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ON SIERPINSKI'S CONJECTURE 
CONCERNING THE EULER TOTIENT 

M. V. SUBBARAO AND L. W. YIP 

ABSTRACT. IfQ>k(n) denotes the Schemmel totient (so that Oj («) becomes the Euler 
totient) we conjecture that for each k > 1 and any given integer n > 1 there exist 
infinitely many m for which the equation O^(JC) = m has exactly n solutions. For the 
case k = 1, this gives Sierpinski's conjecture. 

We prove that on the basis of Schinzel's Hypothesis H, our conjecture holds for any 
k > 3 of the form p% — 2 where po is an odd prime and a e N. In 1961 Schinzel proved 
the case k = 1 assuming his Hypothesis H. 

1. Introduction. Let (p(n) denote, as usual, the Euler totient representing the num­
ber of natural numbers not exceeding n and relatively prime to n. This function has been 
generalized in several directions. Here we will concern ourselves with the generalization 
known as the Schemmel totient O* (for a fixed natural number k). O* is defined as fol­
lows: OA;(1) = 1, <&k(n) = 0 if n contains a prime factor not exceeding k, and if all the 
prime factors of n are greater than &, then 

®k(n)= Upa~l(P-k), 
p"\\n 

wherepa\\n meanspa\n andpa+l / n . 
More than thirty years ago, W. Sierpinski (see [3]) made the following conjecture: 
For any given integer n > 1, there exist infinitely many m for which the equation 

(f(x) = m has exactly n solutions. 
A. Schinzel [4] showed that his Hypothesis H (quoted in Section 2) implies the truth 

of Sierpinski's conjecture. 
The purpose of this paper is to make a similar conjecture for the function O*, and 

prove that for a certain type of integers k, this conjecture follows also from Hypothesis 
H. However, we are unable to settle this conjecture for an arbitrary k even on the basis 
of Hypothesis H. 

2. Preliminaries. Denote by N the set of all natural numbers. 
Let Nk(m) denote the number of solutions of the equation Ojt(jt) = m. We write N(m) 

for N\(m). It is easy to see that Nk(m) = 0 whenever k and m (> 1) are of same parity. 
Similar to Sierpinski's conjecture, we make the following: 
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CONJECTURE 2.1. Let k be a fixed natural number (including 1). For any given in­
teger n > 1, there exist infinitely many m such thatNk(m) = n. 

REMARK 2.2. We exclude the case n — 1 because of the still unproved conjec­
ture of Carmichael ([1], [2]) which says that N(m) is never equal to 1. Incidentally, the 
Carmichael conjecture can be extended to Nk for some even natural numbers k (see [6] 
or [7]). 

We now state Schinzel's Hypothesis H ([4], [5]) in two equivalent forms. 

2.3. Let s G N. Let/i(jt),... ,fs(x) be irreducible polynomials with integral coeffi­
cients, and for each polynomial the leading coefficient is positive, and there is no integer 
d > 1 that is a divisor of each of the numbers/i (x) -fiix) • • •/$(*), x being an integer. Then 
there exist infinitely many natural values of x for which the numbers/I(JC),/2(*),. • • ,/S(JC) 

are all primes. 

2.4. Let f\(x),f2(x),... Js(X), g\(x),g2(x),...,gt(x) be irreducible integer-valued 
polynomials of positive degree with positive leading coefficients. If there does not ex­
ist any integer > 1 dividing the product f\(x) /2W • * •/*(*) for every x G N, and if 
gj(x) ^ fi(x) for all / < sj < t, then there exist infinitely many positive integers x such 
that the numbers fi(x),f2(x),... ,/5(JC) are primes and the numbers gi(jt),g2(x),..., gt(x) 
are composite. 

REMARK 2.5. We wish to point out that while Hypothesis H implies Sierpinski's 
conjecture, it is an open problem whether it also implies the truth of the Carmichael 
conjecture. 

3. The main result. We prove the following: 

THEOREM 3.1. Let k ^ 3 be of the form p% — 2, where po is an odd prime and a G N. 
Then Hypothesis H implies that for any given integer n > 1, there exist infinitely many 
integers m such that Nk(m) = n. 

