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A FAILURE OF STABILITY UNDER COMPLEX 
INTERPOLATION 

WILLIAM C. CONNETT AND ALAN L. SCHWARTZ 

Let J^l = J^a(R) denote the spaces of Bessel potentials as denned and 
discussed in [6]. When 1 < q < o° and a is an integer ^£q

a = L«, the Sobolev 
space which consists of functions .Fin Lg with a derivatives in Lq and with norm 

If now we make the change of variables x = ev, f(x) = F (In x) it is easily 
seen t ha t the ratio 

a I r \l/g / a I P \l/g 

g [J \Fu){y)\qdy) / g ( J \x'?i>(x)\qx-1dx) 

is bounded above and below by positive constants. Localized Sobolev spaces 
can be defined by the norm 

( a I Pk+1 \l/g ) 

s u p j Z [Jk \F(j)(y)\Qdy) :* = 0 , d = l , ± 2 , . . . | 

the ratio of which to 

l l / I U = s u p | Ç o [Jk \xjfj)(x)\qx-ldx) :k = 0, ± 1 , ± 2 , . . . | 

is bounded above and below by positive constants . The space defined by the 
norm \\'\\Q,a will be called S(q, a) ; these spaces can be constructed for all (q, a) 
l < g < o o , 0 ^ a < o ° b y means of the Bessel potential spaces [3], and for 
q = 1 or °° and a integral, by means of the Sobolev spaces. The spaces S(q, a) 
play an impor tan t role in Fourier analysis since the classical multiplier 
theorems—e.g. those of Marcinkiewicz, Michlin, Hôrmander , etc., can be 
expressed in terms of these spaces. For example, the theorem of Hôrmander can 
be s ta ted by saying tha t the mapping T : S(2, a) © LP(R) —> LP(R) is con
tinuous f o r a è l , l < / > < ° ° , where T(m,f) = (mf)v, m Ç S (2, a),f G Lv. 

Let [A, B]s denote the intermediate space between A and B obtained by 
Calderôn's first method of complex interpolation [1]. Let 1 < qo, qi < ° ° , 
0 < ao,«i < °° , 0 ^ 5 ^ 1, and 

(1/g, a) = (1 - s)(l/q0, a0) + s(l/qu ax). 

Then it can be shown tha t the Bessel Potential spaces have the property of 
stabili ty, i.e. [J^l^J^l1^ = ££a. The close connection between the spaces 

Received September 22, 1976 and in revised form, March 10, 1977. The research of the first 
author was supported by a Summer Research Grant from the University of Missouri-St. Louis. 

1167 

https://doi.org/10.4153/CJM-1977-117-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1977-117-9


1168 W. C. CONNETT AND A. L. SCHWARTZ 

Jzf« and 5(g, a) suggests that at least S(q, a) should be equivalent to 
[S(go, Û!O), S(qi, ai)] s . Unfortunately this is false. 

THEOREM 1. Suppose a0, <*i, and a are integers and 1 < g0, q\ < °°. If g is 
between g0 and qi}ais between a0 and au and aq > 1 then ifO<s<l the Banach 
spaces [5(g0, a0), 5(gi, «i)L and S(q, a) are not equivalent unless gi = g0 and 
ai = «o. 

Proof. Assume «i ^ a 0 and i fa i = aothatgi > g0. Then 5(gi, «i) C % , « o ) 
(see [3]); now according to a theorem of Calderôn A C\ B must be dense in 
[A, B]s, 0 ^ 5 ^ 1, so it will suffice to show that S(qi, «i) = 5(g0,a:o) P\5(gi,«i) 
is not dense in 5(g, a) . 

Let 

and first consider the case «o = «i, go < gi. Let/(;y) = c sin" 7r̂  if 0 ^ ^ ^ 1 
and/ (y) = 0 otherwise, where c is chosen so that if 

CO 

g(x) = Z 2k(ll«-a)f(x -2k) (0 ^ x < oo ), 
fc=0 

then/(g, a, fe, g) > 1 (& = 1, 2, 3, . . .). The quantities I (g , j , fc, g) (j = 0 , 1 , . . .a) 
all have bounds independent of k so g £ 5(g, a ) ; moreover g Ç Lœ. We will 
show that the ball of radius y/2/2 about g in S(q, a) does not intersect 5(gi, a\). 
To see this assume \\g — h\\q<a < V2"/2. It then follows that 

|x2a[g<a)(x) - fe(a)(x)]2|s/Wx 
2& 

so that if q ^ 2 

-{/. |2x2"g(a)(x)/i<a)(x)|s/2x-1dx[2/ ' ' 
2* / 

and the first integral is bounded below by I(q, a, k, g)2 which is at least unity. 
Thus 

(1) { J * \xagia\x)\Q/2\xahM(x)\Q/2x-1dxj/Q > B > 0 

with B = 1/4. If 1 ^ q ^ 2 a similar argument based on [8, p. 19 (9.13)] yields 
the same result with a different B. Now if gi > g an application of Holder's 
inequality with exponents 2gi/g and r where 1/V + g/(2gi) = 1 shows that 
I(qi, a, k, h)I(qr/2, a, k, g) > B. It follows from the definition of g and r that 
I(qr/2, a, k, g) < A2~he where A is independent of k and e = 1/g — 1/gi. So 
I(qlf a, k, h) > 2k*B/A and h $ S(qu «i). 
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If «i > CLQ let g and h be as above and apply the Schwarz inequality to (1). 
If it is kept in mind that the integrand in (1) is zero except on the interval 
[2k, 2k + 1], it follows that there is a positive constant A such that 

\xah{a) (x)\qx~ldx ^A. 

Now if h 6 S(qly ai) it follows that \xah(a) (x)\ must be bounded by some con
stant A o ([2] contains a discrete analogue of this fact with q = 2; that argument 
can be adapted to the present case), so 

/

»2*+l 
\xah{a\x)\qx-ldx ^ 2~kAoQ 

2k 

which contradicts (1). 

Analogous counterexamples can be constructed for spaces of sequences, and 
localized versions of the Taibelson spaces A™. For these and other generaliza
tions of the above methods see [3]. 

Basically, this lack of density makes it impossible for the S(q, a) spaces to be 
stable with respect to either the first method of interpolation of Calderôn or 
even the real method of interpolation (this in spite of the results claimed in 
[4; 5, and 7]). However, the referee has suggested to us that this lack of 
density would not be an impediment to the second method of complex inter
polation of Calderôn, the "upper-s" method. Thus the following 

THEOREM 2. If I < go, gi < °°, 0 ^ a0, «i, and a, q as before, then [5(go, «o), 
Situai)]8 = S(q,a). 

One way of proving this is to employ 13.6(ii) of [1] with B0 = ^Qa\, B\ = ^?a\, 
and Xo — Xi = /°°, the Banach space of bounded sequences to show 

which is equivalent to the theorem. 
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