of 0(p, q) in both [6] and [2] only one 
conjugacy class of reflections is used. If one makes use of all reflections 
then a more general result is known [7]. 

Finally let us mention that the same problem for the groups Sp(p, q) 
seems to be much harder and is still open. 

By 1, /*, j , k we denote the standard basis of the real quaternions H. 
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1. Reflections and the basic equation. We denote by SO*(2n) the group 
of automorphisms of the «-dimensional right quaternionic vector space V 
= Hn which preserve a fixed nondegenerate skew-hermitian form/: V X V 
-» H. We remark that the choice of fis not important because any such 
two forms are equivalent. If a basis of Fis chosen then/ i s represented by 
a matrix J which is skew-hermitian and invertible. An n X n quaternionic 
matrix A belongs to SO*(2n) if and only if A*JA = J. 

An element r e SO*(2n) is called a reflection if r fixes pointwise a 
nondegenerate hyperplane W and r(a) = — a for a e W^. If a e 
Jf^XfO} is fixed then we have 

r(x) = x - 2af(a, a)~lf(a, x) 

for all x. Note that/(<2, a) ¥= 0 because W is nondegenerate. Since r is 
determined by a, we shall write r = ra. Since / ( a , a) is a nonzero pure 
quaternion, we can normalize a so that / (a , <z) = z. 

Reflections form a single conjugacy class of SO*(2n) and they generate 
SO*(2n) if AI â 2. We shall denote by /(w) the fewg/A of u e ^0*(2«) with 
respect to this generating set. Explicitly, l(u) is the smallest integer k such 
that u can be expressed as a product rxr2 . . .rk of reflections. (For w = 1 
we have l(u) = 0.) As the title suggests, the purpose of this paper is to 
compute l(u) for all elements u G. SO*(2n). 

If u(x) = xX for some nonzero vector x and X G H then we say that X is 
an eigenvalue of u. More precisely, À should be replaced by the conjugacy 
class {/xA/x_1:/i e H* } but it will be convenient to restrict À to be a 
complex number. If À G C then the intersection of this conjugacy class 
with C is {À, X) and for that reason we shall view X and X as the same 
eigenvalue of u. The multiplicity of the eigenvalue X is equal to 

dimKer (u-Xf if X G R 

and to 

dim Ker (u2 - (A + X)u + |A|2)" if X * A. 

The sum of multiplicities of all eigenvalues of u is equal to n. If 1 is the 
unique eigenvalue of u then u is unipotent, i.e., (w — 1)" = 0. 

For u e SO*(n) we shall write 

£(w) = Ker (u - 1) and 

r(u) = n — dim £(w) = dim Im (1 — u). 

We conclude this section with two elementary but important lemmas. 

LEMMA (1.1). Let u G SO*(2n), a G V, f(a, a) = i, and v = rau. 
Then 

(i) Re tr v = Re tr u + 2 Re (/./(a, i/(fl ) ) ), 
(ii) Eiu)1- = Im (1 - u\ 
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(iii) a £ £ ( M ) => E(v) = E(u) n a± and r(v) = r(u) + 1, 
(iv) a G E{u)^ => E(v) D E(u) and r(v) = r(u) or r(u) ~ 1. 

Proof, (i) follows from v(x) = w(x) + 2aif(a, u(x) ). The proofs of the 
other three parts are easy modifications of the proof of [5, Lemma 
(4.2) ]. 

LEMMA (1.2). Let u G SO*(2n), x G V, and a = (1 — u)x. Then the 
following are equivalent: 

(i)/(x, (1 - u)x) = i/2, 
(ii)f(a, a) = / and r(rau) = r(w) — 1. 

Moreover if(i) holds then E(rau) = E(u) ® xH. 

Proof This is an easy modification of the proof of [5, Theorem (4.3) ]. 

We shall refer to equation (i) of Lemma (1.2) as the basic equation of u. 
As an immediate consequence of Lemma (1.1), we have 

(1.3) l(u) ^ r(u), V u G SO*(2n). 

2. SO*-types and conjugacy classes. We consider triples (V,f u) where 
F is a finite-dimensional right H-vector space, f.V X V —> H a 
nondegenerate skew-hermitian form and w: F —-> F an H-linear automor
phism of V such that 

/(w(x), u(y) ) - /(JC, ^) for all x, y <= V. 

Two such triples (V,f u) and (V\f\ u') are said to be equivalent, and we 
write 

(VJ, u)**(V,f, u'), 

if there exists an H-linear isomorphism v\V —-> V such that v o u = uf o v 
and 

f\v{x\ v{y) ) = /(JC, j ) for all x j e F. 

Clearly ^^ is an equivalence relation and the corresponding equivalence 
classes are called types. More precisely, these types will be called 
SO*-types. Besides these types we shall also need types introduced in our 
previous paper [5] where we studied the length problem for complex 
unitary groups U(p, q). We shall refer to those types as U-types. 

As in [5] we can transfer various properties of triples (V,f u) to their 
types A. Thus if (V,f, u) G A then dim A = dim V, /(A) = l(u)9 r(A) = 
r(w), an eigenvalue of A is simply an eigenvalue of w, A is unipotent if u is 
unipotent, A is trivial if u = 1, and A = 0 if dim V = 0. Given two types 
Ar and A" one defines their sum A = A' + A" in the obvious way. In that 
case we say that A contains Ar and write A z> A' or A' c A. A type A is 
indecomposable if A ^ 0 and A = M + A" implies that Ar = 0 or A" = 0. 
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Every type is uniquely expressible as a sum of indecomposable types, see 
[1]. Thus if A D A' there is a unique A" such that A = A' + A" and we 
write A" - A - A'. 

We shall now describe all indecomposable S0*-types. They are denoted 
as follows: 

(2.1) Am(A, X, A - 1 , X" 1 ) , A ¥= 0, |A| * 1; 

(2.2) Ae
m(A, X), |A| = 1, Im A # 0, e = ± ; 

(2.3) Ae
m(l, 1), A e

m ( - 1, - 1 ) , e = ± , m odd; 

(2.4) Aw(l, 1), A m ( - 1 , - 1 ) , m even; 

where A e C and ra(i^O) is an integer. When we write A^(A, A) it should 
be understood that e = ± , A e C, |A| = 1, and if A = ± 1 that m is odd. 
By definition we have 

A^(X, A) = A (̂X~, A). 

Similar remarks apply to the types (2.1). 
Given a S0*-type A we choose (F, / , u) e A and a basis of V. Let A 

(resp. J) be the matrix of u (resp./), with respect to the chosen basis. Then 
/ * = —/, A* J A = J, and we say that the matrix pair (A, J) represents the 
triple (V,f, u) (and the type A). 

The type (2.1) is represented by 

(25) A = \0 °B*~) and J = i{° o ) ' 
where B is a Jordan block of size m + 1 with eigenvalue A. 

For the types A^(A, A) we have 

A€
m(A, X) = A€

m(X, A) 

and so we may (and we do) assume that Im À ^ 0. Since |A| = 1, we can 
choose f G /R such that A = exp f. Then the types (2.2)-(2.4) are 
represented by the pair {A, J) where A = exp X and X and J are matrices 
of size m + 1 given by 

(2.6) X = ' • , ) , J = > ( [ • 

\ ' '/ \r ° / 
In the case (2.4) one can choose € = zb arbitrarily. 

