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We study the linear stability of a surfactant-laden shear-imposed fluid flowing down a
compliant substrate. The aim is to extend the earlier and recent studies (Carpenter &
Garrad, J. Fluid Mech., vol. 155, 1985, pp. 465-510; Alexander et al., J. Fluid Mech.,
vol. 900, 2020, A40) in the presence of insoluble surfactant when an external streamwise
imposed shear stress acts at the fluid surface. In other words, the current study expands
the earlier study (Wei, Phys. Fluids, vol. 17, 2005, 012103) in the presence of a flexible
substrate. The Orr—Sommerfeld-type boundary value problem is derived and solved by
using the long-wave series expansion as well as the Chebyshev spectral collocation method
for disturbances of arbitrary wavenumbers. The long-wave result reveals the existence of
two dominant temporal modes, the so-called surface mode and surfactant mode, where
the surface mode propagates faster than the surfactant mode. It is found that the surface
mode can be stabilized by introducing an insoluble surfactant at the fluid surface even
though the spring stiffness Ck keeps a lower value than its critical value Ck. But the
imposed shear stress exhibits a dual role in the surface mode in two different regimes of
spring stiffness Ck, i.e. a stabilizing effect when Cx < C and a destabilizing effect when
Ck > C}‘(. Further, the surfactant mode becomes more unstable with the increasing values
of spring stiffness Cx and damping coefficient Cp. On the other hand, the numerical result
in the arbitrary wavenumber regime reveals the existence of subcritical instability induced
by the surface mode. Furthermore, a different temporal mode, the so-called wall mode,
appears in the finite wavenumber regime for special values of Cx and Cp, which becomes
weaker with increasing values of the wall parameters Cx, Cp, Cp and Cr, but becomes
stronger with increasing values of the inclination angle € and wall parameter C;. Moreover,
the temporal growth rate associated with the wall mode enhances with the increasing
value of the Marangoni number but attenuates with the increasing value of imposed shear
stress. In addition, another temporal mode, the so-called shear mode, emerges in the finite
wavenumber regime when the Reynolds number is high and the inclination angle is small.
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The unstable region generated by the shear mode magnifies with the increasing value of the
imposed shear stress but decays with the increasing value of Marangoni number. Further,
the shear mode becomes more unstable as soon as the spring stiffness Cx and damping
coefficient Cp increase.
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1. Introduction

Over the last few decades, numerous studies of fluid flows over a compliant substrate or
through compliant walls have been performed in exploring the drag-reducing capabilities
of various compliant coatings since the experimental work of Kramer (1957). In the case
of a boundary-layer instability, the transition to turbulence can be impeded by a particular
compliant surface, which keeps the flow in a laminar state for a longer period of time.
As a consequence, the mass and momentum fluxes modify near the compliant surface
and change the drag characteristics, the acoustic properties and the heat and mass transfer
rates (Riley, el Hak & Metcalfe 1988). Further, such problems are very relevant in aiding
the development of the biomedical field. For example, investigation of flow—structure
interactions in the cardiovascular system is of crucial biological importance in figuring
out pulse propagation and transmural pressure variations in arteries (Halpern & Grotberg
1993; Grotberg & Jensen 2004).

In this context, the theoretical study of the hydrodynamic stability of a boundary-layer
flow over a flexible substrate was initiated by Benjamin (1960) and Landhal (1962). As
discussed by them, internal damping has a destabilizing effect on the Tollmien—Schlichting
mode. Later, Gyorqyfalvy (1967) performed an extensive analytical study on the
boundary-layer stability and transition for an incompressible Blasius flow over a
flexible surface based on the simple flexible skin model consisting of a spring-backed
membrane with internal damping. His analysis predicted significant transition delay
of the Tollmien—Schlichting instability through a reduction in amplification rate rather
than increase in critical Reynolds number. A detailed investigation of the hydrodynamic
stability of flows over Kramer-type compliant surfaces was carried out by Carpenter
& Garrad (1985, 1986). Two different types of instabilities, namely the flow-induced
surface instability (FISI) and the Tollmien—Schlichting instability (TSI), were recognized
in numerical simulation under the framework of an Orr—Sommerfeld-type equation. It
was reported that viscoelastic damping stabilizes the FISI but destabilizes the TSI
Further, the modal coalescence between FISI and TSI was identified. Later, the same
physical phenomenon was disclosed by Sen & Arora (1988) as the transitional mode.
Carpenter & Gajjar (1990) developed an asymptotic theory for two- and three-dimensional
disturbances in two-dimensional boundary layers over isotropic and anisotropic compliant
walls. Basically, their theoretical study was developed in exploring the travelling wave
flutter instability pointed out by Carpenter & Garrad (1985, 1986). Recently, the temporal
modal and non-modal growth of three-dimensional disturbances in the boundary-layer
flow over an infinite compliant flat wall was deciphered by Malik, Skote & Bouffanais
(2018) based on the normal velocity and normal vorticity formulations. As discussed by
them, the maximum transient growth rate increases slowly with the Reynolds number in
comparison with the rigid-wall case.

On the other hand, the study of the instability of a Poiseuille flow through a flexible
channel was originated by Hains & Price (1962), where the compliant walls were assumed
to be stretched flexible membranes. However, the mass of the membrane and the effect
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of the elastic foundation were ignored in their study. Later, Tsvelodub (1977) analysed
the instability of a Poiseuille flow in a elastic channel with flexible walls modelled as
elastic plates. The finite-amplitude stability of a plane Poiseuille flow in a channel with
compliant boundaries was examined by Rotenberry (1992). As discussed by Rotenberry,
the finite-amplitude travelling wave solution is destabilized for sufficiently compliant walls
as soon as the amplitude of the disturbance increases. However, there was no significant
qualitative difference between the process of transition in a channel with compliant
boundaries and in a channel with rigid boundaries. The nonlinear stability of a channel
flow with one compliant wall was studied by Ehrenstein & Rossi (1993) based on the
Ginzburg—Landau equation. The above flow model was further revisited by Gajjar &
Sibanda (1996) to take into account the effect of various compliant wall parameters on
the deviation of TSI from the results of a rigid-wall model. Furthermore, a nonlinear
stability analysis is carried out. However, these authors were mainly concerned with
deciphering Tollmien—Schlichting waves. On the contrary, investigation of flow-induced
surface instabilities for a plane channel flow with compliant boundaries can be found
in the work of Davies & Carpenter (1997). The physical mechanism of instability for a
two-dimensional inviscid shear flow in a flexible channel was provided by Huang (1998).
Recently, the non-modal energy amplification for a channel flow with compliant walls was
explored by Hoepffner, Bottaro & Favier (2010), where the compliant walls were modelled
as spring-backed flexible plates. Their numerical analysis predicts that the fluid—structure
system is unstable to flow-induced surface instabilities when the compliant wall stiffness
is low.

Parallelly, there are extensive studies on the instability of falling liquid films over a
rigid substrate since the experimental work of Kapitza (1948). In this case, the primary
instability induced by the surface mode evolves downstream through a sequence of
nonlinear events and finally leads to spatio-temporal chaos as soon as the Reynolds
number surpasses its critical value. The details of falling film instability can be found
in a number of important references (Alekseenko, Nakoryakov & Pokusaev 1994; Oron,
Davis & Bankoff 1997; Chang & Demekhin 2002; Craster & Matar 2009; Kalliadasis et al.
2012). Apart from the surface mode generally appearing at low Reynolds number, there
exists another mode, referred to as the shear mode, which emerges in numerical simulation
when the Reynolds number is very large and the inclination angle is small (Lin 1967;
Bruin 1974; Chin, Abernath & Bertschy 1986; Floryan, Davis & Kelly 1987; Samanta
2013b). Recently, the study of the falling film model has been extended towards the
direction of falling films over flexible substrates in deciphering the interactions between
flowing fluid and a flexible structure because such settings have immense biological
applications. In this context, Matar & Kumar (2004) initiated the rupture phenomenon for
a surfactant-covered thin liquid film on a flexible wall based on the evolution equations for
the deflections of the air—liquid and wall-liquid interfaces. It was reported that increases
in the level of damping, the longitudinal wall tension and the relative magnitudes of the
Marangoni stresses have a stabilizing influence on the primary instability. Later, their
further investigation (Matar & Kumar 2007) showed that wall flexibility destabilizes the
flow through the increase in maximal temporal growth rate if the relative significance of
wall damping or wall tension is decreased. The above study was further revisited by Matar,
Craster & Kumar (2007) to inspect the nonlinear stability of a fluid flowing down a flexible
substrate. The Kuramoto—Sivashinsky equation was derived in the limits of large wall
damping and large wall tension. Further, to take into account the effect of inertia, integral
theory was proposed to formulate three strongly coupled nonlinear evolution equations for
the film thickness, substrate deflection and volumetric flow rate. As discussed by them,
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decreasing wall damping or wall tension assists the development of chaos in the weakly
nonlinear regime. The study developed by Matar et al. (2007) was further expanded by
Sisoev et al. (2010) to analyse the nonlinear travelling wave solution under the framework
of boundary-layer theory along with the von Kdrmédn—Polhausen approximation proposed
by Shkadov (1967). The effect of insoluble surfactant on the instability of a falling film
down a flexible inclined plane was incorporated by Peng et al. (2016) and Yang ef al.
(2018). More recently, a detailed study on the linear instability of a liquid film falling down
an inclined flexible plane was accomplished by Alexander, Kirk & Papageorgiou (2020)
based on the Orr—Sommerfeld-type boundary value problem. A general model of a flexible
substrate was exploited in their study as suggested by Carpenter & Garrad (1985, 1986).
Two distinct temporal modes, namely the surface mode and the wall mode, were identified
in the numerical simulation when the Reynolds number is low and the inclination angle
is high. It was shown that there exists a critical value of wall stiffness below which the
flow will be susceptible to instability by the surface mode even at zero Reynolds number.
Further, decreasing wall stiffness has a destabilizing effect on the primary instability
induced by the surface mode. In addition, their numerical solution showed the existence
of a shear mode when the Reynolds number is high and the inclination angle is small.

