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Abstract

We study families of rational curves on irreducible holomorphic symplectic varieties.
We give a necessary and sufficient condition for a sufficiently ample linear system on
a holomorphic symplectic variety of K3[n]-type to contain a uniruled divisor covered
by rational curves of primitive class. In particular, for any fixed n, we show that there
are only finitely many polarization types of holomorphic symplectic variety of K3[n]-
type that do not contain such a uniruled divisor. As an application, we provide a
generalization of a result due to Beauville–Voisin on the Chow group of 0-cycles on
such varieties.

1. Introduction

Let S be a K3 surface and H an ample divisor on S. By a theorem of Bogomolov and Mumford
[MM83], the linear system |H| contains an element with irreducible components that are rational.
A simple, yet striking application of the existence of ample rational curves on any projective K3
surface S has been given by Beauville and Voisin in [BV04]. They remarked that any point
on any rational curve on the K3 determines the same (canonical) 0-cycle cS of degree 1, and
proved that the image of the intersection product Pic(S) ⊗ Pic(S) → CH0(S) is contained in
Z · cS . Tensoring with Q we may restate these two results as follows as an equality between the
following three groups:

Im((j1)∗ : CH0(R1)Q → CH0(S)Q) = Im((j2)∗ : CH0(R2)Q → CH0(S)Q)

= Im(Pic(S)Q ⊗ Pic(S)Q → CH0(S)Q),

where ji : Ri ↪→ S, i = 1, 2, are any two rational curves on the K3 surface S.
The goal of this paper is to investigate the extent to which Bogomolov and Mumford’s and

Beauville and Voisin’s results can be generalized to the higher-dimensional setting.
Let X be a compact Kähler manifold. We say that X is irreducible holomorphic symplectic

(in the text, we often simply refer to such manifolds as holomorphic symplectic) if X is simply
connected and H0(X, Ω2

X) is spanned by an everywhere non-degenerate form of degree 2. These
objects were introduced by Beauville in [Bea83]. The holomorphic symplectic surfaces are the
K3 surfaces.

The cohomology group H2(X, Z) is endowed with a natural quadratic form q, the
Beauville–Bogomolov form. We denote it by q.
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Rational curves and 0-cycles on holomorphic symplectic

It should be noted that holomorphic symplectic varieties with b2 > 3 are not hyperbolic.
This has been proved by Verbitsky, cf. [Ver15, Ver17], using among other things his global
Torelli theorem [Ver13]. Much less seems to be known on the existence of rational curves on
(projective) holomorphic symplectic varieties.

In order to investigate those, we make the following definition.

Definition 1.1. Let C be a stable curve of genus 0, and let f : C → X be a morphism that
is unramified at all the generic points of C. We say that the curve f(C) in X is ruling if there
exists a family

p : C → S

of stable curves over an irreducible, quasi-projective base S, a point 0 ∈ S, and a morphism

φ : C −→ X

such that C = p−1(0), φ|C = f , and φ(C ) has codimension 1 in X.
We say that φ(C ) is uniruled of codimension 1, that it is ruled by the stable curve f : C → X

– or, for short, ruled by f(C).

A stable genus 0 curve in X is by definition a morphism f : C → X as above.
Given a curve R in X, we may consider the class [R] of R in H2(X, Q). Let [R]∨ ∈ H2(X, Q)

be the Poincaré dual of [R]. Then [R]∨ is the class of a divisor in X. We say that R is positive if
q([R]∨) > 0, and that R is ample if [R]∨ is an ample class.

Recall that a holomorphic symplectic manifold is said to be of K3[n]-type if it is a deformation
of the Hilbert scheme that parametrizes zero-dimensional subschemes of length n on some K3
surface. Our main result is the following: we prove it in a slightly more precise and technical
form in Theorem 4.5 and Proposition 4.6.

Theorem 1.2. Let n ≥ 1 be an integer. Let M =
⋃

d>0 M2d be the union of the moduli spaces

M2d of projective irreducible holomorphic symplectic varieties of K3[n]-type polarized by a
line bundle of degree 2d. For all (X, H) ∈ M, outside at most a finite number of connected
components, the following holds:

(1) there exists a ruling genus 0 stable curve in X with cohomology class proportional to the
Poincaré-dual of the class of H;

(2) there exists a positive integer m such that the linear system |mH| contains a uniruled
divisor.

Remark 1.3. The ruling curve in (1) may be chosen to have primitive cohomology class, see the
comments below. However, we are not able to control the integer m in (2).