Assume that (V,f, u) e A^(A, A) and that we want to compute € from 
the triple (V9f, u). This can be done by using the following lemma. Set 
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1 (A + A ~ u - u~])n\ A * ± 1 , 
u + 1 

I ( - l ) ( w + 1>2 A(A - t/)m, A - ± 1 . 

LEMMA (2.7) The form g defined by g(x, y) = ef(x, v(y) ) is hermitian 
positive semi-definite and nonzero. 

Proof. We may assume that Im A ^ 0. Then (V,f u) is represented by 
the pair (A, J) given above. A simple computation shows that the matrix 
of A 4- Â — u — u~x (resp. A — %u) has the form 

where /x = /(A — A) (resp. /x = — /A). It follows that the matrix B of v has 
all entries zero except the entry v in the bottom left hand corner which is 
equal to \im{\ - 1) (A + l ) " 1 if A ^ ± 1 , and to / if A = ± 1 . The matrix 
eJB of g is diagonal with all diagonal entries zero except the first which is 
equal to —iv. Since Im À ^ 0, we have —iv > 0 which completes the 
proof. 

Now let (V, f u) G A where A is a £/-type. Thus F is a finite-
dimensional complex vector space, / : V X V —> C is a nondegenerate 
hermitian form and u:V —> F i s a C-linear automorphism such that 

f(u(x), u(y) ) = f(x, y) for all x, y G F. 

Let K' be the right H-vector space V = V ®Q H. There is a 
skew-hermitian form f'.V X F' —> H which is characterized by 

f'(x®Ky®ii) = -Xif(x,y)iL 

where x, y G V and A, /x G H. It is easy to check that it is nondegenerate. 
Let uf\V —> V be the H-linear automorphism such that 

u\x ® A) = w(x) ® A. 

Then u' preserves the f o r m / ' and the triple (V\ f\ u') determines an 
S0*-type A'. The type A' depends only on A and we say that Ar is the 
quaternionization of A. If A is indecomposable it turns out that Ar is also 
indecomposable. Moreover every indecomposable SO*-type is the quater
nionization of an indecomposable [/-type, but the latter is not unique in 
general. We now recall the notation for indecomposable U-types: 

AW(A, Â"1), A # 0, |A| * 1; 

and 
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A£
W(X), |X| = 1,6 = ± ; 

where m(^ 0) is an integer and À G C . Whenever we write A„2(X, X - 1) it 
will be understood that X e C, X ¥= 0, and |X| ¥= 1. Similarly, when we 
write A^(X) it should be understood that c = ± , À e C, and |X| = 1. 
Furthermore, we have 

Am(X,X-1) = Am(X-\X). 

For the explicit description of these types we refer to our paper [5]. 

LEMMA (2.8). If A is an indecomposable U-type then its quaternionization 
A' is the SO*-type given in the last column of Table 1. 

T A B L E 1 

A Restrictions A' 

A m ( X , X - ' ) X * 0, |X| # 1 A^X.X.X-U"1) 
A'm(X) |X| = 1, ImX > 0 A€

M(X, X) 

A™(X) |X| = 1, ImX < 0 Airir V A ) 
A^(X) X = dzl, m odd Af

m(A, A) 

t'jto X = ± 1 , m even AW(X, X) 

Proof. The assertion is obvious for the first and last row of the table. Let 
A be the £/-type represented by the matrix pair (A, iJ) where A = exp X 
and X and / are as in (2.6). We set X = exp f. An easy computation shows 
that the matrix 

e(-iX)miJ(A - XI)m 

has all entries zero except the one in the upper left hand corner which is 
equal to 1. Hence by [5, Section 1] we have A = A^(X). The quaternioni
zation A' of A is represented by the matrix pair {A, J). Hence if Im X ^ 0 
then, by definition, we have A' = A^(X, X). If Im X < 0 then the matrix 
eJB from the proof of Lemma (2.7) has the nonzero entry 

Thus (— l ) m - 1 ( — iv) > 0 and consequently 

In closing this section we mention the connection between types and 
conjugacy classes. Let w, u' e SO*(2n) and l e t / b e the form on V( = Hn) 
which defines SO*(2n). Then u and uf are conjugate in SO*(2n) if 
and only if (V, f u) « (V, f u'). Thus there is a bijection between 
the conjugacy classes of SO*(2n) and the 5'0*-types A satisfying 
dim A = n. 
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3. Pseudo-loxodromic types. Let A be an SO*-type, (V,fu) e A, a e V 
a non-isotropic vector and v = rau. Then (V,f, v) e A' for some S0*-type 
A'. In this situation we shall write u —» v and A —> A'. By Lemma (1.1) we 
have 

k(A') - r(A) | ^ 1 

and so we can refine the concept A —> A' by writing: 

+ 
A -> A'if r(A') - r(A) - 1, 

0 
A -* A' if r(A') = r(A), and 

A ^ A' if r(A') = r(A) + 1. 

Similar notations will be used for u —> v. 
We say that A is loxodromic if it has an eigenvalue À with |X| ^ 1. We 

say that À is pseudo-loxodromic if there exists a sequence 

A = ^)X ^ ) X . . . X ^) = A' 
with & ^ 0 and A' loxodromic. We say that A is effective if A ~f> A0 (1, 1), 
or equivalently if E(u) is totally isotropic. Any type A contains a unique 
effective type Ae such that 

A = Ae + mA0 (1, 1) for some ra(^ 0). 

We say that Le is the effective part of A. 

LEMMA (3.1). For an SO*-type A we have 
(i) /(A) = r(A) //A is pseudo-loxodromic, 

(ii) /(A) ^ r(A) + 2 / /dim A ^ 2. 

Proa/, (i) We have r(A) â 2. If r(A) = 2 then 

Â  = A0(X, X, X - 1 , X - 1 ) for some X 

and Ae is represented by the pair (A, J) where 

' - G ï - ) . ' - ( ? i ) -
We have A = R\R2 where 

*. - (_; o »- * - U f) 
are reflections in S0*(4), and so /(A) = r(A) = 2. Now let r(A) > 2; we 
proceed by induction on r(A). If A is loxodromic then it follows from [5, 
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Lemmas (8.1) and (8.5) ], via quaternionization, that A —» A' with A' lox-

odromic. Otherwise we have A —> A' with A' pseudo-loxodromic, by 
definition of these types. Hence in both cases, the induction hypothesis 
gives /(A') = KAr), and so 

/(A) ^ /(A') + 1 = r(A). 

In view of (1.3) this proves (i). 
(ii) Since dim A g 2, it follows from [5, Lemma (4.6) (i) ] that A -> A' 

with A' loxodromic. Hence 

/(A) S /(A') + 1 = r(A') + 1 â r(A) + 2. 

In view of (1.3) and Lemma (3.1) (ii) we have 

/(A) - r(A) = 0, 1, or 2 if dim A â 2. 

The rest of this paper is devoted to the computation of this difference. The 
first part of Lemma (3.1) gives the answer when A is pseudo-loxodromic. 
This raises the question of recognizing which types A are pseudo-
loxodromic. It is clear that if A D A' and A' is pseudo-loxodromic then A 
itself is pseudo-loxodromic. In the next lemma we supply an extensive list 
of pseudo-loxodromic types. 

