A FAILURE OF STABILITY UNDER COMPLEX INTERPOLATION

WILLIAM C. CONNETT AND ALAN L. SCHWARTZ

Let $\mathscr{L}_{\alpha}^{q}=\mathscr{L}_{\alpha}^{q}(R)$ denote the spaces of Bessel potentials as defined and discussed in [6]. When $1<q<\infty$ and α is an integer $\mathscr{L}_{\alpha}^{q}=L_{\alpha}^{q}$, the Sobolev space which consists of functions F in L^{q} with α derivatives in L^{q} and with norm $\sum_{j=0}^{\alpha}\left(\int\left|F^{(j)}(x)\right|^{q} d x\right)^{1 / q}$.

If now we make the change of variables $x=e^{y}, f(x)=F(\ln x)$ it is easily seen that the ratio

$$
\sum_{j=0}^{\alpha}\left(\int\left|F^{(j)}(y)\right|^{q} d y\right)^{1 / q} / \sum_{j=0}^{\alpha}\left(\int\left|x^{j} f^{(j)}(x)\right|^{q} x^{-1} d x\right)^{1 / q}
$$

is bounded above and below by positive constants. Localized Sobolev spaces can be defined by the norm

$$
\sup \left\{\sum_{j=0}^{\alpha}\left(\int_{k}^{k+1}\left|F^{(j)}(y)\right|^{q} d y\right)^{1 / q}: k=0, \pm 1, \pm 2, \ldots\right\}
$$

the ratio of which to

$$
\|f\|_{q, \alpha}=\sup \left\{\sum_{j=0}^{\alpha}\left(\int_{2^{k}}^{2^{k+1}}\left|x^{j} f^{(j)}(x)\right|^{q} x^{-1} d x\right)^{1 / q}: k=0, \pm 1, \pm 2, \ldots\right\}
$$

is bounded above and below by positive constants. The space defined by the norm $\|\cdot\|_{q, \alpha}$ will be called $S(q, \alpha)$; these spaces can be constructed for all (q, α) $1<q<\infty, 0 \leqq \alpha<\infty$ by means of the Bessel potential spaces [3], and for $q=1$ or ∞ and α integral, by means of the Sobolev spaces. The spaces $S(q, \alpha)$ play an important role in Fourier analysis since the classical multiplier theorems-e.g. those of Marcinkiewicz, Michlin, Hörmander, etc., can be expressed in terms of these spaces. For example, the theorem of Hörmander can be stated by saying that the mapping $T: S(2, \alpha) \oplus L^{p}(R) \rightarrow L^{p}(R)$ is continuous for $\alpha \geqq 1,1<p<\infty$, where $T(m, f)=(m \hat{f})^{\vee}, m \in S(2, \alpha), f \in L^{p}$.

Let $[A, B]_{s}$ denote the intermediate space between A and B obtained by Calderón's first method of complex interpolation [1]. Let $1<q_{0}, q_{1}<\infty$, $0<\alpha_{0}, \alpha_{1}<\infty, 0 \leqq s \leqq 1$, and

$$
(1 / q, \alpha)=(1-s)\left(1 / q_{0}, \alpha_{0}\right)+s\left(1 / q_{1}, \alpha_{1}\right) .
$$

Then it can be shown that the Bessel Potential spaces have the property of stability, i.e. $\left[\mathscr{L}_{\alpha_{0}}^{a_{0}}, \mathscr{L}_{\alpha_{1}}^{a_{1}}\right]_{s}=\mathscr{L}_{\alpha}^{a}$. The close connection between the spaces

[^0]\mathscr{L}_{α}^{q} and $S(q, \alpha)$ suggests that at least $S(q, \alpha)$ should be equivalent to $\left[S\left(q_{0}, \alpha_{0}\right), S\left(q_{1}, \alpha_{1}\right)\right]_{s}$. Unfortunately this is false.

Theorem 1. Suppose α_{0}, α_{1}, and α are integers and $1<q_{0}, q_{1}<\infty$. If q is between q_{0} and q_{1}, α is between α_{0} and α_{1}, and $\alpha q>1$ then if $0<s<1$ the Banach spaces $\left[S\left(q_{0}, \alpha_{0}\right), S\left(q_{1}, \alpha_{1}\right)\right]_{s}$ and $S(q, \alpha)$ are not equivalent unless $q_{1}=q_{0}$ and $\alpha_{1}=\alpha_{0}$.