In the present work, our aim is to explore the effect of insoluble surfactant and imposed
shear stress on the primary instability of a falling film flowing down a flexible inclined
plane. In other words, we extend the earlier work of Wei (2005) in the presence of a
flexible substrate. However, some new results are also produced in the absence of insoluble
surfactant and imposed shear stress because these results were not revealed in the work of
Alexander et al. (2020). A detailed study of linear stability analysis is carried out in the
arbitrary wavenumber regime. The motivation is to understand the dynamics of interfacial
wave for a liquid lining flow in a pulmonary airway occlusion process where airflow
moves back and forth during breathing and exerts a shear stress on the air-liquid interface
(Halpern & Grotberg 1993; Wei 2005; Samanta 20205). In addition, the purpose is to
investigate the interactions between flowing fluid and wall flexibility on the shear-induced
Marangoni instability that generally occurs in pulmonary airways. We use the same
flexible wall model as Carpenter & Garrad (1985, 1986) and Alexander et al. (2020). In
accordance with the work of Alexander et al. (2020), the viscous effect of the substrate
fluid is neglected. The Orr—Sommerfeld-type boundary value problem is derived, which is
solved analytically by using the long-wave analysis and also solved numerically by using
the Chebyshev spectral collocation method for disturbances of arbitrary wavenumbers.
Four dominant temporal modes, namely the surface mode, surfactant mode, wall mode
and shear mode, are recognized. It is found that the surface mode can be stable in the
presence of insoluble surfactant even when the spring stiffness Cx keeps a lower value
than its critical value CI*(. Furthermore, it is noticed that the imposed shear stress has a dual
role in the primary instability generated by the surface mode. The numerical result in the
arbitrary wavenumber regime displays the existence of subcritical instability induced by
the surface mode, and the associated unstable region enhances with the decreasing value of
spring stiffness Cx. Further, the temporal growth rate for the wall mode intensifies with an
increasing value of Marangoni number but attenuates with an increasing value of imposed
shear stress. Hence, the Marangoni number has a destabilizing effect, but the imposed
shear stress has a stabilizing effect on the wall mode. As discussed by Carpenter & Garrad
(1985, 1986) for a boundary-layer instability over a compliant wall, the increasing values of
spring stiffness Cx and damping coefficient Cp exhibit a stabilizing effect on the surface
mode but exhibit a destabilizing effect on the shear mode for a free surface fluid flowing
down a compliant wall. In addition, the effects of various wall parameters on individual
modes are analysed in detail in the present study.
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2. Mathematical formulation

Consider a two-dimensional gravity-driven incompressible Newtonian fluid of dynamic
viscosity u and density p flowing down a compliant impermeable substrate having slope
angle 6 with the horizontal, as sketched in figure 1. It is assumed that the fluid surface
h(x, t) is contaminated by an insoluble surfactant with concentration I” (x, ¢). Furthermore,
it is assumed that a constant shear stress 7 is exerted at the fluid surface in the streamwise
direction. For the sake of simplicity, we shall restrict ourselves to the case where the
imposed shear stress acts only in the co-flow direction, i.e. 7y > 0. We choose the origin of
the Cartesian coordinate system at the equilibrium position of the compliant substrate, and
the axes x and y are labelled along the streamwise and cross-stream directions, respectively.
The two-dimensional Navier—Stokes equations are employed to describe the gravity-driven
shear-imposed viscous fluid flowing down a compliant substrate

At + dyv = 0, 2.1)
p (0w + udeu + voyu) = —9p + 1 (duett + dyyu) + pgsing, (2.2)
o (v + udv + vdyv) = —yp + p (duv + dyyv) — pgcos, (2.3)

where u, v and p are respectively the velocity components and pressure of the mainstream
fluid flowing over a compliant substrate, and g is the acceleration due to gravity. The above
flow configuration is closed by the following boundary conditions. At the fluid surface, y =
h(x, t), transport of insoluble surfactant induces a Marangoni stress, which is balanced by
the hydrodynamic stress of the mainstream fluid. This fact yields the following tangential
and normal stresses dynamic boundary conditions for the shear-imposed surfactant-laden
fluid flowing down a compliant inclined plane (Blyth & Pozrikidis 2004; Wei 2005;
Samanta 2014a, b; Bhat & Samanta 2018, 2019; Samanta 2021)

(418,00, + @y + B0 (1 = @)} = (8.0 + Buhdy0) VIT + @)?]

+Tv [+ (021, (2.4)

21 0 Oxch
[1+ (3:7)?] [1 4 (8,:h)213/2

where p,, is the ambient pressure, and o (x, ) is the surface tension of the mainstream fluid,
which alters linearly with the surfactant concentration I (x, 7) by the following relation:

[0y0{1 — (8,h)%} — (Byut + 0,v) 3] = 2.5)

Pa—P+

ox,t) =0p — Ep[I"(x,1) — I}], (2.6)

where o} is the constant base surface tension when surfactant concentration keeps its
constant base value I,. It should be useful to mention here that surface elasticity, £, =
—0dro|r=r,, is positive because the surface tension of the mainstream fluid reduces with
an increasing value of surfactant concentration. Furthermore, the evolution of insoluble
surfactant concentration I"(x, ¢) at the surface of the mainstream fluid is described by
the convection—diffusion transport equation (Frenkel & Halpern 2002; Halpern & Frenkel
2003; Edmonstone & Matar 2004; Wei, Halpern & Grotberg 2005; Samanta 2013a)

3 [r,/{l + (axh)z}} + 3y [ru,/{l + (8xh)2}} = Dyd, [axr/,/{l + (axh)l}] . Q27)

where Dy is the surfactant diffusivity, which is usually small, and thereby, it will be
neglected in the subsequent calculations. Finally, the evolution of the surface, h(x, 1), of
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Imposed shear stress

Insoluble surfactant

Figure 1. Schematic diagram of a surfactant-laden shear-imposed fluid flowing down a compliant substrate.

the mainstream fluid is described by the kinematic boundary condition

oth + udyh = v. (2.8)

2.1. Compliant wall model

In accordance with the work of Carpenter & Garrad (1985) and Alexander et al. (2020),
we prefer the same wall model to replicate the compliant substrate used by them, i.e. the
compliant substrate consists of an isotropic impermeable elastic plate/tensorial membrane
over a rigid substrate supported by an array of springs, as shown in figure 2. In fact, the
array of springs is assembled in such a way that the wavelength of the surface instability
is considerably larger in comparison with the distance between neighbouring springs.
Furthermore, the cavity between the elastic plate and the rigid substrate is filled by a
viscous fluid of different density and viscosity from the mainstream fluid flowing over the
elastic plate, and it is referred to as the substrate fluid. It is assumed that deformations of
the springs have negligible impact on the substrate fluid. As a consequence, the following
linear equation is used to describe the deflection, 1(x, t), of the compliant substrate from
its equilibrium position (Carpenter & Garrad 1985; Alexander et al. 2020)

Pwbdun + Do + Boxun — Toxwn + Kn = ps — p + 2u[dyv — (dyu + dxv)dxn], (2.9)

where p,, is the density of the elastic material, b is the thickness of the elastic plate, D is
the damping coefficient, B is the flexural rigidity of the elastic plate, T is the longitudinal
tension, K is the spring stiffness, ps is the pressure of the substrate fluid and d; is the
equilibrium height of the substrate fluid. In fact, the flexural rigidity B and the damping
coefficient D are not independent wall parameters. Instead, both can be measured from the
material properties of the compliant substrate (Carpenter & Garrad 1985; Alexander et al.
2020)

Eyb?
=——~  D=2JKp,b, 2.10a,b
12(1 — v2) ¢ Pw ( a,b)

where Ey is Young’s modulus, v is the Poisson ratio of the elastic material and ¢ is the
damping ratio. It should be useful to mention here that the viscous effect of the substrate
fluid is neglected (Carpenter & Garrad 1985; Alexander et al. 2020). However, the viscous
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Elastic plate

dx/4 Rigid substrate
v 3%
Viscous fluid substrate Horizontal

Array of springs

Figure 2. Schematic diagram of a compliant substrate, where b is the thickness of the elastic plate which is
supported by an array of springs.

effect pertaining to the mainstream fluid is included in (2.9) through the normal stress
balance at the elastic plate, y = n(x, ). For the sake of simplicity, py, the pressure of the
substrate fluid with equilibrium height d, is assumed to be constant, although the elastic
plate will undergo an infinitesimal deformation from its equilibrium position owing to
the infinitesimal perturbation of the mainstream flow (Alexander et al. 2020). In addition,
velocity components of the mainstream fluid must satisfy no-slip and kinematic conditions
at the compliant substrate, y = n(x, ), (Matar et al. 2007; Peng et al. 2016; Yang et al.
2018)

u=0, v=on. (2.11a,b)

2.2. Base flow solution

As we are interested in deciphering the primary instability of a uni-directional
surfactant-laden shear-imposed parallel flow with constant layer thickness d of the
mainstream fluid, constant surfactant concentration I"(x, t) = I}, and without compliant
substrate deformation 1 = 0, the governing equations (2.1)—(2.11a,b) are simplified
according to the above assumptions and reduced to the following form:

woyyu + pgsind =0, dyp + pgcost =0, (2.12a,b)
Woyu =T5, p=pg aty=d, (2.13a,b)
u=0, p=ps, aty=0. (2.14a,b)

The analytical solution of the base flow (2.12a,h)—(2.14a,b) can be expressed in
non-dimensional form as
U(y) = Qy—y)+1y. P(y)=Py+2cotf(1—y), V=o,}

(2.15)
I, =1, H=1, n=0, Py=P,+ 2cot0,

where the velocity at the surface of the mainstream fluid, Us; = pgd? sin6/(2u), of the
uni-directional parallel flow without shear is preferred as the characteristic velocity scale,
the constant layer thickness d of the mainstream fluid for the parallel flow is preferred
as the characteristic length scale, Uy /d is preferred as the characteristic pressure scale,
d/Us is preferred as the characteristic time scale, the base surfactant concentration I
is preferred as the characteristic scale for surfactant concentration and the base surface
tension o}, is preferred as the characteristic scale for surface tension (Wei 2005). Here,
T = 1,d/(uUy) is the non-dimensional imposed shear stress, P, is the non-dimensional
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ambient pressure, H is the non-dimensional mainstream fluid layer thickness of the
unperturbed parallel flow and I, is the non-dimensional surfactant concentration in the
case of unperturbed parallel flow. Note that the streamwise base velocity of the mainstream
fluid is explicitly dependent on the imposed shear stress 7. But, its maximum value no
longer appears at the surface of the mainstream fluid owing to the presence of external
shear stress.

3. Linear stability analysis in the long-wave regime

In order to study the linear stability analysis, we shall first derive the perturbation equations
for the infinitesimal disturbance. As a consequence, we superimpose an infinitesimal
disturbance on the uni-directional parallel flow solution with fluid layer thickness & = H,
called the base flow solution (2.15). This fact causes a small infinitesimal deformation to
the compliant substrate from its equilibrium position n = 0. Accordingly, each variable
for the disturbed flow can be decomposed as

u(x,y, ) = U(y) +u'(x, 3,0, vy ) =0v(xy1),
p,y, ) =P(y)+p'(x,y, 1), h(x,t)=H+H(x,1), (3.1
nx,H)=n'(x,t), I t)=T,+TI"(x01),
where the variables with prime notation specify the perturbation flow variables while the
variables without prime notation specify the base flow variables. Substituting the variable

decomposition (3.1) in the governing equations (2.1)—(2.11a,b) and linearizing with respect
to the base flow solution, we obtain the following non-dimensional perturbation equations

dxt’ + " =0, (3.2)
Re(d;u/ + Udd' + v/ayU) + 0 p — Outd + Byyu/) =0, 3.3)
Re (3" + Udyv) + 0yp" — (9v” + ") =0, 3.4)

where Re = pU,d/u, the Reynolds number, compares the ratio of inertia and the viscous
force. Similarly, the linearized versions of boundary conditions at the fluid surface, y = 1,
are simplified in the following form:

dyu' + 30" + W'y U + Mad, I =0, (3.5)

—p' + 2cotbh + 280 — d,Ud ) — (1/Ca)dh’ =0, (3.6)
0T + Ud T + 0l + 0,Udh =0, 3.7)

Ol + Ud ' —v' =0, (3.8)

where Ma = E, I}, /(1Uy), the Marangoni number, compares the Marangoni stress and the
viscous stress, and Ca = nwUy/op, the capillary number, compares the viscous stress and
the capillary stress generated by the surface tension of the mainstream fluid (Wei 2005). On
the other hand, the linearized version of the boundary condition at the compliant substrate,

y = 0, simplifies to the following form:

C19yn + Cpdm’ + Cpoeret) — Crdun) + Cxn' +p’ — 2cotOn’ — 2[8),v/ — ByUaxn/] =0,

(3.9)
where the non-dimensional coefficients describing material properties of the compliant
substrate are defined as: C; = p,,bU/ 11, representing the ratio of compliant substrate
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inertia and viscous stress, Cp = Dd/u, representing the ratio of compliant substrate
damping and viscous stress, Cg = B/(ud?Uy), representing the ratio of flexural rigidity
and viscous stress, C7 = T/(uUy), representing the ratio of longitudinal tension and
viscous stress, Cx = Kd>/(uUs), representing the ratio of spring stiffness and viscous
stress. Finally, using Taylor’s series expansion about the equilibrium position of the
compliant substrate, the linearized versions of no-slip and kinematic boundary conditions
at the compliant substrate, y = 0, become

W' +oUn =0, v —9n =0. (3.10a,b)

Now we seek the solution of perturbation equations (3.2)—(3.10a,b) in the normal mode
form (Kumar & Matar 2004; Samanta 2020a)

W' (x,y, 1) = i(y) explik(x — et)] +c.c., B (x, 1) = hexplik(x — cf)] + c.c.,
V' (x,y,1) = 0(y)explik(x — ct)] +c.c., n'(x,1) = fexplik(x — ct)] + c.c.,

P (x, v, 1) = p(y)explik(x — ct)] +c.c., TI''(x,1) = I explik(x — ct)] + c.c.,

(3.11)
where c.c. represents the complex conjugate, and the variables with tilde notation
represent the amplitudes of perturbation variables. Here, k and ¢ are respectively the
real wavenumber and complex wave speed of the infinitesimal perturbation. Since we
are interested in the temporal stability analysis, the wavenumber & is assumed to be a
real quantity. Inserting the normal mode solution (3.11) in the perturbation equations
(3.2)-(3.10a,b), one can obtain

kit + 9,5 =0, 0<y<]I, (3.12)
Re[ik(U — ¢)it + 03,U] + ikp — (dyyit — K2it) =0, 0<y<1, (3.13)
Reik(U — )b + dyp — (3yy0 — k*0) =0, 0<y <1, (3.14)
dyii + ikD + hdy U + Maikl" =0, aty =1, (3.15)
—p +2cotOh + 29,0 — 2ikd,Uh + (k*/Ca)h = 0, aty =1, (3.16)
k(U — ¢)I" + ikii + ikd,Uh = 0, aty =1, (3.17)
k(U—-c)h—9=0, aty=1, (3.18)

—Cik*c*ij — Cpikedj + Ck*f + Crk*7 + Ckij + p — 2 cot 67
—2[3,D — ikd, U] =0, aty=0, (3.19)
i+ 3,Uf =0, ©+ikeij=0, aty=0. (3.20)

3.1. Long-wave analysis

In order to investigate the primary instability governed by (3.12)—-(3.20) in the
long-wave regime (k ~ 1/1 — 0, where A is the wavelength of the infinitesimal
disturbance), we propose the long-wave series expansion (Yih 1963; Smith 1990;
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Samanta 2019)
i(y) = it + kity + K + - -+, h=ho+khy+Khy+ -+,
0 = kb1 + K0 + K03+ = dio + kij + K G
PO =po+kp1 +k2pa+--- T =Tlo+ k[ +KD+---

c=73Co+ker + K+

It should be useful to mention here that the long-wave series expansion (3.21) is valid
in the limit k — 0. Hence, only long-wave unstable modes can be captured very well by
using the series expansion (3.21). In fact, in the limit £ — 0, the temporal growth rate
kc; of the long-wave mode approaches zero. As soon as k increases, the series expansion
(3.21) is not valid due to the convergence issue, and thereby, the unstable modes raised in
the finite wavenumber regime cannot be obtained by using the long-wave series expansion.
However, the long-wave series expansion (3.21) is very pertinent to determine the critical
Reynolds number analytically for the onset of primary instability induced by the long-wave
mode. In order to find out the unstable modes in the arbitrary wavenumber regime, we will
use the numerical method discussed in the next section.

3.2. Order-O(k%) analysis
Substituting (3.21) in the perturbation equations (3.12)—(3.20), we collect the leading-order
equations, i.e. the equations of order O (k")

dyyitg =0, dypo=0, 0<y<l, (3.22)
dyilo + hodyU =0, o —2cotbhg =0, aty=1, (3.23)
Ckno +po —2cotbng =0, up+ dyUno =0, aty=0. (3.24)

It should be useful to mention here that the capillary number Ca is assumed to be of
order one, i.e. Ca ~ O(1). For this reason, the capillary number is not manifested in the
leading-order normal stress boundary condition. After solving the leading-order equations
(3.22)—(3.24), the solution can be expressed as

fio(y) = [2hoy = @+ D)o, Po() = 2cotl, (325)
_ [ 2cotd T [ 2cotd/Cxk ;
0= |:(CK_ZCOt9)i|hO B |:(1 _ZCOtQ/C[()j|hO’ (326)

provided Cy #2cotf = Cy, the critical value of spring stiffness Ck. It should be noted
that, for a given value of 0 %0, /79 — 0 in the limit Cx — o0, or, # — 7/2 when ho #0.
Therefore, the leading-order compliant substrate deformation is out of phase (in phase)
with the leading-order fluid surface deformation if Cx > Cx (< Cg) and 0 < 6 < /2.
Obviously, the streamwise velocity for the leading-order disturbed shear flow is linear in
cross-stream coordinate y, and it explicitly depends on the external shear stress T and
spring stiffness Ck, the only wall parameter from the compliant substrate contributing
to the leading-order disturbed shear flow. However, the streamwise velocity for the
leading-order shear flow will increase (decrease) if the leading-order compliant substrate
deformation is out of phase (in phase) with the leading-order fluid surface deformation

(fzo > () and when the imposed shear stress is exerted in the co-flow direction (t > 0).
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Figure 3. (a) Here, ho is in phase with 7o but out of phase with I when Cgx < 2cotf = Ck. (b) Here, ho is
out of phase with 7jp but in phase with Iy when Cx > 2cotf = Ck and when the imposed shear stress acts in
the co-flow direction (tr > 0). Here, ug( y) is the leading-order streamwise velocity for the disturbed fluid flow.

This physical fact is demonstrated in figure 3. In particular, the leading-order disturbed
shear flow procures energy from the base flow through the perturbation tangential stress
balance equation, but it modifies significantly in the presence of compliant substrate and
imposed shear stress.

3.3. Order-O(k') analysis
Now we collect the first-order equations, i.e. the equations of order O(k!)

iiig + 9y =0, 0<y<I, (3.27)

Reli(U — &o)iig + 3,Ud1] + ipo — dyyit1 =0, 0 <y <1, (3.28)

dyp1 — Dy =0, 0<y<l, (3.29)

dyiiy + hidyU +iMalp =0, aty=1, (3.30)

—p1 +2cotfhy + 20,0y — 2i9,Uhg =0, aty=1, (3.31)

(U — o) I + g +1d,Uhg = 0, aty =1, (3.32)

(U= ¢o)hg— 07 =0, aty=1, (3.33)

—iCpCoiio + Ckij1 + p1 — 2cotffy — 2[8,0) — dyUiiip] =0, aty=0,  (3.34)
ity +d,Ui =0, aty=0, (3.35)

1 4 icofip =0, aty=0. (3.36)

After solving the first-order equations (3.27)—(3.36), one obtains the solution in the
following form:

i = ho [iRe {5(2 + o)yt =Ly — 12+ oy + Eoy} +1 cotf(y* — 2y)] + 2hyy
—iMayly —iRe |2 + 1 = Yoy’ — §@+ Dy + oy} o - @+ D, (33D)

1 = —ihoy* + (2 4 1)iflgy — ifjoco, (3.38)
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p1 = —2ihgy — 2iho(1 + 1) 4+ 2 cotOhy + 2(2 + 1)ifjo, (3.39)
_ —2cotbhy +i[2(1 + ©)hg — 2(2 + T)fjo + Cpoiio]
= . (3.40)
(Cg — 2coth)

The analytical calculation unveils the existence of two dominant temporal modes, the
so-called surface mode and surfactant mode (Wei 2005; Bhat & Samanta 2018). As a
consequence, the notations ¢, and ¢, will be used in the subsequent calculations for
the complex wave speeds of the surface mode and surfactant mode, respectively. If the

leading-order amplitude of fluid surface deformation is non-zero (hg # 0), the long-wave
mode induced by deflection of the fluid surface is referred to as the surface mode. In this
case, the phase speed of the surface mode can be obtained from the kinematic equation
(3.33) and is given by

Co=Cos =2+T, (3.41)

where the subscript notation ‘s’ is used for the surface mode. Obviously, at leading
order, the surface mode travels with a speed that is explicitly dependent on the imposed
shear stress 7. In this case, the leading-order amplitude I of perturbation surfactant
concentration can be obtained from the surfactant transport equation (3.32) and is given
by

] ho.  (3.42)

2+ 1)Ck ]1"1 _[ 2+71)
(Cx — 2coth) L (1 —2coth/Ck)

Iy = 2+ 1)lho — 7ol = [

Therefore, Iy — (24 )k in the limit Cx — oo when hg #0. If the imposed shear
stress acts in the co-flow direction (r > 0), the leading-order perturbation surfactant
concentration will be in phase (out of phase) with the leading-order fluid surface
deformation if Cx > Cy (< Cy). This physical fact is fully opposite to the leading-order
compliant substrate deformation (see figure 3). It is evident that the leading-order
amplitude of perturbation surfactant concentration decreases (increases) on account of
the deformation of compliant substrate when 79 is in phase (out of phase) with il()(> 0).
By contrast, if ig = 0 and Iy #0, a different long-wave mode from the surface mode
appears due to the deflection of surfactant concentration, and it is referred to as the
surfactant mode/Marangoni mode. In this case, the phase speed of the surfactant mode
can be obtained from the surfactant transport equation (3.32) and is given by

com=1+r1, (3.43)

where the subscript notation ‘m’ is used for the surfactant mode/Marangoni mode. It
should be noted that the leading-order phase speed for the surface mode is greater than
the leading-order phase speed for the surfactant mode. In other words, to leading order,
the surfactant mode travels slower than the surface mode. Furthermore, the compliant
substrate has no influence on the leading-order phase speeds for the surface mode and
surfactant mode respectively.