Some comments are in order. The Beauville–Bogomolov form induces an embedding
H2(X, Z) ↪→ H2(X, Z), H �→ H∨. By abuse of notation, we again denote by q the quadratic form
on H2(X, Z). We can make explicit the components of M for which the existence is obtained.

Remark 1.4. The previous statement may be split into two parts. On the one hand,
Theorem 4.5 ensures the existence of uniruled divisors covered by primitive rational curves
if there exist integers p, g and ε such that p ≥ g and ε = 0 or 1 such that the following two
conditions hold:

(i) the class α := H∨/div(H) ∈ H2(X, Z) can be written as γ + (2g − ε)η, with η in the
monodromy orbit of the class of the exceptional curve on a K3[n] and γ ∈ η⊥;

(ii) q(γ) = 2p − 2 (hence, q(α) = 2p − 2 − (2g − ε)2/(2n − 2)).
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On the other hand, thanks to Proposition 4.6, we can show that the two conditions above are
satisfied outside at most a finite number of connected components. Observe furthermore that
conditions (i) and (ii) determine the monodromy orbit of the polarization H (cf. Corollary 2.8
for details).

We list some relevant cases in which the conditions (i) and (ii) of Remark 1.4 are easily seen
to be satisfied in the following.

Remark 1.5. (i) If q(α) ≥ n − 1, then a multiple of H is uniruled by primitive rational curves of
class α (see Proposition 4.6).

(ii) If ρ(X) ≥ 2, then X always contains an ample uniruled divisor covered by primitive
rational curves (cf. Corollary 4.7).

(iii) If n ≤ 7, then the conclusion of the theorem holds for all the connected components of
M (cf. Remark 4.8).

(iv) If n − 1 is a power of a prime number, then by [Mar11, Lemma 9.2 and subsequent
comment], the monodromy group is maximal. Therefore, it suffices to check that the square q(α)
is of the form 2p − 2 − (2g − ε)2/(2n − 2), with p ≥ g.

The existence of uniruled divisors ruled by primitive rational curves on any projective holo-
morphic symplectic variety of K3[n]-type was wrongly claimed in [CP14]. Counterexamples were
recently provided by Oberdieck, Shen and Yin in [OSY19, Corollary A.3]. The proof presented
in [CP14] was based upon the following three ingredients: (a) the existence of a ‘controlled’
polarized deformation of a polarized holomorphic symplectic variety (X, H) to a ((K3)[n], H ′),
as a consequence of Verbitsky’s global Torelli theorem and Markman’s study of the monodromy
group (see § 2); (b) a geometric criterion to deform a rational curve on a holomorphic symplectic
variety X along its Hodge locus inside the moduli space of X, which we derive from Mumford’s
theorem on 0-cycles and deformation theoretic arguments (cf. § 3); (c) the existence of uniruled
divisors on a (K3)[n], via points on nodal curves in the hyperplane linear system (see § 4). These
three parts of the proof are correct and are presented here essentially as in [CP14]. The main
difference is that, after the appearance of [OSY19], we realized that the examples we provided in
ingredient (c) did not (and actually could not, because of [OSY19, Corollary A.3]) cover all the
connected components of M. The same type of considerations and results hold in the generalized
Kummer case, treated in [MP18] and amended in [MP21].

In the present paper we also show that conditions (i) and (ii) in Remark 1.4 are precisely
satisfied in all cases where the obstruction discovered by [OSY19] does not prevent uniruled
divisors covered by primitive rational curves to exist. In other words, we show that our result is
sharp (see § 5.1 for details). In all cases where the theorem fails, using [KLM19], we can check
the existence of a family of the expected dimension of rational curves covering a coisotropic
subvariety of codimension c ≥ 2 (cf. Proposition 5.13. Moreover, in some of these cases we can
actually prove that c = 2 (see Theorem 5.11 in § 5.3).

In § 5.2 we discuss the extent to which it might be possible to find uniruled divisors covered
by possibly non-primite rational curves. We find an explicit condition (cf. Proposition 5.6) for
the existence of such divisors, which can be easily checked on examples. For instance, this allows
us to check the existence of ample uniruled divisors covered by non-primitive rational curves for
all the connected components of the moduli space M up to dimension 26.

It should be noted that applications of the existence of uniruled divisors to the study of Chow
groups of 0-cycles does not make use of the primitivity of the relevant rational curves. These
applications are presented in § 6. To state our results recall that if Y is a variety, CH0(Y )hom is
the subgroup of CH0(Y ) consisting of 0-cycles of degree 0.