Proof. Assume $\alpha_{1} \geqq \alpha_{0}$ and if $\alpha_{1}=\alpha_{0}$ that $q_{1}>q_{0}$. Then $S\left(q_{1}, \alpha_{1}\right) \subset S\left(q_{0}, \alpha_{0}\right)$ (see [3]); now according to a theorem of Calderón $A \cap B$ must be dense in $[A, B]_{s}, 0 \leqq s \leqq 1$, so it will suffice to show that $S\left(q_{1}, \alpha_{1}\right)=S\left(q_{0}, \alpha_{0}\right) \cap S\left(q_{1}, \alpha_{1}\right)$ is not dense in $S(q, \alpha)$.

Let

$$
I(q, \alpha, k, f)=\left\{\int_{2^{k}}^{2^{k+1}}\left|x^{\alpha} f^{(\alpha)}(x)\right|^{q} x^{-1} d x\right\}^{1 / q}
$$

and first consider the case $\alpha_{0}=\alpha_{1}, q_{0}<q_{1}$. Let $f(y)=c \sin ^{\alpha} \pi y$ if $0 \leqq y \leqq 1$ and $f(y)=0$ otherwise, where c is chosen so that if

$$
g(x)=\sum_{k=0}^{\infty} 2^{k(1 / q-\alpha)} f\left(x-2^{k}\right) \quad(0 \leqq x<\infty)
$$

then $I(q, \alpha, k, g)>1(k=1,2,3, \ldots)$. The quantities $I(q, j, k, g)(j=0,1, \ldots \alpha)$ all have bounds independent of k so $g \in S(q, \alpha)$; moreover $g \in L^{\infty}$. We will show that the ball of radius $\sqrt{2} / 2$ about g in $S(q, \alpha)$ does not intersect $S\left(q_{1}, \alpha_{1}\right)$. To see this assume $\|g-h\|_{q, \alpha}<\sqrt{2} / 2$. It then follows that

$$
2^{-q / 2}>I(q, \alpha, k, g-h)^{q}=\int_{2^{k}}^{2^{k+1}}\left|x^{2 \alpha}\left[g^{(\alpha)}(x)-h^{(\alpha)}(x)\right]^{2}\right|^{q / 2} x^{-1} d x
$$

so that if $q \geqq 2$

$$
\begin{aligned}
& \frac{1}{2}>\left\{\int_{2^{k}}^{2^{k+1}}\left|x^{2 \alpha}\left[g^{(\alpha)}(x)\right]^{2}+x^{2 \alpha}\left[h^{(\alpha)}(x)\right]^{2}\right|^{q / 2} x x^{-1} d x\right\}^{2 / q} \\
&-\left\{\int_{2^{k}}^{2^{k+1}}\left|2 x^{2 \alpha} g^{(\alpha)}(x) h^{(\alpha)}(x)\right|^{q / 2} x^{-1} d x\right\}^{2 / q}
\end{aligned}
$$

and the first integral is bounded below by $I(q, \alpha, k, g)^{2}$ which is at least unity. Thus
(1) $\left\{\int_{2^{k}}^{2^{k+1}}\left|x^{\alpha} g^{(\alpha)}(x)\right|^{q / 2}\left|x^{\alpha} h^{(\alpha)}(x)\right|^{q^{/ 2}} x^{-1} d x\right\}^{2 / q}>B>0$
with $B=1 / 4$. If $1 \leqq q \leqq 2$ a similar argument based on [8, p. 19 (9.13)] yields the same result with a different B. Now if $q_{1}>q$ an application of Hölder's inequality with exponents $2 q_{1} / q$ and r where $1 / r+q /\left(2 q_{1}\right)=1$ shows that $I\left(q_{1}, \alpha, k, h\right) I(q r / 2, \alpha, k, g)>B$. It follows from the definition of g and r that $I(q r / 2, \alpha, k, g)<A 2^{-k \epsilon}$ where A is independent of k and $\epsilon=1 / q-1 / q_{1}$. So $I\left(q_{1}, \alpha, k, h\right)>2^{k \epsilon} B / A$ and $h \notin S\left(q_{1}, \alpha_{1}\right)$.