PROOF. Let q0 denote the smallest prime factor of k + 4, and let r = (/?0~1)
2

(^°~1). 
Set A = {a G N : (po~ 1) /a} = {ai ,a2,«3,. . .}, where 1 = a\ < a2 < «3 < . . . 

(note that at < 2/ for all / since A contains all odd numbers). 
For any given n > 1, consider the irreducible polynomials defined by 

Mx) = Ix"' + *, fn+i(x) - ÏJT-** + K i = 1,2,..., n; /2n+i(x) = x. 

The irreducibility of 2jt* + k follows from Eisenstein's criterion. 

ElSENSTElN'S CRITERION. Let / be a unique factorization domain. If f{x) is a poly­
nomial f{x) — a0 + a\* + • • -an*" in I[x] such that for a prime element p in /, an ^ 0 
(mod p), an-\ = an-2 = • • • = a0 = 0 (mod p) but ao ^ (mod p2) then/(x) is 
irreducible over the field of quotients of /. 

Note that since k is odd, the criterion is applicable to 2x°- + k with p = 2. Note also 
that rn — an > an,so that/„+,(*) (1 < / < n) is distinct from/i(x),... ,/«(JC). 
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We have Tlj=ifi(l) = Po- Let « be a primitive root modulop0. Observe that 2ua + 
k = 0 (mod po) if and only if (p0 — l)\a. Since, by the definition of A, (p0 — 1) / a,-
and (po — 1) / (ra — at) for all 1 < / < n, we conclude that/?0 / UJ=\l fi(u). Therefore, 
the condition of Hypothesis H is satisfied. 

Define b\ < bi < . . . < b(r-2)n m such a way that 

n 

{bi,b2,...,b(r-2)n} = { l ,2 , . . . , f7 l} \ ( J i ^ ™ - ^ } * 

and define 

gj(x) = 2^+k, y = l , 2 , . . . , ( r - 2 ) / i ; 

By Hypothesis H (2.4), there exist infinitely many integers xo—which we may obvi­
ously assume to be different from go—such that all the//(•*()) (1 < / < 2n + 1) are prime 
and all the g7(jto) ( 1 < j < (r — 2)n +1 ) are composite (in particular, 2x$ + k and Ax% + k 
are composite). 

Also 4x™ + /: is composite when x is a prime different from q0. This follows from 
Fermat's theorem since (qo — 1) divides r and the fact that qo divides k + 4. 

Consider, for such an JCO with *o > k + 4, the equation 

3.2 o,Cv) = 4 ^ . 

If _y is a solution of (3.2), then obviously y can have at most two distinct prime factors, 
i.e. y is of the form pa or paqb (/?, q denote primes). If a > 1, then p(p — k)\4x%, so 
p = xo and (xo — k)\ 4JCQ*, which is impossible since xo > k + 4. Similarly we must have 
& = 1 in the latter case. If y = /?, then/7 — k = 4x^, i.e. p = 4*^ + /:, contradicting the 
compositeness of 4xff + k. Now we conclude that y — pq for some distinct primes /?, q, 
and we may write (3.2) as 

Both factors on the left-hand side are greater than 1 (otherwise we would get a con­
tradiction to the compositeness of 2XQ + k). It follows that {/?, q} = {fi0(xo),fn+i0(xo)} 
for some 1 < i0 < n, i.e. y = fio(x0)fn+i0(xo). 

Obviously, for any / G { 1,2,..., n}, fi(xo)fn+i(xo) is a solution of (3.2). Thus (3.2) 
has exactly n solutions. This completes the proof. 

REMARK 3.3. It is shown elsewhere that for any odd k > 1, there are infinitely many 
integers m for which Nk(m) — 1 (see [6] or [7]). That is why we exclude the case n = 1 
in the above theorem. In a certain sense, this theorem is an extension of Schinzel's work 
on Sierpinski's conjecture. We would expect that this theorem holds for any k as stated 
in Conjecture 2.1. However, it seems to be extremely difficult to settle this problem. 

The authors sincerely thank the referee for valuable suggestions. 
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