LEMMA (3.2). The following types are pseudo-loxodromic. 

a)Am(X, X, \~\ X- ' ) ; 

b) A^(X, X), X ¥> ± 1 , m â 2; 

c) A2 m_,( l , 1), m â 2; A2m(l, 1), m g 2; 2A2(1, 1); 

d ) A 2 m - , ( - l , -\),m â 2 ; A 2 m ( - l , - 1 ) , m iï 1; 

e) A2(l, 1) + A 0 ( - l , - 1 ) ; A2(l, 1) + A (̂X, X); 

A2(l, 1) + A,(X, X), X * 1; 

f) Af]'(A, X) + A^2(ju, jû) with restrictions X = fi = — 1 => c2 = — e( anc? 
(X = 1 or /* = 1) => (X ¥= JH and £2

 = £i); 

g) A^X, X) 4- AQ2(/*, jû), X T6 1, vwï/i restriction 

Re(X - /t) ë 0 =>£2 = «,; 

h)A£,(X, X) + A 0 ( - l , - 1 ) , X # ± 1 ; 

i) A t ( l , 1) + A7(l, 1) + AÔ'(X, X) + A£
0V jo); 

j) A | ( l , 1) + A7(l, 1) + A 0 ( - l , - 1 ) + A (̂X, X); 

k ) A | ( l , 1) + A7(l, 1) + 2A 0 ( -1 , - 1 ) ; 

1) Ae,(l, 1) + A(p(X, X) + AQV» jû) with restriction 
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Re (A 

m) Ae,(l, 1) 

j u ) ^ 0 «I = 

A0
€(A,A) + A 0 ( - l , - 1 ) ; 

Re n â Re v, Re A > Re v, n) AQ(A, A) + A0 fy, V) + Ao(", »D, Re A 
a«(/ with further restriction 

Re ju = Re v =*> tj = — e; 

o)A<}(A,Â) + AÔ(M,/Î) + A 0 ( - l , - 1 ) ; 

p) 2A^(A, A) + 2AÔ(A, A). 

Proof. The types a) are in fact loxodromic. Using various lemmas from 
[5] and Table 1 we can show that each of the types b)-p) is 
pseudo-loxodromic. We indicate in each case which lemmas of [5] should 
be used: b) Lemmas (9.1) and (9.4); c) Lemmas (9.7), (9.8), and (9.10); d) 
Lemmas (9.1) and (9.4); e) Lemmas (9.9) and (9.11); f) Lemmas (9.12) and 
(9.15); g) and h) Lemma (9.14); i) Lemmas (9.13) and (9.17); j) Lemma 
(9.13); k) Lemma (11.17); 1) and m) Lemma (9.16); n) and o) Lemma 
(9.18); andp) Lemma (9.19). 

We give a complete proof only in case 1). We may assume (and we do) 
that Im À > 0 and Im xi > 0. Define the (V-type A as follows: if Re (X — /x) 
^ 0 then 

A = A£,(l) + A (̂X) + Aôe(iu), 

and if Re (A - /x) > 0 then 

A = 

A7(l) + AJ(X) 

A!(1) + AJ(X) + 

Ac (/A) if €, 
A0 (/x) if €j 

AQ © if C! 
A0 Ox) if Cl 

= € = + , 

= - € = + , 

By [5, Lemma (9.16) ] A is pseudo-loxodromic. Since cj = — € if Re (À — 
/x) ^ 0, it follows from Table 1 that the type 1) is the quaternionization of 
A in all cases. Since A is pseudo-loxodromic, this implies that 1) is also 
pseudo-loxodromic. 

If a type A is not pseudo-loxodromic then it cannot contain any of the 
types a)-p) from Lemma (3.2). The next lemma describes such types. 

LEMMA (3.3). A ïype A does not contain any of the types a)-p) if and only if 
its effective part Ae has one of the forms 

(3.4) A, = mA](l, 1) + 2 AU\k, A,) 
k = \ 
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+ 
A L V jï),p¥> ± 1 , Re (Xk - ju) §? 0 V k, 
A 0 > , V), Re ( A t - | x ) ^ 0 V k, 
p^x\-\, - 1 ) + ^ A 0 ( - l , - 1 ) , 

or 

(3.5) Ae = wA, (1, 1) + «A, (1, 1) 

0, 
A2(U 1)' 
Ao(A, A), 
Ao( - l , - ! ) • 

Proof. If Ae is given by (3.4) or (3.5) then, by inspection, we see that A 
does not contain any of the types a)-p). 

Conversely let A be a type not containing any of the types a)-p). We 
shall show that Ae has the form (3.4) or (3.5) by examining a number of 
cases. When proceeding from one case to the next we shall assume that all 
the previous cases are ruled out. 

Case 1. A z> A2O, 1). By considering the types e) we infer that 

A J> A 0 ( - l , - 1 ) ; AQ(A, Â); AÎ(A, Â), A # 1. 

Since A does not contain any of the types a)-d), we have 

A, = mAf (1, 1) + nA7(l, 1) + A2(l, 1). 

Case 2. A D A 7 ' ( - 1, - 1 ) . We have 

A £ Af(A, Â), A * ± 1 ; A Î ( - 1 , - 1 ) ; A7'(l, 1) by f), 

and A ^ A0
 C(A, A) by g). Consequently 

n 

Ae = /wAc,(l, 1) + 2 Aj(A*, X,) + />A7£(-1, - 1 ) 
k=\ 

+ 4A 0 ( -1 , " I ) -

Case 3. A D A7€(JU, jû), JU ^ ± 1 . By f) we have 

A - A 7 V jl) 2 A7e(l, 1); Af (A, Â), A * ± 1 . 

By g) we have 

A J> AQ(A, Â), Re (A - /i) < 0; Aôe(A, Â). 

Consequently we have 

A, = iwAÏ(l, 1) + 2 A (̂A*, Xk) + A7 V M) 

where Re (A^ — /x) ^ 0 for all /c's. 
In the remaining cases we have 
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A, = mAc,(l, 1) + iw'A, c(l, 1) + 2 A (̂AA, \k) 
k=\ 

+ 2 A0
c(/i*,/**) + ? A 0 ( - 1 , - 1 ) . 

A::— 1 

Case 4. A D A+(l, 1) + A7(l, 1). By k) we have 4 - 0 or 1. If q = 1 
then j) implies that n = ri = 0 and so 

A, = mAi(l, 1) + /w'A7c(l, 1) + A 0 ( - l , - 1 ) . 

Now let q = 0. By i) we have « + ri ^ 1 and so 

A£ = mAj(l, 1) + m'ApO, 1) + A' 

where A' is 0 or A^~(J>, F) for some J>. 

Owe 5. A D A0(— 1, — 1). By a) we have n = 0 or ri = 0. Since e is 
arbitrary, we may assume that ri = 0. If also n = 0 then, taking into 
account that m = 0 or ra' = 0, we see that àe has the required form. 
Otherwise n > 0 and m) implies that rri = 0. Hence 

A, = mAl(l, 1) 4- 2 4(A, , Xjt) + ^ A 0 ( - l , - 1 ) . 

From now on we may assume that 

n n' 

A, = mAc,(l, 1) + 2 A (̂A„, Â*) + 2 A Ô W £*)• 
fc = l A : = l 

Case 6. A D A^l , 1). By 1) we have ri ^ 1 and if ri = 1 then 

Re (/x, - A*) ^ 0 for 1 S fc ^ n. 