If $\alpha_{1}>\alpha_{0}$ let g and h be as above and apply the Schwarz inequality to (1). If it is kept in mind that the integrand in (1) is zero except on the interval $\left[2^{k}, 2^{k}+1\right]$, it follows that there is a positive constant A such that

$$
\int_{2^{k}}^{2^{k}+1}\left|x^{\alpha} h^{(\alpha)}(x)\right|^{q} x^{-1} d x \geqq A
$$

Now if $h \in S\left(q_{1}, \alpha_{1}\right)$ it follows that $\left|x^{\alpha} h^{(\alpha)}(x)\right|$ must be bounded by some constant A_{0} ([2] contains a discrete analogue of this fact with $q=2$; that argument can be adapted to the present case), so

$$
\int_{2^{k}}^{2^{k+1}}\left|x^{\alpha} h^{(\alpha)}(x)\right|^{q} x^{-1} d x \leqq 2^{-k} A_{0}{ }^{q}
$$

which contradicts (1).
Analogous counterexamples can be constructed for spaces of sequences, and localized versions of the Taibelson spaces $\Lambda_{\alpha}^{\ell \psi}$. For these and other generalizations of the above methods see [3].

Basically, this lack of density makes it impossible for the $S(q, \alpha)$ spaces to be stable with respect to either the first method of interpolation of Calderón or even the real method of interpolation (this in spite of the results claimed in [4; 5, and 7]). However, the referee has suggested to us that this lack of density would not be an impediment to the second method of complex interpolation of Calderón, the "upper-s" method. Thus the following

Theorem 2. If $1<q_{0}, q_{1}<\infty, 0 \leqq \alpha_{0}, \alpha_{1}$, and α, q as before, then $\left[S\left(q_{0}, \alpha_{0}\right)\right.$, $\left.S\left(q_{1}, \alpha_{1}\right)\right]^{s}=S(q, \alpha)$.

One way of proving this is to employ 13.6 (ii) of [1] with $B_{0}=\mathscr{L}_{\alpha_{0}}^{q_{0}}, B_{1}=\mathscr{L}_{\alpha_{1}}^{q_{1}}$, and $X_{0}=X_{1}=l^{\infty}$, the Banach space of bounded sequences to show

$$
\left[l^{\infty}\left(\mathscr{L}_{\alpha_{0}}^{q_{0}}\right), l^{\infty}\left(\mathscr{L}_{\alpha 1}^{q_{1}}\right)\right]^{s}=l^{\infty}\left(\mathscr{L}_{\alpha}^{q}\right)
$$

which is equivalent to the theorem.
Acknowledgement. We would like to thank Professor Riviere for drawing our attention to the density properties of complex interpolation as a source of counter-examples, and the referee of this paper for suggesting Theorem 2.

References

1. A. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math., 24 (1964), 113-190.
2. W. C. Connett and A. L. Schwartz, A multiplier theorem for ultraspherical series, Studia Math. 51 (1974), 51-70.
3. -_ The theory of ultraspherical multipliers, Memoirs of the Amer. Math. Soc. 183 (1977).
4. W. Littman, Multipliers in L^{p} and interpolation, Bull. Amer. Math. Soc. 71 (1965), 764-766.
5. J. Peetre, Applications de la theorie des espaces d'interpolation, Ricerche de Mathematica, 15 (1966), 3-36.
6. E. M. Stein, Singular integrals and differentiability properties of functions (Princeton University Press, 1970).
7. R. Strichartz, Multipliers for spherical harmonic expansions, Trans. Am. Math. Soc. 167 (1972), 115-124.
8. A. Zygmund, Trigonometric series, vol. I (Cambridge University Press, 1959).

University of Missouri-St. Louis, St. Louis, Missouri

[^0]: Received September 22, 1976 and in revised form, March 10, 1977. The research of the first author was supported by a Summer Research Grant from the University of Missouri-St. Louis.