3.4. Order-O(k*) analysis
Now we collect the second-order equations, i.e. the equations of order O(k%)
i +ov2 =0, 0<y<I, (3.44)
Reli(U — co)uy — icritg + 0y,Uv2] +ip1 — (Oyyita —ip) =0, 0=<y <1, (3.45)
920 A23-12
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Rei(U — o)1 + dypr — dyytn =0, 0<y <1, (3.46)
dyiia +10) + hadyU +iMaly =0, aty=1, (3.47)
—p2 +2cotbhy + 20,0y — 2id,Uhy + (1/Ca)hg =0, aty =1, (3.48)
(U = &) —ic1 Ty + iy +id,Uhy =0, aty=1, (3.49)
(U —¢o)hy —ic1hyg— 92 =0, aty=1, (3.50)
—Ci&gito — iCp (o1 + E1iio) + Crilo + Ckiia + p2 — 2cot Oy
—2[8,0y —idyUfj1]1 =0, aty=0, (3.51)
ity +0,Ufj =0, aty=0, (3.52)
¥y 4+ i(Gofy + ¢170) =0, aty = 0. (3.53)

3.5. Surface mode

After solving the above second-order equations (3.44)—(3.53), iz, v and p; are determined
and then, inserting the expression of v; in the kinematic equation (3.50), the expression of
¢ for the surface mode can be obtained as

- - |4 2 1 4 cot? 0
cl=cCiy=1 E(Z—l—f)Re—gcot9—§(2+r)Ma+— ,

3.54
3 Cx (3.54)

where the first term shows the destabilizing effect of inertia, the second term shows
the stabilizing effect of depthwise gravity, the third term shows the stabilizing effect
of insoluble surfactant and the fourth term shows the destabilizing effect of compliant
substrate. Using the criterion for neutral stability (¢; & kc; = 0 as k — 0), one can obtain
the critical Reynolds number for the surface mode

15 5 cot?6  5cotd 2coth 15

Re, = Re,;, = ——— cot0+—Ma — = 1-— + —Ma.
2(2+7) 8 2+1) Ck 2(2+7) Ck 8

(3.55)

Obviously, the critical Reynolds number Re.g for the surface mode is modified by the
Marangoni number Ma, imposed shear stress T and spring stiffness Cx. However, it
recovers the result of Alexander et al. (2020) very well in the absence of surface surfactant
and imposed shear stress (Ma — 0 and T — 0). Furthermore, it coincides with the result
of Wei (2005) as soon as the effect of a compliant substrate is ignored, i.e. if the spring
stiffness Cx — oo. In fact, in leading order, the compliant substrate behaves as a rigid
wall in the limit Cx — oo (Alexander et al. 2020). In particular, the critical Reynolds
number Re.; for the surface mode enhances with the increasing value of Marangoni
number. Hence, the Marangoni number, or equivalently, the insoluble surfactant, has a
stabilizing effect on the surface mode (Wei 2005). Further, if the imposed shear stress T
acts in the co-flow direction, the critical Reynolds number for the surface mode reduces
with the increasing value of T when the effect of the compliant substrate is neglected.
Hence, the imposed shear stress has a destabilizing effect on the surface mode (Smith
1990; Samanta 2014a). If the effect of the compliant substrate is incorporated, the critical
Reynolds number for the surface mode reduces. Although, this reduction process of critical
Reynolds number, or equivalently, the destabilizing effect of compliant substrate on the
surface mode, can be weakened by gradually increasing the value of spring stiffness Cg
from its critical value Cx = 2cotf (Cx # Cf). As discussed by Alexander et al. (2020),
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Figure 4. Variation of critical Reynolds number Re,, for the surface mode with the spring stiffness Cx when
6 = 45°. Solid line represents the result when Ma = 0 and 7 = 0. Dashed line represents the result when
Ma =1 and t = 0. Dotted line represents the result when Ma = 1 and 7 = 1. Dash-dotted line represents the
result when Ma = 1 and t = 2. Points are the results of Alexander et al. (2020).

the surface mode will be always unstable in the absence of insoluble surfactant when
Ck < C%, because the critical Reynolds number for the surface mode approaches zero
in the limit Cx — C% and it becomes negative when Cx < Ck. But in the presence of
insoluble surfactant, it is feasible to have a positive value of critical Reynolds number for

the surface mode if the following condition for the Marangoni number Ma is satisfied:

4coth |:200t0

a > — 1] = Ma*, (3.56)
32+1) | Ck

when Cx < Cx (Cx # Cg). Hence, for Ma > Ma*, the critical value of the Marangoni
number, there exists a stable range of Reynolds number where the primary instability
induced by the surface mode can be made stable even though Cx < Cg. Otherwise,
the infinitesimal disturbance will be unstable if Ma < Ma* when Cx < Cg. The above
physical phenomenon is illustrated in figure 4. Indeed, the curve for Re s approaches zero
in the limits Cx — CI*( =2, Ma — 0 and © — 0, specified by a solid line. However,
Re s no longer becomes zero at Cx = C}‘( as soon as the effect of Marangoni number
(Ma = 1) is included in the current flow model. Instead, the curve for Re.; intersects
the Ck-axis at a lower value of Cg than C%, specified by a dashed line. Obviously, this
new result is different from that of Alexander et al. (2020) where the insoluble surfactant
is absent (Ma = 0). Further, the interesting result is that the critical Reynolds number
reduces (enhances) in the presence of imposed shear stress if Cx > (< Cf), specified by
dotted and dash-dotted lines, respectively. Hence, the imposed shear stress shows a dual
role in the surface mode, i.e. a destabilizing effect when Cx > Cj and a stabilizing effect
when Cx < Ck.

3.6. Surfactant mode

After solving the above second-order equations (3.44)—(3.53) and inserting the expression
of i1 in the surfactant transport equation (3.49), the expression of ¢; for the surfactant
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mode can be written as

M
& =51m=i[T “] (3.57)

2

As discussed by Wei (2005) and Bhat & Samanta (2018), there exists an unstable surfactant
mode in the presence of imposed shear stress t for a surfactant-laden fluid flow, and it can
be made stronger by increasing the values of imposed shear stress and Marangoni number.
Further, from the second-order analytical calculation, one can report that the Reynolds
number Re, or equivalently, the inertia, has no impact on the expression of the first-order
temporal growth rate (kc; o c| as k — 0) for the surfactant mode. In addition, it is evident
that the temporal growth rate for the surfactant mode is not influenced by the compliant
substrate either.

3.7. Order-O(k3) analysis
Now we collect the third-order equations, i.e. the equations of order O(k>)

i +0yv3 =0, 0<y=<l, (3.58)

Reli(U — Co)ita — i¢yit) — icaitg + d,U3] +ipa — (Byyiiz — 1) =0, 0<y <1,
(3.59)
Re[i(U — S)02 — ic101] + dyp3 — (dyy03 —01) =0, 0<y <1, (3.60)
dyit3 + 102 + h3dy U +iMal> =0, aty =1, (3.61)
—p3 + 2 cotOhs + 28y i3 — 2id, Uy + (1/Ca)hy =0, aty =1, (3.62)
(U = &) —ie1 I —ic2 [ + ity +19,Uhy = 0, aty =1, (3.63)
(U — &)hy — i¢1hy — icohg — 93 =0, aty =1, (3.64)

—C1(&Gi + 20¢17i0) — iCp(@oiiz + 171 + E27i0) + Crifi + Ckila

+jp3 — 2cot 73 — 2[dy03 — id, U] =0, aty =0, (3.65)
iy +8,Uij3 =0, aty=0, (3.66)
v3 +1i(Con2 +¢171 + C2mp) =0, aty =0. (3.67)

After solving the third-order equations (3.58)—(3.67), u3, vs and p3 are determined and
then, inserting the expressions of v3 and i in the kinematic equation (3.64) and surfactant
transport equation (3.63), the expressions of ¢; for the surface mode and surfactant mode
can be respectively obtained as

. 2(1+‘[)+ 40+7‘[ R w0l 2cotf
== 3 63 36) ¢ Cx

32 N 205t N 1172 R
63 504 144 )¢

n 1+r Macote 11 2cotf . 5+5r MaRe + r+r2 M
6 3)" Cx 6 T 12) T\ Ty )M

2 T 2 24+1t)Cp] 2cotf | 2cotfh
e - — , 3.68
+[<3+3)+{3 3 } CK] Cx (5:68)
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Figure 5. (a) Variation of temporal growth rate kc; with wavenumber k for the surface mode when Re = 1
and Cx = 1 < C%. Solid, dashed and dotted lines stand for 7 = 0.1, T = 0.2 and t = 0.3 respectively. The
arrow shows the direction of decreasing temporal growth rate with increasing 7. (b) Variation of temporal
growth rate kc; with wavenumber £ for the surface mode when Re = 2.5 and Cx =3 > C}‘(. Solid, dashed and
dotted lines stand for t = 0.1, ¢ = 0.2 and = = 0.3, respectively. The arrow shows the direction of increasing
temporal growth rate with increasing t. The other parameter values are C; = Cp = C7 =0, Ca = 2, Ma = 1
and 0§ = 45°. The results are plotted by solving (3.70).

- 1 + "\ Macoto 1 2cotf T n 2 M (3.69)
Gr=Cm=—|=-+75)Maco - — |z +— | Ma". .
2 6 3 Ck 2" 4

It should be noted that the effect of the damping coefficient Cp is now introduced in the
expression for ¢y for the surface mode. On the other hand, the expression of ¢y, for the
surfactant mode is modified by the spring stiffness Ck, the only contribution being from
the compliant substrate. Furthermore, the above expressions for ¢o; and ¢5,, coincide with
the results of Bhat & Samanta (2019) when the influence of the compliant substrate is
neglected. The little differences in non-dimensional parameters are the consequence of
the choice of various dimensionless scales. Similarly, solving the fourth-order (0O(k*))
equations, we obtain the expressions of ¢35 and ¢3,, for the surface mode and surfactant
mode respectively (see Appendix A). Obviously, the expression of ¢3,, for the surfactant
mode is explicitly dependent on Re, Cx and Cp. Using the various-order solutions, the
expression of the complex wave speed ¢ for the surface mode and surfactant mode can be
respectively written as

¢ = ¢5 = Cog + kC15 + k2o + K835 + O™ = ¢ +ici, (3.70)
€= Cm = Com + k1 + K2om + K>S3m + OK*) = ¢, + ic;, (3.71)

where ¢, and kc; specify the phase speed and temporal growth rate of the infinitesimal
disturbance, respectively. Therefore, based on the long-wave analysis, one can claim that
the inertia, or equivalently the Reynolds number Re, has a weak effect on the temporal
growth rate for the surfactant mode because the effect of Re appears in the expression of
order O(k3). Next, the long-wave results will be produced based on (3.70) and (3.71). In
order to confirm the dual behaviour of the imposed shear stress on the surface mode in two
distinct regimes of Cx (Cx < Cx & Cg > Cyx), we compute the temporal growth rate for
the surface mode when the imposed shear stress varies. Figure 5 demonstrates the variation
of temporal growth rate kc; with wavenumber k for the surface mode. It is observed that the
temporal growth rate for the surface mode attenuates with the increasing value of 7 when
Ck < C%, but it enhances with the increasing value of T when Cg > C[*{. These facts
fully ensure the dual role of imposed shear stress in the surface mode and are consistent
with the results reported in figure 4. Hence, the imposed shear stress has a stabilizing
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Figure 6. (a) Variation of temporal growth rate kc; with wavenumber k for the surface mode when Re = 1 and
Ck =1 < C. Solid, dashed and dotted lines stand for Ma = 0.8, Ma = 0.9 and Ma = 1.0, respectively. The
arrow shows the direction of decreasing temporal growth rate with increasing Ma. (b) Variation of temporal
growth rate kc; with wavenumber k for the surface mode when Re =1 and Cx =3 > Cg. Solid, dashed
and dotted lines stand for Ma = 0.1, Ma = 0.2 and Ma = 0.3 respectively. The arrow shows the direction
of decreasing temporal growth rate with increasing Ma. The other parameter values are C; = Cp = Cr =0,
Ca=2,t=0.1and § = 45°. The results are plotted by solving (3.70).

