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ON SIERPINSKI’S CONJECTURE
CONCERNING THE EULER TOTIENT

M. V.SUBBARAO AND L. W. YIP

ABSTRACT.  If ®;(n) denotes the Schemmel totient (so that @) (n) becomes the Euler
totient) we conjecture that for each ¥ > 1 and any given integer n > 1 there exist
infinitely many m for which the equation ®;(x) = m has exactly n solutions. For the
case k = 1, this gives Sierpinski’s conjecture.

We prove that on the basis of Schinzel’s Hypothesis H, our conjecture holds for any
k > 3 of the form p§ —2 where pg is an odd prime and @ € N.In 1961 Schinzel proved
the case k = 1 assuming his Hypothesis H.

1. Introduction. Let ¢(n) denote, as usual, the Euler totient representing the num-
ber of natural numbers not exceeding n and relatively prime to n. This function has been
generalized in several directions. Here we will concern ourselves with the generalization
known as the Schemmel totient ®; (for a fixed natural number k). @, is defined as fol-
lows: @(1) = 1, ®(n) = 0 if n contains a prime factor not exceeding k, and if all the
prime factors of n are greater than &, then

o) = [[ p* "0 —b),

pelin

where p?||n means p®|n and p®*! } n.

More than thirty years ago, W. Sierpinski (see [3]) made the following conjecture:

For any given integer n > 1, there exist infinitely many m for which the equation
@(x) = m has exactly n solutions.

A. Schinzel [4] showed that his Hypothesis H (quoted in Section 2) implies the truth
of Sierpinski’s conjecture.

The purpose of this paper is to make a similar conjecture for the function ®;, and
prove that for a certain type of integers k, this conjecture follows also from Hypothesis
H. However, we are unable to settle this conjecture for an arbitrary k even on the basis
of Hypothesis H.

2. Preliminaries. Denote by N the set of all natural numbers.

Let Ny(m) denote the number of solutions of the equation @(x) = m. We write N(m)
for Ni(m). It is easy to see that Ny(m) = 0 whenever k and m (> 1) are of same parity.
Similar to Sierpinski’s conjecture, we make the following:
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CONJECTURE 2.1.  Let k be a fixed natural number (including 1). For any given in-
teger n > 1, there exist infinitely many m such that Ny(m) = n.

REMARK 2.2. We exclude the case n = 1 because of the still unproved conjec-
ture of Carmichael ([1], [2]) which says that N(m) is never equal to 1. Incidentally, the
Carmichael conjecture can be extended to Nj for some even natural numbers k (see [6]
or [7]).

We now state Schinzel’s Hypothesis H ([4], [5]) in two equivalent forms.

2.3. Lets € N. Let fi(x),...,fs(x) be irreducible polynomials with integral coeffi-
cients, and for each polynomial the leading coefficient is positive, and there is no integer
d > 1 thatisa divisor of each of the numbers f;(x)-f2(x) - - - fs(x), x being an integer. Then
there exist infinitely many natural values of x for which the numbers f(x), f>(x), . . . , fs(x)
are all primes.

24. Let fi(x),fo(x),....fs(x), g1(x),g2(x),...,8(x) be irreducible integer-valued
polynomials of positive degree with positive leading coefficients. If there does not ex-
ist any integer > 1 dividing the product fi(x) - fo(x) - - - fs(x) for every x € N, and if
8j(x) # fi(x) for all i <'s,j < t, then there exist infinitely many positive integers x such
that the numbers f;(x), f2(x), . . .,fs(x) are primes and the numbers g;(x), g2(x), ..., g:(x)
are composite.

REMARK 2.5. We wish to point out that while Hypothesis H implies Sierpinski’s
conjecture, it is an open problem whether it also implies the truth of the Carmichael
conjecture.

3. The main result. We prove the following:

THEOREM 3.1. Letk 2 3 be of the form p§ —2, where py is an odd prime and a € N.
Then Hypothesis H implies that for any given integer n > 1, there exist infinitely many
integers m such that Ni(m) = n.