Hence Ae has one of the forms (3.4). 
Thus we may assume now that m = 0. 
Case 7. A D AQ(AI, AI) 4- AQ(A2, A2). If ri = 0 the assertion is obvious, 

so let ri > 0. 
We may assume that Aj, . . . , A„ and /xj, . . . , /x„, have positive imaginary 

parts and that Re A! ^ Re A2 = . . . = Re A„ and Re \i\ ^ Re JU2 = . . . = 
Re /v- Since 

A => A^(Ab A,) + A (̂A„, K) + AÔ€(Mi, M,), 

it follows by considering the types n) that Re JUJ = Re A„. Thus if «' = 1, 
Ae has the form (3.4). If ri > 1 then since 

A D AÔ'GM, MI) + A ô W , M»') + Ao(Ab X,), 
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the same argument shows that Re X\ = Re /y. Hence we have 

X] = X2 = . . . = Xn = Mi = • • • = /V-

This is a contradiction since A does not contain a type of the form p). 

This completes the proof. 

4. Statement of the main results. Our main result, Theorem (4.2) below, 
gives the value of /(A) — r(A). As a corollary we obtain a simple 
description of pseudo-loxodromic and non-pseudo-loxodromic types. The 
proof of the theorem and its corollary are postponed until Section 6 and 
are based on a sequence of lemmas of Section 5. 

LEMMA (4.1). If A is an SO*-type then one and only one of the following 
holds: 

(i) Ae contains at least one of the types a)-p) listed in Lemma (3.2); 
(ii) A* = mA 0 ( - l , - 1 ) ; 

(iii) A, = A^(X, X) + AÔ(A, X); 

(iv) A, = ^ ( 1 , 1) + mA7(lf 1) + {if(;^
lX m > °' 

m â 0; 

(v) Ae = mA^(l, 1) + mkx (1, 1) + AC
}(1, 1) + 

/ A 0 ( - l , - 1 ) , 
\A2(1, 1); 

(vi) A, = mA^l, 1) + 2 A ^ , Xk) + />A, e ( - l , - 1 ) 
k = \ 

+ gA0( — 1, — 1 ) with restrictions 
(a) if p = q = 0 then n > 1, and 
(b) if p = « = 0 r/ze« m > 0 ûwd q > 1 ; 

(vii) A, = „iAÎ(l, 1) + 2 àl(Xh Xk) + A 7 V M), M * ± 1 , 

Re(X^ - /x) ̂  Ofor all k's; 

n 

(viii) A, = mAC!(l, 1) + 2 A£(X*, X*) + Aôc(/x, /I), « ^ 1, 
k = \ 

Re (X^ — jit) ̂  0 /or all It s and with additional restriction 
(c) if n = 1 awd Re Xj = Re /x f/ze/i m > 0; 

(ix) A* = mA*(l, 1) + «A7(l, 1), m + « > 0; 

(x) A, = wAt( l , 1) + /iA7(l, 1) + {^(1"1
1')?~

1)' \™-n\ > U 

(xi) Ae = mA+(l, 1) + wA7(l, 1) + AQ(X, X). 
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Proof. It is evident that in cases (ii)-(xi) Ae has one of the forms (3.4) or 
(3.5). In view of Lemma (3.3) it suffices to verify that the cases (ii)-(xi) are 
disjoint and cover all the possible types àe given by formulas (3.4) and 
(3.5). The verification is easy and we omit the details. 

THEOREM (4.2). Let A be an SO*-type, dim A ^ 2, and (i)-(xi) the cases 
listed in Lemma (4.1). Then /(A) = r(A) + S where S = 0 in cases (i)-(iv), S 
= 1 in cases (v)-(viii), and S = 2 in cases (ix)-(xi). 

Let us say that a pseudo-loxodromic type A is minimal if A z> A' and A 
¥= A' imply that A' is not pseudo-loxodromic. 

COROLLARY (4.3). We have 
(i) a type is pseudo-loxodromic if and only if it contains one of the types 

a)-p) of Lemma (3.2); 
(ii) the minimal types are precisely the types a)-p) of Lemma (3.2); 

(iii) a type A is not pseudo-loxodromic if and only if Ae has one of the 
forms (3.4) or (3.5). 

5. Lemmas about A —> A'. Unless stated otherwise all types will be 
SO*-types and c = ± . 

LEMMA (5.1). Let (V,f, u) G A and define the form g\V X V -f H by 

g(x>y) = */(*, ( " _ 1 - u)y). 
Then 

(i) g is hermitian and its radical is Ker (u2 — 1), 
(ii) g = 0 if and only if A contains only the indecomposable types: 

Ac,(l, 1), A0(l, 1), A 7 e ( - 1, - 1), A 0 ( - 1, - 1), A£(X, Â). 

Proof (i) We have 

*g(y>x) =f(y,(u~l - u)x) = f((u - u~x)y, x) 

= ~f(x, (u - u x)y) = eg(x,y), 

and so g is hermitian. Since / is non-degenerate, the radical of g is the 
kernel of u~] — w, i.e., Ker (u2 — 1). 

(ii) We may assume that A is indecomposable. If (A, J) represents A 
then the matrix of g is 

K = eJ(A~] - A). 

If A = Am(A, X, X"1, X"1) we have 
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where B is a Jordan block with eigenvalue X and of size m + 1. Since B ¥= 
B~\ K is not positive semidefinite. 

Now let A be one of the types A^(X, X), Im À ^ 0. Recall that if X = 
± 1 then m is odd. Then (see Section 2) A and J can be taken in the 
form 

X 0 \ / 0 1 
iX X \ / 1 

lx/ \i ° 
the matrices are of size m -f 1. An easy computation shows that 

P a 
a 

K 
\ POL" 

0 

where a = X ~ X and fi = i(X + X). If Im X > 0 then K ^ 0 if and only 
if m = 0 and cj = c. If X = ± 1 then ^ ^ 0 if and only if m = 1 and 
cejX > 0. 

Finally let A = Am(X, X), X = ±\,m even. Then we can take A and J as 
in the previous case, where now t\ may be chosen arbitrarily, say e\ = + . 
Clearly K ^ 0 if and only if m = 0. 

This completes the proof. 

LEMMA (5.2). Let A be a type with 

Ae = mA\(\, 1) + 2 A£(X*, X,) + Mi €(-U -1 ) 
k = \ 

+ ?Ao(- l , - 1 ) . 

The following are valid: 

(i) / / A -» A' //z^ # > 0 £wirf A' = A - A 0 ( - 1, - 1 ) + A0(l, 1), 
(ii) ifm + n+p>0 then /(A) > r(A). 

Proof, (i) Let (F , / , w) e A and let g be the form defined in Lemma (5.1). 
By that lemma we have g = 0. We can choose x e V satisfying the basic 
equation/(x, (1 — u)x) = ill and such that, with a = (1 — u)x and v = 
rau, we have (V9f9 v) G A'. Since 

0 = / ( * , (1 - u)x) + / ( * , (1 - n)x) = / ( * , (n ] - u)x), 
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we have g(x, x) — 0. Since g = 0, we conclude that x belongs to the 
radical of g, i.e., (u2 — X)x = 0. Consequently, we have u(a) = — a and (i) 
is proved. 

(ii) We use induction on q. Choose A' such that A —» A' and /(A) = /(A') 
+ 1. If r(A') â r(A) (this is so by part (i) if q = 0) then 

/(A) ^ r(A') + 1 > r(A). 