(@), (<10 | | (b), (10
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k k
Figure 7. (a) Variation of temporal growth rate kc; with wavenumber k for the surfactant mode when Cp = 1.
Solid, dashed and dotted lines stand for Cx = 0.5, Cx = 0.6 and Cgx = 0.7 respectively. The arrow shows the
direction of increasing temporal growth rate with increasing Cg. (b) Variation of temporal growth rate kc;
with wavenumber & for the surfactant mode when Cx = 0.5. Solid, dashed and dotted lines stand for Cp = 1,
Cp = 1.25 and Cp = 1.5 respectively. The arrow shows the direction of increasing temporal growth rate with
increasing Cp. The other parameter values are Re = 0.1, Ca = 2, Ma = 0.1, t = 0.1 and 6 = 45°. The results
are plotted by solving (3.71).

effect on the surface mode when Cx < C,*<. However, it shows a destabilizing effect on
the surface mode when Cg > C}"(. Further, in order to confirm the stabilizing effect of the
Marangoni number on the surface mode, we produce the temporal growth rate again for the
surface mode when the Marangoni number varies rather than t. The result can be found
in figure 6. In this case, the temporal growth rate for the surface mode attenuates in both
regimes of Cx (Cx < Cyx & Cg > C,*() as soon as the Marangoni number increases. The
above results ensure the stabilizing effect of the Marangoni number on the surface mode.
Hence, for a surfactant-laden fluid flowing down a compliant substrate, one can obtain a
stable range of Reynolds number for the surface mode when Cx < Cy. Furthermore, in
order to analyse the effects of wall parameters Cx and Cp on the surfactant mode, the
temporal growth rate for the surfactant mode is plotted in figure 7. Note that the temporal
growth rate for the surfactant mode enhances with increasing values of spring stiffness Cg
and damping coefficient Cp. Hence, both spring stiffness and damping coefficient exhibit
a destabilizing effect on the surfactant mode. Apparently, it seems that the effect of Cg
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is more discernible than that of Cp on the surfactant mode. Basically, in the presence
of flexible substrate, a non-zero first-order longitudinal fluid velocity component | is
generated in the case of the surfactant mode. This fact is different from the study of
surfactant-laden shear-imposed flow over a rigid substrate (Wei 2005; Bhat & Samanta
2019), where first-order velocity components of the perturbation fluid are identically zero
for the surfactant mode. As a result, in the present case, the additional longitudinal shear
flow boosts the shear-induced Marangoni instability through the perturbation tangential
stress balance equation and yields a destabilizing effect.

4. Linear stability analysis in the arbitrary wavenumber regime

In order to investigate the linear stability of an infinitesimal disturbance in the arbitrary
wavenumber regime, we shall formulate the Orr—Sommerfeld-type boundary value
problem for a shear-imposed surfactant-laden fluid flowing down a compliant substrate. To
this end, the perturbation streamfunction v/’ is introduced from the perturbation continuity
equation (3.2) by using the relations «’ = 9,y" and v" = —d,y'. Then, the amplitude of
streamfunction ¥ can be expressed in terms of the amplitudes of perturbation velocity
components & and v as

=W, U=—iky. (4.1a,b)

Substituting (4.1a,b) in (3.12)—(3.20) and eliminating pressure terms from the perturbation
momentum equations, we obtain the following Orr—Sommerfeld-type boundary value

problem:

Byyyy ¥ — 220y + kM) — Reik[(U — ) By — kK29) — 8, U¥]1 =0, 0<y<I,

(4.2)
dy ¥ + KU + hdy U + ikMal’ =0, aty =1, (4.3)

(Byyy ¥ — 3k*3y) — Rei k[(U — ©)dy ¥ — ¥, U]
—ikh[2cotf — 2ikd,U + k*/Ca] =0, aty=1, (4.4)
(U—o) + 33y +3,Uh=0, aty=1, (4.5)
U=-—ch+¥ =0, aty=1, (4.6)

—Clik* i + CpkPci + Cik’#i + Crik’ 7 + Ck ikij — 2ik cot 07

+ @y ¥ — K23,9) =0, aty=0, (4.7)
W +3,Ui =0, ¥ —cij=0, aty=0. (4.8)

The above fourth-order boundary value problem (4.2)—(4.8) is solved numerically based
on the Chebyshev spectral collocation method (Schmid & Henningson 2001; Samanta
2020a). As a consequence, the amplitude of the perturbation streamfunction ¥ (y) is
expanded in truncated series of Chebyshev polynomials

N
V) =Y Wiy, (4.9)
i=0
where T;( y) are Chebyshev polynomials of the first kind, N is a positive integer and 1; are

constant coefficients to be determined. Since the Chebyshev polynomials are defined over
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the domain —1 < y < 1, the domain of mainstream fluid layer is shifted from 0 <y < 1to
—1 < x < 1 by using the transformation x = (2y — 1). Accordingly, the partial derivatives
are also transferred as /9y — 28/dx, 82/9y> — 49%/9x>, and so on. Inserting the
series expansion (4.9) in the Orr—Sommerfeld-type boundary value problem (4.2)—(4.8),
the Chebyshev functions are computed at the Gauss—Lobatto collocation points x; =
cos(7j/N), which are extrema of the Chebyshev polynomials, where j = 0, ..., N. Finally,
the fourth-order boundary value problem is recast into a polynomial eigenvalue problem

[*As + cA; + AglX =0, (4.10)

where c is the eigenvalue, A3, A; and Ay are square matrices of order (N + 1) x (N + 1)
and X = [1/70, Jfl, R 1/~fN]T is a column matrix. It should be useful to mention here that
the eigenvalues are computed numerically by using the MATLAB routine polyeig. The
most unstable temporal modes will be identified and presented when the flow parameters
vary.

4.1. Validation of the numerical code

Before producing the current results, the numerical code is validated with the available
results of the literature. Consequently, we choose the parameter values as given in
Alexander ef al. (2020) C;=1,Cp=1,Cg=1,Cr=1,Ca=1,Ma=0, 7 =0 and
0 = 45°. Figure 8 exhibits the neutral curve and temporal growth rate for the surface
mode when the wall parameter Ck alters. It should be noted that the current results
capture the results of Alexander et al. (2020) very well in appropriate limits, i.e. when
the flow parameter values are the same as specified in Alexander et al. (2020). Apparently,
it seems that there occurs subcritical instability in the finite wavenumber regime with a
decreasing value of spring stiffness Ck, i.e. the finite wavelength instability induced by
the surface mode may occur before criticality obtained from the long-wave analysis (see
figure 8a). In particular, the primary instability for the given parameter values begins at
Ck = 5 when the Reynolds number exceeds its critical value. As soon as Ck decreases, the
finite wavelength subcritical instability generated by the surface mode occurs at a lower
Reynolds number than the critical Reynolds number. If Ck is further reduced (Cx = 2.6),
the finite wavelength instability even takes place at zero Reynolds number. In this case,
we have found an unstable range of finite wavenumber where instability occurs despite
the value of zero Reynolds number, which indicates the existence of inertialess instability
induced by the surface mode in the finite wavenumber regime (the discussion of inertialess
instability analysis can be found in Appendix B). The associated unstable region magnifies
with the decreasing value of Cg. The above results are also confirmed through the plot
of temporal growth rate demonstrated in figure 8(»). Obviously, there exists an unstable
range of finite wavenumber at Cx = 2.6, where the temporal growth rate is positive, as
expected. Moreover, the temporal growth rate intensifies with the decreasing value of Cg
and supports the result reported in figure 8(a). Hence, the increasing value of Cg has a
stabilizing effect on the surface mode. In order to compare with the results acquired from
the long-wave analysis, the critical Reynolds number for the surface mode is computed
numerically and verified with that obtained from the long-wave analysis. Table 1 shows
an excellent agreement between them. Moreover, it is observed that the critical Reynolds
number for the surface mode enhances with the increasing value of Ck, which is fully
consistent with the stabilizing effect of Ck on the surface mode.

Following Alexander et al. (2020), if a particular set of wall parameters (C; =1,
Cg=1, Cr=1, Ck =5, Cp =0.32) is preferred in the numerical simulation, a new
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Figure 8. (@) Variation of neutral curve for the surface mode in the (Re, k) plane for different values of Ck.
Solid, dashed, dotted and dash-dotted lines stand for Cx = 5, Cx = 3, Cx = 2.6 and Cg = 2 respectively. The
arrow shows the direction of decreasing unstable region with increasing Ck. (b) Variation of temporal growth
rate kc; with wavenumber k for the surface mode when Re = 0.2. Solid, dashed, dotted and dash-dotted lines
stand for Cx = 2.6, Cx = 2.4, Cx = 2.2 and Cx = 2 respectively. The arrow shows the direction of decreasing
temporal growth rate with increasing Ck. The other parameter values are C;=1,Cp=1,Cp=1,Cr =1,
Ca=1,Ma=0,t =0andf = 45°. Here, U and S represent unstable and stable regions. Points are the results
of Alexander er al. (2020). The results are plotted by solving the eigenvalue problem (4.10).

Critical Reynolds number Cg =3 Cx=4 Cx=5 Cx=6 Cx=7 Cgx=38

Analytical (Regs) 0.417 0.625  0.75 0.833 0893  0.937
Numerical (Res) 0.416 0.625 0751  0.835  0.895  0.939

Table 1. Analytical and numerical comparison of critical Reynolds number for the surface mode when Ck
varies. The other parameter valuesare C; = 1,Cp = 1,Cp = 1,Cr =1,Ca = 1,Ma = 0,7 = 0and 0 = 45°.

temporal mode, the so-called wall mode, appears in the (Re, k) plane (see figure 9a). It
should be noted that the primary instability induced by the wall mode emerges in the
finite wavenumber regime instead of the long-wave regime, and the unstable domain
responsible for the wall mode magnifies with the decreasing value of Cp. Hence, the
increasing value of damping coefficient Cp has a stabilizing effect on the wall mode.
Moreover, the primary instability generated by the wall mode occurs even at zero Reynolds
number when Cp = 0.3, which indicates the existence of inertialess instability induced by
the wall mode in the finite wavenumber regime. In order to strengthen the above result,
the temporal growth rate for the wall mode is also computed numerically and illustrated
in figure 9(b) when Cp varies. Obviously, the temporal growth rate attenuates as soon
as Cp increases and ensures the stabilizing effect of Cp on the wall mode. To take into
account the effect of Cx on the wall mode, the numerical simulation is again performed
when the wall parameter Cx varies while Cp = 0.32 is fixed. The associated result is
depicted in figure 10(a). Note that the unstable domain for the wall mode reduces with the
increasing value of Ck, and this fact is followed by the successive increment of critical
Reynolds number. Hence, increasing spring stiffness Cx shows a stabilizing effect on the
wall mode as predicted by the damping coefficient Cp on the wall mode. Figure 10(b)
displays the associated temporal growth rate for the wall mode when Ck alters. Obviously,
the maximum temporal growth rate attenuates with the increasing value of Cg, which is
fully consistent with the result reported in figure 10(a). As discussed by Alexander e al.
(2020), the compliant substrate behaves gradually as a rigid substrate with increasing
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Figure 9. (a) Variation of neutral curve for the wall mode in the (Re, k) plane for different values of Cp.
Solid, dashed and dotted lines stand for Cp = 0.3, Cp = 0.32 and Cp = 0.34 respectively. The arrow shows
the direction of decreasing unstable region with increasing Cp. (b) Variation of temporal growth rate kc; with
wavenumber & for the wall mode when Re = 2. Solid, dashed and dotted lines stand for Cp = 0.3, Cp = 0.32
and Cp = 0.34 respectively. The arrow shows the direction of decreasing temporal growth rate with increasing
Cp. The other parameter values are C; = 1,Cx =5, Cp=1,Cr=1,Ca=1,Ma =0, 7 =0 and 6 = 45°.
Here, U and S represent unstable and stable regions. Points are the results of Alexander et al. (2020). The
results are plotted by solving the eigenvalue problem (4.10).
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Figure 10. (a) Variation of neutral curve for the wall mode in the (Re, k) plane for different values of Ck. Solid,
dashed and dotted lines stand for Cx = 5, Cx = 7.5 and Cx = 10 respectively. The arrow shows the direction
of decreasing unstable region with increasing Ck. (b) Variation of temporal growth rate kc¢; with wavenumber
k for the wall mode when Re = 3. Solid, dashed and dotted lines stand for Cx = 5, Cx = 7.5 and Cgx = 10
respectively. The arrow shows the direction of decreasing temporal growth rate with increasing Cg. The other
parameter values are C; = 1,Cp =0.32,Cp =1,Cr =1,Ca=1,Ma = 0,7t = 0 and 6 = 45°. Here, U and
S represent unstable and stable regions. Points are the results of Alexander et al. (2020). The results are plotted
by solving the eigenvalue problem (4.10).

values of the wall parameters Cx and Cp, which precludes the wall mode evolving
with time, and is probably the reason for the stabilizing effects of Cx and Cp on the
wall mode.