PROOF. Let g denote the smallest prime factor of k + 4, and let r = gan(qo—_l)

SetA = {a eEN:(po—1) ,{’a} = {al,az,a3,...},where1 =aq1<ap<a<...
(note that a; < 2i for all i since A contains all odd numbers).

For any given n > 1, consider the irreducible polynomials defined by

fi) =2 4k, fui) =204 4k, i= 12,0005 fhuax) = x
The irreducibility of 2x* + k follows from Eisenstein’s criterion.

EISENSTEIN’S CRITERION. Let I be a unique factorization domain. If f(x) is a poly-
nomial f(x) = ap + ajx + - - -ap,x" in I[x] such that for a prime element p in I, a, # 0
(mod p), a1 = a2 = - =ap =0 (mod p)butay # (mod p?) then f(x) is
irreducible over the field of quotients of /.

Note that since k is odd, the criterion is applicable to 2x* + k with p = 2. Note also
that rn — a, > ay, so that f,,,(x) (1 < i < n) is distinct from fj (x), . . ., f(x).
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We have [T} f(1) = p3*". Let u be a primitive root modulo py. Observe that 2u® +
k=0 (mod py) if and only if (py — 1)|a. Since, by the definition of A, (po — 1) £ a;
and (po — 1) f (rn— a;) for all 1 < i < n, we conclude that py f I12"%! f;(u). Therefore,
the condition of Hypothesis H is satisfied.

Define b; < by < ... < b2, in such a way that

n
{bl,b2,...,b(r_2)n} - {1,2,...,"71}\ U{a,-,rn—a,-},
i=1

and define
gy =2 +k, j=1,2,...,(r—2n;

By Hypothesis H (2.4), there exist infinitely many integers xo—which we may obvi-
ously assume to be different from go—such that all the fi(xp) (1 < i < 2n+ 1) are prime
and all the g;(xo) (1 <j<(r—2)n+ 1) are composite (in particular, 2xg’ +k and 4x7’ +k
are composite).

Also 4xg' + k is composite when x is a prime different from go. This follows from
Fermat’s theorem since (qo — 1) divides r and the fact that gy divides k + 4.

Consider, for such an xo with xo > k + 4, the equation

3.2 Dy(y) = 47

If y is a solution of (3.2), then obviously y can have at most two distinct prime factors,
i.e. y is of the form p® or p®q® (p,q denote primes). If a > 1, then p(p — k)|4x3, so
p = x and (xo — k)|4x{', which is impossible since xo > k + 4. Similarly we must have
b = 1 in the latter case. If y = p, thenp — k = 4x7’, i.e. p = 4x7" + k, contradicting the
compositeness of 4xg* + k. Now we conclude that y = pg for some distinct primes p, g,

and we may write (3.2) as
p—k g—k
—)(——) =15

7 X 2 ) = Xg

Both factors on the left-hand side are greater than 1 (otherwise we would get a con-
tradiction to the compositeness of 2x§" + k). It follows that { p,q} = {fi,(x0), fa+i(*0) }
for some 1 < iy <n,ie.y = fiy(xo)u+i,(*¥0)-

Obviously, for any i € {1,2,...,n}, fi(xo)fn+i(x0) is a solution of (3.2). Thus (3.2)
has exactly n solutions. This completes the proof.

(

REMARK 3.3. Itis shown elsewhere that for any odd k > 1, there are infinitely many
integers m for which N,(m) = 1 (see [6] or [7]). That is why we exclude the case n = 1
in the above theorem. In a certain sense, this theorem is an extension of Schinzel’s work
on Sierpinski’s conjecture. We would expect that this theorem holds for any k as stated
in Conjecture 2.1. However, it seems to be extremely difficult to settle this problem.

The authors sincerely thank the referee for valuable suggestions.
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