+ 
Otherwise we have A -* A' and, by part (i), 

A' = A - A 0 ( - l , - 1 ) + A0(l, 1). 

By induction hypothesis /(A') > r(A') and again 

/(A) - /(A') + 1 > r(A') + 1 = r(A). 

LEMMA (5.3). Let 

A = fc,A2(l, 1) + *2Af (1, 1) + A:3A7(1, 1) 

where kx ê 1 ë /q + &2 + /c3, and(V,f u) e A. IfWis a hyperplane in V 
then there exists a u-invariant nondegenerate subspace X such that X^ c W 
and u\X is of type A2(l, 1) Af(l , 1), or A+(l, 1) + A7(l, 1). 

Proof. We shall refer to w-invariant and «-indecomposable subspaces of 
V as Jordan subspaces. We claim that every 3-dimensional Jordan 
subspace, say Y, is nondegenerate. Otherwise the 1-dimensional subspace 
Yi = Y n E(u) is contained in the radical of Y. Since 

F - Y + Ker (1 - u)2 and y, = (1 - u)2Y, 

it follows that Y\ _1_ F, which is a contradiction. 
Now let 7 be a Jordan subspace containing the 1-dimensional subspace 

W± and having maximal dimension. If Y is nondegenerate we can take X 
= y. Otherwise dim Y = 2 and we choose Z? e Y such that d = (\ — u)b 
¥* 0. By maximality of Y we have b £ Im (1 — u). Since Im (1 — u) = 
£'(M)-L, there exists c G £(w) such that /(6, c) = 1. Since £"(1/) c Im (1 — 
«), we can choose a e F such that c = (1 — u)a. From 

(1 — u~])a = — u~\l — u)a = —u~\c) = —c, 

we obtain 

f(d,a) = / ( ( l - a)*,*) = / ( 6 , ( l - K" 1 )*) 

= - / ( i , 0 = - 1 . 

Since Y is degenerate, we have/(Z?, d) = 0. Finally 

E(u) c ! m ( l - « ) = £(w) 

https://doi.org/10.4153/CJM-1984-019-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1984-019-8


PRODUCTS OF REFLECTIONS 315 

implies that the subspace (c, d) is totally isotropic. Hence the Gram 
matrix J of a, b, c, d has the form 

J = 

• 1 

It follows that the subspace X = (a, by c, d) is 4-dimensional, w-invariant, 
and nondegenerate. The restriction of u to X has the matrix 

1 0 0 (T 
0 1 0 0 
1 0 1 0 
0 - 1 0 1 

Since J(A~X — A) is indefinite, Lemma (5.1) implies that u\X is of type 
Af (1, 1) + A7(l, 1). 

LEMMA (5.4). Let 

A = mA*(l, 1) + wA7(l, 1) 4- A2(l, 1). 

(i) 7/*A —> A' then, for some c = ± , 

A' = wAt( l , 1) + «A7(l, 1) + Ai(l, 1) + A Q ( - 1 , - 1 ) . 

( i ^ J / A - i A' f/ie/? 

A' = mA^(l, 1) + «A7(l, 1) + 2AQ(1, 1) + A 0 ( - l , - 1 ) . 
Proof Choose (V,fu) e A and a e F such that /(#, a) = i and, with 

v = raw, (V, f v) G A'. By Lemma (5.3) applied to the hyperplane 
WK = a 1 , we may assume that A is one of the types: 

A2(l, 1), A+(l, 1), A7(l, 1), A7(l, 1) + A7(l, 1). 

Since r(A) i^ r(h'), Lemma (1.1) implies that a e E{u)^ and consequently 
we must have A = A2(l, 1). Since E(y) D E(U) and E(u) is totally 
isotropic, the eigenvalue 1 of v has multiplicity ^ 2. Since u(a) — a e 
E(u), we have 

f(a, u(a)) =f(a, a) = /, 

and Lemma (1.1) gives Re tr v = 1. Thus — 1 is also an eigenvalue of v and 
both (i) and (ii) follow. 

LEMMA (5.5). Let A -> A' and r(A') ^ r(A). 

(i) If A = W A 7 ( 1 , 1) + "A7(l, 1) + Ao(- l , - 1 ) /AeAi A' is one of 
the types 

(m - l)Af(l , 1) + «A7(l, 1) + A2(l, 1), 

mAUh 1) + (» ~ 1)A7(1, 1) + A2(l, 1), 

W A 7 ( 1 , 1) + «A7(l, 1) + A0(l, 1), 

(m - l )At( l , 1) + (n - 1)A7(1, 1) + 2A0(1, 1) + A2(l, 1). 
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(ii) Ifk = wA'O, 1) + nkx
 c(l, 1) + AQ(A, A) then A' is one of the 

types 

mAc,(l, 1) + " A 7 U 1) + Aôc(-A, -X) , 

(m + 1)A€,(1, 1) + (n - l)A7e(l, 1) + Aô€(-À, -X) , 

mAl(l, 1) + (#i - 1 ) A 7 U 1) + 2Ao(l, 1) + Aôe(-À, -X) . 

Proo/. By replacing A with A (if necessary) we may assume that € Im A < 
0 in case (ii). For uniformity set A = — 1 in case (i). Let (V,f u) G A, a e 
V,f(a, a) = /, v = rau, and (V,f v) £ A'. Let è G F b e chosen so that b 
¥* 0 and u(b) = bX. Since 

f(u(b),b) =f(b,u-\b))9 

it follows that in case ( i i ) / (6, b) = it where / e R, / ¥= 0. In fact the 
condition € Im A < 0 implies that / > 0. Hence in case (ii) we may assume 
tha t / (6 , b) = /; this is also true in case (i). 

Since r(A') ^ r(A), Lemma (1.1) implies that a = b£ + c where c e 
E{u). Since 

/ =f(a,a) = Çf(b,b)t = && 

we have |£| = 1 and £ e C. Clearly we may assume that £ = 1 and so a = 
6 + c. 

From E(v) D £(M)> £"(w) c £'(w)-L, and dim is(w) = m + « it follows 
that 1 is an eigenvalue of v of multiplicity è 2(m + n). Since dim F = 
2(m + n) + 1, there is only one additional eigenvalue of v, and so it must 
lie on the unit circle. Since 

f(a9 u(a) ) = f(b + c, iX + c) = f(b, b)X = /A, 

Lemma (1.1) gives 

Re tr v = 2(m + n) - R e A. 

Therefore the remaining eigenvalue of v is —A. Thus in case (i) v is 
unipotent. In case (ii) a simple computation shows that v(x) = — JCA for 

Since/(x, x) = f(b, b) = i and e Im ( — A) > 0, it follows that 

A' D Aôc(-A, -Â) . 

If c = 0 the assertions of the lemma are obviously true. Otherwise by 
applying Lemma (5.3) to the space b1- = Ker (1 — u)1 and its hyperplane 
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W = b Pi a: , we see that it suffices to consider the cases when m â l 
and n ^ 1. We shall now treat cases (i) and (ii) separately. 

(i) Let first A = Aj(l, 1) + A 0 ( - 1 , - 1 ) where c = ± . If r(A') = r(A), 
then, since v is unipotent, we must have A' = A2(l, 1). If r(A') = r(A) — 1 
then it is easy to check that the basic equation implies that c = 0, which 
we have already considered. 