4.2. Effect of inclination angle on the wall mode

As the critical Reynolds number for the surface mode is determined analytically, which
decreases with the increasing value of 6, so the inclination angle has a destabilizing
effect on the surface mode. On the other hand, the critical Reynolds number for the
wall mode cannot be determined analytically based on the long-wave analysis because
it appears in the finite wavenumber regime. Therefore, in order to examine the solo effect
of inclination angle on the wall mode, 6 is changed in the numerical simulation when
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Figure 11. (@) Variation of neutral curve for the wall mode in the (Re, k) plane for different values of 6. Solid,
dashed, dotted and dash-dotted lines stand for 8 = 35°, 6 = 40°, & = 45° and 6 = 50° respectively. The arrow
shows the direction of the increasing unstable region with increasing 6. (b) Variation of temporal growth rate
kc; with wavenumber & for the wall mode when Re = 3. Solid, dashed, dotted and dash-dotted lines stand for
0 =35°,6 =40°, 0 =45° and 0 = 50° respectively. The arrow shows the direction of increasing temporal
growth rate with increasing 6. The other parameter values are C; =1, Cxk =5, Cp =032, Cp =1, Cr =1,
Ca=1,Ma =0 and t = 0. Here, U and S represent unstable and stable regions. The results are plotted by
solving the eigenvalue problem (4.10).

other parameter values are fixed. Figure 11 illustrates the neutral curve and temporal
growth rate for the wall mode when 6 changes. It is observed that the unstable domain for
the wall mode magnifies significantly with the increasing value of inclination angle, and
this fact is followed by the successive reduction of the critical Reynolds number. Hence,
the increasing value of inclination angle has a destabilizing effect on the wall mode, as
speculated for the surface mode. In this case also, the primary instability induced by
the wall mode occurs at zero Reynolds number when 6 = 50°. Hence, we can obtain an
unstable range of finite wavenumber even at zero Reynolds number where the infinitesimal
disturbance will be susceptible to instability by the wall mode. This result indicates the
existence of inertialess instability generated by the wall mode in the finite wavenumber
regime. Basically, the stabilizing influence of depthwise gravity on the primary instability
weakens as soon as the inclination angle increases. This fact can be attributed to the cause
for the destabilizing effect of inclination angle on the wall mode.

4.3. Effect of Marangoni number on the surface mode and wall mode

In this subsection, we shall solely explore the effect of Marangoni number on the primary
instabilities induced by the surface mode and wall mode. Consequently, we set T = 0. In
accordance with the work of Alexander et al. (2020), the parameter values are selected
as Cr=1,Cp =032, Ck =5, Cr =1 and 6 = 45°. As discussed by Alexander et al.
(2020), we have numerically found two dominant temporal modes, the so-called surface
mode and wall mode, when the Reynolds number is low and the inclination angle is
high. The associated neutral curves for the surface mode and wall mode are displayed
in figure 12(a) when the Marangoni number varies. It is observed that the unstable region
for the wall mode is enhanced but the unstable region for the surface mode is reduced
with an increasing value of the Marangoni number. Hence, the Marangoni number has
a destabilizing effect on the wall mode but shows a stabilizing effect on the surface
mode. The interesting fact is that the instability for the wall mode occurs even at zero
Reynolds number with the increasing value of Marangoni number. Therefore, one can
claim that there exists inertialess instability induced by the wall mode at higher values
of the Marangoni number. Further, the critical Reynolds number for the wall mode is
lower than that for the surface mode. Hence, the finite wavenumber primary instability
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Figure 12. (@) Variation of neutral curves for the surface mode and wall mode in the (Re, k) plane for different
values of Ma when Cp = 0.32. Solid, dashed, dotted and dash-dotted lines stand for Ma = 0, Ma = 0.1,
Ma = 0.2 and Ma = 0.3 respectively. (b) Variation of neutral curves for the surface mode and wall mode in
the (Re, k) plane for different values of Ma when Cp = 0.38. Solid, dashed and dotted lines stand for Ma = 0,
Ma = 0.3 and Ma = 0.6 respectively. (¢) Variation of temporal growth rate kc; with wavenumber k for the
surface mode when Re = 2 and Cp = 0.32. Solid, dashed, dotted and dash-dotted lines stand for Ma = 0,
Ma = 0.1, Ma = 0.2 and Ma = 0.3 respectively. The arrow shows the direction of decreasing temporal growth
rate with increasing Ma. (d) Variation of temporal growth rate kc; with wavenumber k for the wall mode when
Re = 0.6 and Cp = 0.32. Solid, dashed, dotted and dash-dotted lines stand for Ma = 0, Ma = 0.1, Ma = 0.2
and Ma = 0.3 respectively. The arrow shows the direction of increasing temporal growth rate with increasing
Ma. The other parameter values are C; =1, Cxk =5,Cp=1,Cr =1, Ca=1,t =0 and § = 45°. Here, U
and S represent unstable and stable regions. The results are plotted by solving the eigenvalue problem (4.10).

induced by the wall mode commences before the primary instability generated by the
surface mode. As soon as the Reynolds number increases, the surface mode dominates
the primary instability in the long-wave regime instead of the wall mode. This result
indicates the existence of a mode switching process in the finite wavenumber regime.
On the contrary, if the value of wall damping coefficient Cp is slightly increased and set
to Cp = 0.38, the opposite phenomenon occurs, i.e. the critical Reynolds number for the
surface mode is no longer higher than that for the wall mode. Instead, it is lower than
that for the wall mode at Ma = 0, which can be found in figure 12(b). Therefore, the
primary instability is initially dominated by the surface mode rather than the wall mode
when Ma = 0 and Cp = 0.38. If the Marangoni number is increased in the numerical
simulation, the result again reverses at Ma = 0.6, i.e. the critical Reynolds number for the
wall mode is lower than that for the surface mode. It seems that there exists a competition
between the wall mode and surface mode with the variation of parameter values to trigger
the primary instability initially. In order to confirm the above results, the temporal growth
rates for the surface mode and wall mode are revealed in figures 12(c) and 12(d) where
Re =2 and Re = 0.6, respectively. Obviously, the temporal growth rate for the surface
mode becomes weaker while the temporal growth rate for the wall mode becomes stronger
as soon as the Marangoni number increases. These results are fully in favour of the results
reported in figure 12(a).
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Figure 13. (@) Variation of neutral curves for the surface mode and wall mode in the (Re, k) plane for different
values of r when Cp = 0.32. Solid, dashed and dotted lines stand for t = 0, 7 = 0.1 and T = 0.2 respectively.
(b) Variation of neutral curves for the surface mode and wall mode in the (Re, k) plane for different values
of T when Cp = 0.38. Solid, dashed and dotted lines stand for t =0, 7 = 0.1, and 7 = 0.2 respectively.
(¢) Variation of temporal growth rate kc; with wavenumber k for the surface mode when Re = 1 and Cp =
0.32. Solid, dashed and dotted lines stand for t = 0, T = 0.1 and v = 0.2 respectively. The arrow shows the
direction of increasing temporal growth rate with increasing 7. (d) Variation of temporal growth rate kc; with
wavenumber k for the wall mode when Re = 2 and Cp = 0.32. Solid, dashed and dotted lines stand for T = 0,
7 =0.1 and 7 = 0.2 respectively. The arrow shows the direction of decreasing temporal growth rate with
increasing t. The other parameter values are C; = 1,Cx =5,Cp =1,Cr =1,Ca=1,Ma = 0 and 0 = 45°.
Here, U and S represent unstable and stable regions. The results are plotted by solving the eigenvalue problem
(4.10).

4.4. Effect of imposed shear stress on the surface mode and wall mode

In order to investigate the solo effect of imposed shear stress on the primary instabilities
induced by the surface mode and wall mode, we set Ma =0, Cx =5 and Cp = 0.32.
Figure 13(a) displays the neutral curve in the (Re, k) plane when t varies. It is observed that
both the surface mode and wall mode appear in the neutral diagram as before. However,
the unstable region for the surface mode is magnified while the unstable region for the
wall mode decays with the increasing value of imposed shear stress. Hence, the imposed
shear stress has a destabilizing effect on the surface mode but shows a stabilizing effect
on the wall mode. This result is fully opposite to the effect of Marangoni number on the
surface mode and wall mode. Furthermore, the critical Reynolds number for the surface
mode is greater than that of the wall mode at T = 0. Therefore, at the outset, the primary
instability is dominated by the wall mode in the finite wavenumber regime. As soon as T
increases, the reverse phenomenon happens, i.e. the critical Reynolds number for the wall
mode is greater than that of the surface mode at r = 0.2. Hence, the primary instability
is triggered by the surface mode at the outset instead of the wall mode when t = 0.2.
Again, the mode switching process takes place with the increasing value of imposed shear
stress. If the wall damping coefficient Cp is slightly shifted to a higher value Cp = 0.38 as
before, the primary instability is always dominated by the surface mode at the outset (see
figure 130). In this case, the wall mode has no chance to trigger the primary instability at
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Figure 14. (a) Variation of neutral curve for the surface mode in the (Re, k) plane for different values of Cj.
Solid, dashed, dotted, dash-dotted and thick lines stand for C; = 1, C; = 1.5, C; =2, C; = 2.4 and C; = 2.45,
respectively. The arrow shows the direction of the increasing unstable region with increasing C;. (b) Variation
of neutral curve for the wall mode in the (Re, k) plane for different values of Cy. Solid, dashed and dotted

lines stand for C; = 1, C; = 1.05 and C; = 1.1, respectively. The arrow shows the direction of the increasing
unstable region with increasing C;. The other parameter values are Cx =5, Cr =1, Cp =1, Cp = 0.32,
Ca=1,Ma=0,7t=0and 6 =45°. Here, U and S represent unstable and stable regions. The results are

plotted by solving the eigenvalue problem (4.10).

the beginning, because the critical Reynolds number for the wall mode is always greater
than that of the surface mode. Figures 13(c) and 13(d) demonstrate the associated temporal
growth rates for the surface mode and wall mode, respectively. It should be noted that the
temporal growth rate for the surface mode becomes stronger while the temporal growth
rate for the wall mode becomes weaker in the presence of imposed shear stress. These
results are fully consistent with the results reported in figure 13(a).