Now let m = n = 1. If r(A') - r(A) then E(v) = £(w) c £ ( w y \ and 
dim E(u) = 2 imply that 

A' = A2(l, 1) 4- Af(1,1). 

Now let r(A') = r(A) - 1 and so dim E(v) = 3. UXis the radical of E(v) 
then X c J£(w) and dim X = 1 or 2. If dim X = 1 then A' z> 2A0(1, 1), and 
so 

A' = 2AQ(1, 1) + A2(l, 1). 

If dim X = 2 then X = E(u) and since E(v) c Eiu)1- we obtain £(v) = 
£(w) + Z?H. It follows from this and Lemma (1.1) that a e Z?H, i.e., c = 
0. 

(ii) Choose d ^ V such that u(d) = c + d. The scalar a = f(d, (u — 
1W) = / ( ^ c ) is r e a l because 

JTÂc) = -f(c, d) =/(( i - « K J) = /(</, (i - a" V) 

= /(</, «"»(« - 1)J) = /(</, « - ' ( c ) ) = / (d , c). 

A simple computation shows that the vector 

y = d - b2ia(\ + A)"1 

satisfies 

(v - 1) y = CIL, /x = 1 - lia . 

If a = 0 then necessarily 

A = A^(l, 1) + A7(l, 1) + A (̂A, Â). 

Since / (y , (v — l ) j ) = f(y, cfi) = a/x, it follows that when a = 0 we 
have 

A' = At ( l , 1) + A7(l, 1) 4- Aôe(-A, -X) . 

If a ^ 0 then the subspace W = (b, c, d) is nondegenerate and since a 
e W we may assume that K = W. If A = A^l , 1) + AQ(A, Â) then cA 
> 0. Since £ Im A < 0, we have 

ia{\ - A)(l + A)"1 < 0 

and so JU, > 0. Hence 
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*/(>% (v - 1)>0 = €«/i > 0 

and so 

A' = Ac,(l, 1) 4 Aôe(-A, -X) . 

If A = A7C(1, 1) 4 AQ(X, X) then clearly A' is one of the types 

Aô£(-X, -X) 4 Af(l , 1) or Aô€(-X, X) 4 2A0(1, 1). 

LEMMA (5.6). Let /x e C, with |ju| = 1 and Im ju > 0, be fixed and let 

n 

A = *iAÎ(l, 1) + 2 A ^ , X*) + M 7 V /*) + ?AÔV v) 
k = \ 

with Re (X* — /x) ê 0/br a// A:Y //" A —> A' Û « J - 1 w Û« eigenvalue of & 
then n > 0, q > 0, Re (X^ — /x) = 0/or some k, say for k = n, and 

A' = A: - A^(X„, X„) - A7€(it, /I) + A Q ( - 1 , - 1 ) + AQ(1, 1). 

Proof Let (V,f u) e A, x e F, 

(5.7) / ( x , (1 - K)JC) = f/2, 

a = (1 - M)JC, v = r„w, and ( F , / , v) e A'. Let j> G V,y ¥= 0, satisfy v(<y) 
= —y. Then 

"(>0 = ~ra{y) = -y - 2aif(a,y), 

i.e., j = ( 1 4 u)~xa£ with 

{ = -2if(a,y) = -2if(a, (1 4- H ) " 1 * ) * . 

Since ^ Owe obtain 

*/2 = / ( a , ( f + i/)"1^) = / ( ( l - W)JC, (1 4- w)_ 1(l - ")*) 

= / ( ( l - H)JC, JC) - 2 / ( ( l - M)JC, M(1 4 u)~]x) 

= ill 4 2/(JC, (1 4 u)~\\ - u)x\ 

i.e., 

(5.8) f[x,\ZJLx)=o. 

By taking real parts in (5.7) we get 

(5.9) f(x, (u~l - u)x) = 0. 

By multiplying (5.8) by 2 4 /x 4- jû and subtracting from (5.9) we get 

(5.10) fix, (u 4 u~x - ii - Ji)x ) = 0. 
V 1 4 u / 

We claim that the form g: V X V —» H defined by 
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g(x9y) = -ify,y^-u (u + u ] - n - fi)y) 

is hermitian positive semidefinite and its radical is 

(5.11) X = Ker (u - 1) + Ker (u2 - (JL + ]L)U + 1). 

It suffices to prove this claim for each of the indecomposable types 
contained in A, i.e., we may assume that A is indecomposable. If the 
matrix pair (A, J) represents A then the matrix of g is 

K = -eJ1—-^^ + A~x - (/i + ]L)I). 
I + A 

The results of computations, assuming also that Im X > 0, are given in 
Table 2. 

TABLE 2 

A A J K 

A', (1, 1) ( ! f ) ~4? o) Re( l -- M) • ( o 0 / 

Ac ,A,X) (X) ( - / € ) 4 I m X •H + A|_: 2 Re (X - V) 
Ac ̂  V V) (M) (") (0) 

A, '(M. & > 0 ? ) ''€(i o) 2 Re( l -- / * ) • ( £ 0 / 

Hence our claim about g is true in each of these cases. 
By (5.10) we have g(x, x) = 0 and so x G X and 

a = (1 - M)JC e Ker (w2 - (/x + /i)w + 1) = 7. 

Write x = x\ + x2 with jq G 7 and x2 J_ 7. By replacing x with i j , we 
may assume that x G 7. This implies that the subspace W = (x, w(x) ) is 
w-invariant. Note that a = (1 — w)x a n d j = (1 + w)_1a are also in W. 
Since v(x) = x and v(y) = —y, we have 

ra(x) = w(x) ^ x and ra(j>) = -u(y) ¥= y. 

Therefore/(a, x) ¥= 0 ¥*f(a,y). Hence if/(x, x) = 0 or/(j>,j>) = 0 Wis 
nondegenerate. The same is true if / ( x , x) ^ 0 and/(j>, y) =£ 0 because, 
by (5.8), / ( x , 7) = 0. Hence we may assume that V = W and 
consequently 

A = ASGi, /Ï) + A ^ , jo). 

It follows from (5.9) and Lemma (5.1) that c2 ¥= t\ and the proof is 
completed. 
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LEMMA (5.12). Let g and h be a hermitian and a skew-hermitian form, 
respectively, on a right H-vector space V. If W is a subspace of V then the 
set 

Sw = {x e V\W:g(x, x) = 0 andh(x, x) * 0} 

is arcwise connected. 

Proof Given a, b G SW we have to show that they can be joined by a 
continuous path lying in Sw. Clearly we may assume that a and b are 
linearly independent and that g(a, b) is real. Let/?i = Ha> a),p2 = h(b, 
b), q = h(a, b) and note that /?j and/?2 are nonzero pure quaternions. If 
(a, b) n W ¥> 0 choose X e H such that a + bX e W. Choose a pure 
quaternion /x such that /x £ RX, and /?i and /I/̂ M are R-linearly 
independent. By replacing ju with -/x (if necessary) we may also assume 
that q\i — ]Lq is not of the form 

(5.13) aP] + pjip2iL, a ^ 0, j8 ^ 0, a + j8 < 0. 

Now set 

(5.14) x(f) = Û cos / + fe/jL sin t, 0 ^ f ^ w/2. 

Since /x <£ RA,-we have x(/) £ PF for all t. Since g(<2, a) = g(b, b) = 0, 
g(fl, &) G R, and fx 4- JH = 0, we have 

/ ( * ( / ) , x ( 0 ) = 0 for all/. 

A simple computation gives 

h(x(t), x(t) ) = p\ cos2 t + [xp2 /x sin2 t 

4- (<7/x — jug) sin t cos /. 

Since/>! and /X/?2JU< are R-linearly independent and q\i — Jlq is not of the 
form (5.13), we have 

h(x(t), x(t) ) ¥* 0 for 0 ë f S 77/2. 

Thus we have shown that the path (5.14) lies in Sw. Since x(0) = a and 
X(IT/2) = Z?/x, the proof is completed. 

LEMMA (5.15). Let u = SO*(2n), V = Hn, and let W be a subspace of V 
containing E(u). Let Tw be the set consisting of all vectors a G P^\(l — 

u)W such that J(a, a) ¥* 0 and u —» rau. Then Tw is arcwise connected. 

Proof Define the forms g and h on F by 

g(x,y) =f(x,(u~l - u)y),h(x,y) = f(x, (2 - u - u~])y). 
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Then g is hermitian, h is skew-hermitian and by the previous lemma the 
set 

Sw = {x G V\W:g(x, x) = 0 and h(x, x) ¥= 0} 

is arcwise connected. Hence it suffices to show that Tw = (1 - u)Sw. 
Since W z> E(u) = Ker (1 — w), we have 

x e J/\JF => (1 - u)x £ (1 - w)^ . 

Now the equality TV = (1 — u)Sw follows from Lemma (1.2) and the 
observation that 

g(x, u) = f(x, (1 - u)x) + / ( * , (1 - u)x\ 

h(x, x) = f(x, (1 — u)x) — f(x, (1 — u)x). 

+ 
LEMMA (5.16). Le/ A —> A' w/zen? 

A = mAKl, 1) + 2 A^(A,,X,)+ {fy^ 

««J Re (A^ — jit) â 0 for all k's. Then 

(i) A ? A 7 £ ( - l , - 1 ) , A ? A7€(l, 1); 
(ii) A' contains only the indecomposable types A€j(l, 1), AQ(1, 1), 

A7 € ( - 1, - 1), A 0 ( - 1, ~ 1), and AQ(A, \) for various \9s. 

Proof (i) Let (V,fu) G A and choose x e F such that / (x , (1 — u)x) 
= ill, and with a = (1 - u)x, (V, f rau) e A'. If A D A p ( l , 1) then 
necessarily n = 0 and a e £(1/). This is a contradiction since E(u) is 
totally isotropic and/ (# , #) = / b y Lemma (1.2). If A z> A ! c( — 1, —1) 
then let g be the hermitian form defined as in Lemma (5.1). Since 

g(y9y) = 2 Ref(y, (1 - u)y) for ally e V, 

we have g(x, x) = 0. By Lemma (5.1) we have g = 0 and 

x G Ker (u2 - 1). 

Thus a e E( — u) and since E( — u) is totally isotropic we have again a 
contradiction. 

(ii) If — 1 G eig (A') then the assertion follows from Lemma (5.6). From 
now on we assume that — 1 £ eig (A'). 

Let (Vyf u) G A, ^ = Ker ( M - 1) + Ker (u2 - (/x + ]x)u + 1) and let 

+ 
71 be the set of all non-isotropic vectors a e V such that w —> r̂ w. Note 
that 7\(1 — w)W/is the set 7V defined in Lemma (5.15). It follows from 
the proof of Lemma (5.6) that for a e T the condition a e TW is 
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equivalent to the condition E( — rau) = 0. For a e TW let ga be the 
hermitian form defined by 

ga(x,y) = */(*, (u~xra - rau)y), x, y e V. 

The radical of ga is the subspace 

Xa = Ker (u ~ xra — rau) = Ker (1 — (rau)2) 

= Ker (1 — rau) = E(rau). 

Hence dim Xa = dim E(rau) = dim E(u) + 1 is independent of a e 7V. 
We claim that g^ = 0 for all a e TV. Since 7V is arcwise connected and 
dim Xa is constant, it suffices to verify that ga = 0 for some a e 7V. By 
Lemma (5.1) this is equivalent to the claim that there exists a type A" such 

+ 
that A —» A", — 1 £ eig (A"), and A" contains only the indecomposable 
types listed in (ii). In order to prove the latter assertion we may assume 
that A is one of the types 

A7e(/x, /x), /x ^ ± 1 or 

AQ(A, X) + Aô€(/i, /Ï) with Re (A - ii) i ; 0. 

By switching /x and /x, and À and X (if necessary) we may assume that 
€ Im À > 0 and 6 Im /x < 0. 

By [5, Lemmas (7.3) and (7.5) ] we have 

and 

A0
e(-xi2) + A^(l) , Re /* > 0, 

ï cO) -> Ai(l) , Re /x = 0, 
A 0 ( - M 2 ) + A0

e(l) , Re /x < 0, 

A<t(A) + Aj(ju) -» A j ( - V ) + Ao (1), Re (A - M) a 0, 

where all these types are [/-types. By quatemionizing and by using Table 1 
we obtain 

A, V /*) ,/Ae ,(l, 1) 
Uà(-/i2, -/* 

, Re [i = 0, 
•2) + A0(l, 1) , Re ju # 0 

and 

A^A, A) + A 0 V S ) ^ A o ( l , 1) 

f A 0 ( - l , - 1 ) _ ,Re(A - M ) = 0, 
lA^-Aju, - A/t,) , Re(X - /i) > 0. 

Thus our claim is proved. 
Now choose a e 7V such that (V, f, rau) e A'. Since ga â 0, the 

assertion in (ii) follows from Lemma (5.1). 
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6. Proof of the main result. 

Proof of Theorem (4.2). In a remark preceding Lemma (3.2) we have 
observed that 8 = /(A) - r(A) = 0, 1, or 2. The assertion 8 = 0 in case (i) 
follows from Lemmas (3.1) and (3.2), in case (ii) it is trivial, in case (iii) it 
follows from [5, Lemma (7.3) ], and in case (iv) it follows from [5, Lemmas 
(7.2) and (7.10)]. 

We shall now prove that 8 ^ 1 in the cases (v)-(viii). For that purpose 
we may assume that in cases (vi)-(viii) we have Im X̂  > 0 for all /c's and 
Im /x > 0. We shall need the following results about (7-types. By [5, 
Lemma (7.9) ] we have 

Aî(l) + A ( 5 " ( - 1 ) - > A £ ( 1 ) . 

By [5, Lemmas (4.6) and (4.7) ] we have T —> A(X, X - 1) for some X, if T is 
one of the types: 

A7 e ( -1) , A^(X,) + Aô€(-1) , Ac
0(\,) + A0

€(X2), 

A^X,) + Aoe0*), A7e(M). 

By quaternionization we obtain that 

(6.1) Al(l, 1) + A 0 ( - l , - 1 ) - > A 2 ( 1 , 1), 

and 

(6.2) F - > A(X, X, X"1, X"1) 

if F is one of the types 

(6.3) A! c ( - l , - 1 ) , A^(Xb X0 + A 0 ( - l , -l), A^(Xi, X0 + A^(X2, X2), 
A ^ X O + A o V ^ A / f e / I ) . 

0 
In case (v) it follows from (6.1) that A —» A' where b!e is as in (iii). Hence 
in that case 

/(A) â /(A') + 1 = r(A') + 1 = r(A) + 1. 