4.5. Effect of wall parameters Cy, Ct and Cp on the surface mode and wall mode

In this subsection, we shall explore the effects of wall parameters C;, Cr and Cg on the
surface mode and wall mode, respectively. First, we shall vary the compliant substrate
inertia, or equivalently, C; when other wall parameters are fixed. The results are displayed
in figure 14(a). It should be noted that the unstable domain associated with the surface
mode magnifies significantly with the increasing value of C;. However, the critical
Reynolds number from which the neutral curves emanate is the same for all neutral curves
because the critical Reynolds number for the surface mode acquired from the long-wave
analysis does not depend on the wall parameter C; (see (3.55)). Moreover, we can perceive
the existence of subcritical instability with the increasing value of Cj. In particular, the
primary instability generated by the surface mode occurs at C; = 1 when the Reynolds
number exceeds its critical value. As soon as the wall parameter C; increases, the neutral
curve distorts from its initial shape and exhibits subcritical instability at C; = 2.4. In
this case, the primary instability responsible for the surface mode happens in the finite
wavenumber regime even when the Reynolds number is lower than the critical value. If
Cy is further increased, the primary instability even takes place in the finite wavenumber
regime despite the value of zero Reynolds number when C; = 2.45. Therefore, there exists
inertialess instability induced by the surface mode in the finite wavenumber regime with
the increasing value of C;. On the other hand, the slight variation of C; has a significant
impact on the wall mode. The result can be found in figure 14(b). It should be noted that
the unstable region corresponding to the wall mode also magnifies with the increasing
value of Cj. This fact is followed by the successive reduction of critical Reynolds number
for the wall mode. Furthermore, there is possible to have inertialess instability in the finite
wavenumber regime induced by the wall mode as well with the increasing value of Cj.
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Figure 15. (@) Variation of neutral curves for the surface mode and wall mode in the (Re, k) plane for different
values of Cr when Cp = 1. Solid, dashed and dotted lines stand for Cr = 1, C7 = 3 and Cr = 5, respectively.
(b) Variation of neutral curves for the surface mode and wall mode in the (Re, k) plane for different values
of Cp when Cr = 1. Solid, dashed and dotted lines stand for Cp = 1, Cp = 5 and Cp = 10, respectively. The
other parameter values are C; = 1, Cx =5, Cp =0.32, Ca =1, Ma =0, t =0 and 6 = 45°. Here, U and S
represent unstable and stable regions. The results are plotted by solving the eigenvalue problem (4.10).

Hence, the wall parameter Cy has a destabilizing effect on the surface mode and wall mode.
Figure 15 reveals the variation of neutral curves for the surface mode and wall mode when
the wall parameters Cr and Cp change but (7 is fixed. In both cases, the unstable domains
associated with the surface mode and wall mode attenuate with the increasing values of
Cr and Cp respectively. Therefore, both wall parameters Cr and Cp have a stabilizing
effect on the surface mode and wall mode, respectively. It should be noted that the critical
Reynolds number for the surface mode does not alter with the variations of Cr and Cp.
This fact is fully consistent with the analytical expression of critical Reynolds number
for the surface mode supplied in (3.55). As the critical Reynolds number for the surface
mode is fixed with the variations of wall parameters Cr and Cp, there is a prospect for
the surface mode to dominate the primary instability at the beginning with the increasing
values of wall parameters Cr and Cp because the critical Reynolds number for the wall
mode reduces successively as long as Cr and Cp increase.

5. Linear stability analysis in the high Reynolds number regime

In this section, we shall explore the linear stability analysis of a surfactant-laden
shear-imposed fluid flowing down a compliant substrate when the Reynolds number is
high and the inclination angle is small. In fact, in this flow configuration, another temporal
mode different from the wall mode appears in the finite wavenumber regime, which is
referred to as the shear mode (Lin 1967; Bruin 1974; Chin et al. 1986; Floryan et al. 1987;
Samanta 2013b). Essentially, these distinct dominant eigenmodes are distinguished by their
different phase speeds. In order to retrieve these discrete modes, the eigenvalue problem
(4.10) is solved numerically for the given set of parameter values C; = 1, Cx = 10°,
Cp=10,Cp=1,Cr=1,Ca=1,Ma =0, t =0 and 6 = 4° (Alexander et al. 2020).
In fact, the large value of Ck is considered to recover the result of a rigid wall. The
results are demonstrated in figure 16 for two different values of wavenumber k = 0.5
and k = 3. It should be noted that the most unstable modes are the shear mode and the
surface mode when k = 0.5 and Re = 107 (see figure 16a). These discrete unstable modes
are recognizable because the phase speed of the shear mode is lower than that for the
surface mode. In this case, the wall mode does not emerge in the spectrum because the
wavenumber does not belong to the regime of appearance for the wall mode (Alexander
et al. 2020). As soon as the wavenumber is shifted to a higher value k = 3, the wall mode
emerges in the spectrum along with the surface mode because the wavenumber belongs
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Figure 16. Spectrum of the eigenvalue problem (4.10); (a) k = 0.5 and (b) k = 3. The other parameter values
are Re=10°,C;=1,Cxk =103, Cp=10,Cp=1,Cr=1,Ca=1,Ma=0, t =0 and 6 = 4°. The inset
shows a zoom of the surface mode.

to the regime of appearance for the wall mode (see figure 16b). In this case, the most
unstable modes are the wall mode and the surface mode, where the phase speed of the
wall mode is lower than that of the surface mode. However, the shear mode disappears
from the spectrum because the wavenumber lies beyond the regime of appearance for
the shear mode (Alexander et al. 2020). In order to differentiate their characteristics, the
eigenfunctions and the associated streamfunctions are computed numerically for the shear
mode, wall mode and surface mode and displayed in figure 17. First we consider the

case when Re = 10° and k = 0.5. In this case, the substantial change of eigenfunction
for the unstable shear mode occurs close to the centre zone of the mainstream fluid.
As a consequence, open vortices are generated in the centre zone of the mainstream
fluid (see figure 17a,b). However, for the unstable surface mode, the substantial change
of eigenfunction is noticed close to the fluid surface, which yields closed vortices in
the vicinity of the fluid surface (see figure 17¢,d). Obviously, the patterns of vortices
corresponding to the shear mode and surface mode are fully different. In the second case,
we choose Re = 10° and k = 3. In this case, the rapid change of eigenfunction for the
unstable wall mode occurs in the vicinity of the compliant wall rather than the centre
zone of the mainstream fluid. This fact causes open vortices that occupy the zone close
to the compliant wall (see figure 17¢,f). It should be noted that the pattern of vortices for
the wall mode is reverse to that of the shear mode. On the other hand, for the unstable
surface mode, the rapid change of eigenfunction occurs again close to the fluid surface,
as expected. As a result, the vortices occupy the zone in the vicinity of the fluid surface
(see figure 17g,h). Obviously, the pattern of vortices for the surface mode is similar to
that obtained as before when k = 0.5. However, the number of vortices increases when
k = 3. Here, we shall mainly focus on exploring the shear mode because this mode has
not been discussed in the previous sections. In order to decipher the solo effect of imposed
shear stress on the shear mode, we set the parameter values C; = 1, Cx = 104, Cp = 10,
Cp=1,Cr=1, Ca=1, Ma=0 and 6 = 4° as reported in the work of Alexander
et al. (2020) when the imposed shear stress varies. The result is depicted in figure 18(a).
It should be noted that the unstable domain generated by the shear mode magnifies
significantly with the increasing value of imposed shear stress, and this fact is followed
by the successive reduction of critical Reynolds number. Hence, the imposed shear stress
shows a destabilizing effect on the shear mode. This result is further strengthened by
exhibiting the result of temporal growth rate. Figure 18(b) displays that the maximum value
of temporal growth rate corresponding to the shear mode also enhances with the increasing
value of imposed stress. This fact ensures the destabilizing effect of imposed shear stress
on the shear mode. There is evidence that the effect of Marangoni number on the shear
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Figure 17. (a) Variation of normalized eigenfunction with cross-stream coordinate y for the shear mode when
k = 0.5. (b) Contour plot of streamfunction in the (x, y) plane for the shear mode when k = 0.5. (¢) Variation
of normalized eigenfunction with cross-stream coordinate y for the surface mode when k£ = 0.5. (d) Contour
plot of streamfunction in the (x, y) plane for the surface mode when k = 0.5. (e) Variation of normalized
eigenfunction with cross-stream coordinate y for the wall mode when k& = 3. (f) Contour plot of streamfunction
in the (x, y) plane for the wall mode when k = 3. (g) Variation of normalized eigenfunction with cross-stream
coordinate y for the surface mode when k = 3. (k) Contour plot of streamfunction in the (x, y) plane for the
surface mode when k = 3. The other parameter values are Re = 109, Cr=1,Cg = 10°, Cp=10,Cg =1,
Cr=1,Ca=1,Ma=0,t=0and6 = 4°. Solid and dashed lines represent the real and imaginary parts of
Y, respectively. The results are plotted by solving the eigenvalue problem (4.10).
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Figure 18. (a) Variation of neutral curve for the shear mode in the (Re, k) plane for different values of 7. Solid,
dashed and dotted lines stand for t =0, T = 0.1 and v = 0.2 respectively. The arrow shows the direction
of the increasing unstable region with increasing 7. (b) Variation of temporal growth rate kc; for the shear
mode with wavenumber k for different values of T when Re = 8000. Solid, dashed and dotted lines stand for
=0, 7 =0.1 and 7 = 0.2 respectively. The arrow shows the direction of increasing temporal growth rate
with increasing 7. The other parameter values are C; = 1, Cx = 104, Cp=10,Cg=1,Cr=1, Ca=1,
Ma = 0 and 6 = 4°. Here, U and S represent unstable and stable regions. The results are plotted by solving the
eigenvalue problem (4.10).
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Figure 19. (a) Variation of neutral curve for the shear mode in the (Re, k) plane for different values of Ma.
Solid, dashed and dotted lines stand for Ma = 0, Ma = 10 and Ma = 20, respectively. The arrow shows the
direction of the decreasing unstable region with increasing Ma. (b) Variation of temporal growth rate kc; for
the shear mode with wavenumber k for different values of Ma when Re = 9000. Solid, dashed and dotted lines
stand for Ma = 0, Ma = 10 and Ma = 20, respectively. The arrow shows the direction of decreasing temporal
growth rate with increasing Ma. The other parameter values are C; = 1, Cx = 104, Cp=10,Cg=1,Cr =1,
Ca=1,71=0and0 =1 = 1°/60. Here, U and S represent unstable and stable regions. The results are plotted
by solving the eigenvalue problem (4.10).

mode is not notable when the inclination angle is & = 4°. However, if the inclination angle
is reduced significantly and setto & = 1’ = 1°/60, a notable impact of Marangoni number
on the shear mode can be found. The associated result is illustrated in figure 19(a) when the
Marangoni number alters. In this case, the unstable domain responsible for the shear mode
decays significantly with the increasing value of Marangoni number. This fact is fully in
favour of the result of temporal growth rate shown in figure 19(b), where the temporal
growth rate corresponding to the shear mode attenuates as soon as the Marangoni number
increases. Hence, the Marangoni number has a stabilizing effect on the shear mode. It
should be useful to mention here that the effect of Marangoni number on the shear mode
is completely opposite to that of imposed shear stress on the shear mode. Furthermore,
to take into account the effects of spring stiffness and damping coefficient on the shear
mode, the numerical simulation is repeated again when the spring stiffness is varied while
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Figure 20. (a) Variation of neutral curve for the shear mode in the (Re, k) plane for different values of Cx when
Cp = 10. Solid, dashed and dotted lines stand for Cx = 10%, Cx = 2 x 10* and Cx = 10°, respectively. The
arrow shows the direction of the increasing unstable region with increasing Ck. (b) Variation of neutral curve
for the shear mode in the (Re, k) plane for different values of Cp when Cx = 10%. Solid, dashed and dotted lines
stand for Cp = 10, Cp = 10% and Cp = 103, respectively. The arrow shows the direction of increasing unstable
region with increasing Cp. The other parameter values are C; =1,Cp=1,Cr=1,Ca=1,Ma=0,t =0
and 0 =1 = 1°/60. Here, U and S represent unstable and stable regions. The results are plotted by solving
the eigenvalue problem (4.10).
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Figure 21. (a) Variation of neutral curve for the wall mode in the (Re, k) plane for different values of Ma when
7 = 0. Solid, dashed and dotted lines stand for Ma = 0, Ma = 10 and Ma = 20, respectively. (b) Variation
of neutral curve for the wall mode in the (Re, k) plane for different values of 7 when Ma = 0. Solid, dashed
and dotted lines stand for t =0, T = 0.1 and v = 0.2, respectively. The arrow shows the direction of the

increasing unstable region with increasing t. The other parameter values are Cgx = 10°, Cp = 10, C; = 1,
Cp=1,Cr=1,Ca=1 and 6 =4°. Here, U and S represent unstable and stable regions. Points are the
results of Alexander et al. (2020). The results are plotted by solving the eigenvalue problem (4.10).