In case (vi), if p = n = 0 it follows from (6.1) that we have 

0 
A-> A' D A 0 ( - l , - 1 ) + A2(l, 1). 

By the assertion in case (i) we have then /(A') = r(A') and so 8 ^ 1. In 
case (vi) with/? -f n > 0 and in cases (vii) and (viii) A contains at least one 

0 
of the types (6.3). Hence in these cases we have A —> A' with A' loxo-
dromic and so 8 = 1. 
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It remains to prove that 8 > 0 in cases (v)-(viii) and 8 > 1 in cases 
(ix)-(xi). In case (vi) Lemma (5.2) implies that 8 > 0. Let us choose a 
sequence 

A = A(0) __> A ( i ) _^ __, A(/) 

where A(/) is the trivial type, / = /(A), and set A' = A(1). 
(ix) In this case Lemma (1.1) implies that r(A') = r(A) + 1 and 

consequently 8 > 1. 
(v) Assume that 5 - 0 . Then we must have A(A) i A(A + 1 } for 0 ^ k < I 

This is impossible by Lemmas (5.4), (5.5) and the case (ix). 
(vii)-(viii) If r(A') S r(A) then 

/(A) - /(A') + 1 ^ r(A') + 1 g r(A) + 1, 

i.e., S > 0. Otherwise we have A —> A'. If - 1 e eig (A') then by Lemma 
(5.2) (i) we are in case (viii), Re (Xk — /A) = 0 for some k, say for k = n, 
and 

w - l 

A;=wAÎ(l, 1) + Ao(-l, - 1 ) + 2 A (̂A,,Â,). 
A: = 1 

Taking into account the restriction (c) in case (viii), we infer that A£ ^ 0. 
Then by Lemma (5.2) (ii) we have /(A') > r(A') and so 8 > 0. 

If — 1 £ eig (A') then Lemma (5.16) implies that A' contains only the 
indecomposable types Aej(l, 1), A0(l, 1), and AQ(A, X) for various A's. 
Again by Lemma (5.2) (ii) we have /(A') > r(A') and 8 > 0. 

It remains to show that <5 > 1 in the cases (x) and (xi). If r(A') = r(A) + 
1 then 

/(A) = /(A') + 1 = r(A) + 2 

0 
and so 8 > 1. Thus we may assume that r(A') ^ r(A), i.e., A —» A' or 

+ 
A - » A'. 

(x) First note that Lemmas (5.4) and (5.5) together with the case (ix) 

0 
imply that 8 > 0. Assume that A —> A'. By Lemmas (5.4) and (5.5) we 
have the following facts: If 

(6.4) Ae = mA+(l, 1) + (n - 1)A7(1, 1) + A 0 ( - l , - 1 ) 

then A£ is one of the types 

(m - l)Af(1, 1) + wA7(l, 1) + A2(l, 1), or 

™A+(1, ! ) + ( « - 1)A7(1, 1) + A2(l, 1), 
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while in case 

(6.5) A, = mA|( l , 1) + wA7(l, 1) + A2(l, 1) 

we have 

A; = mA+(l, 1) 4- «A7(l, 1) + Ai(l, 1) + A 0 ( - l , - 1 ) . 

Since \m — n\ > 1, it follows from the case (v) and our opening note that 
/(A') > r(A') and so 

/(A) = /(A') + 1 > r(A') + 1 = r(A) + 1, 8 > 1. 

+ 
Now assume that A —> A'. Lemmas (5.4) and (5.5) now give the 

following: If Ae is given by (6.4) then Â  is one of the types 

wA+(l, 1) + wA7(l, 1) or 

(m - 1)A7(1, 1) + (n - 1)A7(1, 1) + A2(l, 1), 

while when Ae is given by (6.5) we have 

A; = mA7(l, 1) + *A7(1, 1) + Ao(- l , - 1 ) . 

If A£ = mAj (1, 1) -f «Aj (1, 1) then by case (ix) we have 

/(A') = r(A') + 2. 

Otherwise A£ is again of type (x) and by using induction on r(A) we 
obtain 

/(A') = r(A') + 2. 

Thus in both cases 

/(A) = /(A') + 1 = r(A') + 3 = r(A) + 2, 8 = 2. 

+ 
(xi) We shall prove that 8 > 1 by induction on m + n. If A —» A' 

(this cannot happen when m + n = 0) then by Lemma (5.5) (ii) A'e is of 
type (xi) and the induction hypothesis gives 

/(A') > r(A') + 1. 

Hence 

/(A) = /(A') + 1 > r(A') + 2 = r(A) + 1, 8 > 1. 

If r(A') ^ r(A) we obtain 

/(A) = /(A') + 1 ^ r(A') + 1 > r(A), 

i.e., 8 > 0. Combining the two cases we see that 8 > 0. If A —> A' then we 

0 
have already observed that 8 > 1. If A -» A' then Lemma (5.5) (ii) 
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implies that Me is again of type (xi) and by the fact established above we 
have /(A') > r(A'). Hence 

/(A) = /(A') + 1 > r(A') + 1 = r(A) + 1, 8 > 1. 

This completes the proof. 

Proof of the Corollary (4.3). (i) Clearly if a type A contains one of the 
types a)-p) of Lemma (3.2) then by that lemma A is pseudo-loxodromic. 
Now assume that A is pseudo-loxodromic. By Lemma (3.1) we have /(A) = 
r(A). By Theorem (4.2) one of the cases (i)-(iv) of Lemma (4.1) must hold. 
We have to show that the types specified in cases (ii)-(iv) are not 
pseudo-loxodromic. This is obvious in case (iii). In case (ii) this follows 
from Lemma (5.2) (i). In case (iv) this follows from Lemmas (5.4) and 
(5.5). 

(ii) It follows from part (i) that the types a)-p) of Lemma (3.2) contain 
all minimal types. It remains to check that every type a)-p) in Lemma (3.2) 
is minimal. Since we know that these types are pseudo-loxodromic it 
suffices to prove the following: If A is one of the types a)-p) and A = A' + 
A" with A" indecomposable then A' is not pseudo-loxodromic. Using (i) 
this amounts to showing that A' does not contain any of the types a)-p). 
The verification is straightforward and we omit the details. 

(iii) This follows from part (i) and Lemma (3.3). 

REFERENCES 

1. N. Burgoyne and R. Cushman, Conjugacy classes in linear groups, J. Algebra 44 (1977), 
v339-362. 

2. D. Z. Djokovic. Products of positive reflections in real orthogonal groups, Pacific J. Math. 
707(1983), 341-348. 

3. D. Z. Djokovic and J. Malzan, Products of reflections in the unitary group, Proc. Amer. 
Math. Soc. 73 (1979), 157-160. 

4. Products of reflections in the quaternionic unitary group, J. Algebra 59 (1979), 
399-411. 

5. Products of reflections in U(p, q), Memoir Amer. Math. Soc. 259 (1982). 
6. J. Malzan, Products of positive reflections in the orthogonal group, Can. J. Math. 34 (1982), 

484-499. 
7. P. Scherk, On the decomposition of orthogonalities into symmetries, Proc. Amer. Math. Soc. 

1 (1950), 481-491. 

University of Waterloo, 
Waterloo, Ontario', 
University of Toronto, 
Toronto, Ontario 

https://doi.org/10.4153/CJM-1984-019-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1984-019-8