the damping coefficient is fixed to Cp = 10. Figure 20(a) demonstrates the neutral curve
for the shear mode. It is observed that the unstable domain induced by the shear mode is
magnified rather than decaying with the increasing value of Cg, which is fully reverse to
the effect of Ck on the surface mode, where the increasing value of Cg shows a stabilizing
effect on the surface mode. Next, the effect of damping coefficient Cp on the shear mode is
demonstrated in figure 20(b). Obviously, the unstable domain generated by the shear mode
magnifies as soon as Cp increases. The similar result was earlier predicted by Carpenter &
Garrad (1985) for a boundary-layer instability over a compliant wall. Hence, the damping
coefficient Cp has a destabilizing effect on the shear mode as opposed to the stabilizing
effect of Cp on the surface mode. Finally, in order to examine the effects of Marangoni
number and imposed shear stress on the wall mode in the high Reynolds number regime,
the numerical simulation is repeated again when Cgx = 10, Cp=10,C;=1,Cg =1,
Cr =1, Ca=1 and 6 = 4°. First, the Marangoni number is varied while the imposed
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shear stress is fixed at T = 0. Figure 21(a) demonstrates that the unstable region generated
by the wall mode does not vary significantly with the Marangoni number. On the other
hand, if the imposed shear stress is changed rather than the Marangoni number, the
unstable region induced by the wall mode enhances with the increasing value of 7, and
this fact is followed by the successive reduction of critical Reynolds number for the wall
mode (see figure 21b). Hence, the imposed shear stress has a destabilizing effect on the
wall mode in the high Reynolds number regime as revealed for the shear mode. Further,
the current result captures the result of Alexander er al. (2020) very well when Ma = 0
and 7 = 0.

6. Discussion and Conclusions

The linear stability of a surfactant-laden shear-imposed fluid flowing down a compliant
substrate is explored in detail under the framework of the Orr—Sommerfeld-type boundary
value problem, which is solved analytically by using the long-wave series expansion
and also solved numerically by using the Chebyshev spectral collocation method for
disturbances of arbitrary wavenumbers. We have considered the same compliant wall
model as proposed by Carpenter & Garrad (1985) and Alexander et al. (2020) to describe
the flexible property of the compliant substrate. The long-wave analysis identifies two
temporal modes, the so-called surface mode and surfactant mode. Basically, the surface
mode emerges due to the deformation of the fluid surface, while the surfactant mode
emerges due to the perturbation of surfactant concentration. The long-wave analysis
demonstrates that there exists a stable range of Reynolds number for the surface mode in
the presence of insoluble surfactant even though the spring stiffness Ck retains a lower
value than C because the critical Reynolds number for the surface mode no longer
approaches zero in the presence of Marangoni number when Cgx — Cy. Further, we
have found the existence of two distinct regimes of spring stiffness Cx in the presence
of imposed shear stress where the surface mode becomes less unstable as long as t
increases when Cg < C1*<- However, the surface mode becomes more unstable as long
as T increases when Cg > C1*<~ Hence, the imposed shear stress has a stabilizing effect on
the surface mode when Cx < C%, but it shows a destabilizing effect on the surface mode
when Cx > Ck. In addition, the temporal growth rate for the surfactant mode intensifies in
the presence of a compliant substrate, which indicates the destabilizing effect of compliant
substrate on the surfactant mode.

On the other hand, the numerical result in the arbitrary wavenumber regime unveils
the existence of a different temporal mode, the so-called wall mode, emerges in the finite
wavenumber regime for a special set of wall parameter values, as reported by Alexander
et al. (2020). The unstable domain for the wall mode enhances with the increasing value of
Marangoni number. Hence, the Marangoni number has a destabilizing effect on the wall
mode. However, the unstable domain for the wall mode decays with the increasing value of
imposed shear stress. Hence, the imposed shear stress shows a stabilizing effect on the wall
mode in contrast to the result of Marangoni number. Further, it is found that the primary
instability induced by the wall mode becomes weaker as soon as spring stiffness Cx and
damping coefficient Cp increase. Hence, both Cx and Cp have a stabilizing effect on the
wall mode. Furthermore, the critical Reynolds number for the wall mode reduces with
the increasing value of inclination angle and ensures a destabilizing effect of inclination
angle on the wall mode, as observed for the surface mode. Moreover, the unstable domain
generated by the wall mode enhances with the increasing value of wall parameter C;
but attenuates with the increasing values of wall parameters Cr and Cp. In addition, the
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numerical result predicts the existence of inertialess instability in the finite wavenumber
regime responsible for the wall mode.

In the case of the surface mode, the numerical result in the arbitrary wavenumber regime
shows that the unstable domain reduces with an increasing value of Marangoni number,
but the unstable domain magnifies in the presence of imposed shear stress. Hence, the
Marangoni number has a stabilizing effect on the surface mode, but the imposed shear
stress has a destabilizing effect on the surface mode. Further, we have found the existence
of a subcritical instability generated by the surface mode in the finite wavenumber regime.
The associated unstable region enhances with the decreasing value of spring stiffness Ck.
Hence, the spring stiffness shows a stabilizing effect on the surface mode. Moreover, the
unstable domain induced by the surface mode enhances with the increasing value of wall
parameter C; but attenuates with the increasing values of wall parameters C7 and Cp. In
addition, we have found that there exists a competition between wall mode and surface
mode to dominate the primary instability initially with the variation of parameter values.

If the Reynolds number is high and the inclination angle is small, the shear mode appears
in the finite wavenumber regime along with the surface mode and wall mode. The shear
mode becomes more unstable with the increasing value of imposed shear stress when 0 =
4°. However, the Marangoni number does not show significant impact on the shear mode
unless the inclination angle is very small. It is observed that the shear mode becomes less
unstable with the increasing value of Marangoni number when 6 = 1’ = 1°/60. Further,
both spring stiffness Cx and damping coefficient Cp have a destabilizing effect on the
shear mode as opposed to the result of surface mode. In addition, the imposed shear stress
exhibits a destabilizing effect on the wall mode in the high Reynolds number regime.

The present work may have a range of biomedical applications, especially in liquid
lining flow in the pulmonary airway occlusion process in figuring out the dynamics
of the interfacial wave (Halpern & Grotberg 1993). As the present study deals with
two-dimensional disturbance, the investigation of three-dimensional modal and non-modal
stability analyses (Malik ef al. 2018) as well as the investigation of nonlinear surface wave
dynamics based on the depth averaged method (Ruyer-Quil & Manneville 2000) will be
the possible extensions of the present work and are kept for future consideration.
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Appendix A. Third-order long-wave solutions
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Appendix B. Inertialess stability analysis

Since the current result anticipates the existence of primary instability in the inertialess
regime, the Stokes’s flow instability analysis is further carried out under the framework
of an Orr—Sommerfeld-type boundary value problem when Re — 0. In fact, under this
limiting approximation, the Orr—Sommerfeld-type boundary value problem (4.2)—(4.8) is
simplified in the following form:

Byyyy ¥ — 223y +K*) =0, 0<y<1, (B1)
Oy + K2 + hdyU +ikMal” =0, aty =1, (B2)
(Byyy ¥ — 3K*3,) — ikh[2 cot & — 2ikdyU + k*/Cal = 0, aty =1, (B3)
(U—c)F + 8,y +8,Uh=0, aty=1, (B4)
(U—-0oh+9 =0, aty=1, (B5)

—Clik*c*ij + CpkPei + Cpik’# + Crik’# + Ckikij — 2ik cot 07
+ @y ¥ — K*3,%) =0, aty =0, (B6)
W +3,Uii =0, ¥ —cij=0, aty=0. (B7)

Now the general solution of (B1) can be expressed as

V() = (Fi + F2y)e® + (F3 + Fay)e ™, (BS)

where F, F», F3 and F4 are integration constants. Inserting the solution (B8) in the
boundary conditions (B2)—(B7), we obtain a system of linear homogeneous algebraic
equations, which is finally recast into a matrix equation form

FX =0, (B9)
where
2k%ek 2k2e % 2k(k + ek 2k(k — 1)e K -2
—2i3ek 2k3e™h 2kt 2k3e* —ik[2 cot O + (k*/Ca) — 2ikt]
ke —ke % (k+ De¥ —(k—1)e* T
F= ek ek ek ek (1—c+1)
0 0 2k? 2k? 0
k —k 1 1 0
1 1 0 0 0
ik(Ma/Ca) 0
0 0
(1—c+71) 0
0 0 , (B10)
0 ik(Cy — ikeCp — K*c*Cy + kK*Cr + k*Cp — 2 cot 0)
0 Q2+1)
0 —c

isa 7 x 7 square matrix and X = (Fy, F», F3, F4, h T, f;)T is a column matrix.
Hence, for a non-trivial solution of X', we must have

Det[F] = 0, (B11)

which leads to the dispersion relation in terms of real wavenumber k and complex wave
speed ¢ of the infinitesimal disturbance. Next, the dispersion relation is solved analytically
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Figure 22. (a) Variation of temporal growth rate kc; with wavenumber k for the surface mode when Re = 0
and T = 0. Solid, dashed and dotted lines stand for Ma = 0, Ma = 0.2 and Ma = 0.4, respectively. The arrow
shows the direction of decreasing temporal growth rate with increasing Ma. (b) Variation of temporal growth
rate kc; with wavenumber k for the surface mode when Re = 0 and Ma = 0. Solid, dashed and dotted lines
stand for 7 =0, 7 = 0.1 and v = 0.2, respectively. The arrow shows the direction of increasing temporal
growth rate with increasing t. The other parameter values are C; = Cp =Cr =Cx =Cp =1, Ca=1 and
0 = 45°. Points are the results of Alexander e al. (2020). The results are plotted by solving the dispersion
relation (B11).

for the complex wave speed ¢ by using MATHEMATICA. The results are produced for
different values of the Marangoni number and imposed shear stress when C; = 1, Cx = 1,
Cp=1,Cp=1,Cr=1, Ca=1 and 0 = 45° (Alexander et al. 2020). Figure 22(a)
displays the temporal growth rate generated by the surface mode when the Marangoni
number varies. Obviously, the temporal growth rate becomes weaker as soon as the
Marangoni number increases. In contrast, the temporal growth rate induced by the surface
mode becomes stronger as soon as the imposed shear stress increases (see figure 22b).
Hence, the Marangoni number has a stabilizing effect and the imposed shear stress has
a destabilizing effect on the inertialess instability generated by the surface mode, as
predicted for the flow configuration with inertia. Further, the current results recover the
results of Alexander et al. (2020) very well when Ma = 0 and T = 0.
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