290

https://doi.org/10.1112/S0010437X20007526 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X20007526


Rational curves and 0-cycles on holomorphic symplectic

Definition 1.6. Let D be an irreducible divisor on X. We denote by S1CH0(X)D,hom the
subgroup

S1CH0(X)D,hom := Im(CH0(D)hom → CH0(X)),

of CH0(X). We denote by S1CH0(X)D the subgroup

S1CH0(X)D := Im(CH0(D) → CH0(X)),

of CH0(X).

We prove the following.

Theorem 1.7. Let X be a projective holomorphic symplectic variety. Suppose that X possesses
an ample ruling curve. Then the subgroups S1CH0(X)D,hom and S1CH0(X)D are independent
of the irreducible uniruled divisor D.

In light of the previous result, we set

S1CH0(X)Q := Im(j∗ : CH0(D)Q → CH0(X)Q),

where j : D ↪→ X is any irreducible uniruled divisor. It is natural to ask whether such a subgroup
of CH0(X)Q has an intersection-theoretic interpretation, as for K3 surfaces. This is indeed the
case.

Theorem 1.8. Let X be a projective holomorphic symplectic variety. Suppose that X possesses
an ample ruling curve and that the group of cohomology classes of curves on X is generated over
Q by classes of ruling curves. Then, for any non-trivial L ∈ Pic(X), we have

S1CH0(X)hom = L · CH1(X)hom and S1CH0(X) = L · CH1(X).

In particular, the conclusions of the results given previously hold for all projective holomor-
phic symplectic variety of K3[n]-type, for n ≤ 13, and, for higher n, for all but finitely many
components of M, as specified in Remark 1.4. The hypothesis on the Picard group is verified in
applications by showing the existence of uniruled divisors linearly equivalent to certain multiple
of each ample divisor. There is no evidence this could not hold in general.

The theorems given previously may be regarded as a higher-dimensional analogue of the
Beauville–Voisin result. It is important to note that, for holomorphic symplectic varieties of
higher dimension, Beauville has stated in [Bea07] a far-reaching conjectural generalization of
their result, called the ‘weak splitting property’, which can be deduced by a (conjectural) splitting
of the (conjectural) Bloch–Beilinson filtration on the Chow group. The conjecture was further
refined by Voisin in [Voi08]. These conjectures have been studied intensively in recent years. After
the appearance of a first version of this paper, Voisin [Voi16] has unveiled a surprising conjectural
connection between the weak splitting property conjecture and the existence of subvarieties
whose zero cycles are supported in lower dimension. A first instance of such an existence result
is provided by Theorem 1.2. For a (non-exhaustive) list of works in this research direction, see
[Voi08, Fer12, Fu13, Fu15, Huy14, Rie16, Voi15, Lat18, Lin20, Lin16, LP19, Yin15, SV16, MP18,
Via17, SYZ20, SY20, FLVS19, OSY19, Voi22].

We end the paper with some speculations on possible generalizations of our results.
After the appearance of [CP14], other researchers studied the existence of rational curves

on projective holomorphic symplectic varieties. We already mentioned [MP18, MP21] where
the analogous existence results of ample uniruled divisors are established for deformations of
generalized Kummer varieties. The existence of primitive rational curves moving in a family of
the expected dimension on projective holomorphic symplectic varieties deformations of punctual
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Hilbert schemes on a K3 surface or of generalized Kummer varieties is shown in [MO20, Theorem
3.2] and [MP18, Theorem 5.1]. While finishing the first version of the paper [CP14], independent
work of Amerik and Verbitsky [AV15] has appeared and § 4 of [AV15] has some overlap with
the results and arguments presented here in § 3 concerning the deformations of rational curves
on holomorphic symplectic varieties. Amerik and Verbitsky are more concerned with negative
rational curves, whereas we focus on positive ones (i.e. dual to an ample class). As the goals and
the results of the two papers are quite different, for the sake of completeness we did not try to
eliminate similar discussions. We refer the reader to § 3 here for precise references to the similar
results appearing in [AV15].

We always work over the field C of complex numbers.

2. Varieties of K3[n]-type and their polarizations

In this section we collect a number of known results on Hilbert schemes of points on a K3 surface
and then move on to study the polarized deformations of irreducible holomorphic symplectic
varieties of K3[n]-type.

2.1 Lattices
The general theory of irreducible holomorphic symplectic varieties as in [Bea83] shows that the
group H2(X, Z) is endowed with a natural symmetric bilinear form qX of signature (3, 20), the
Beauville–Bogomolov form. When no confusion is possible, we denote the square qX(h) of an
element h ∈ H2(X, Z) simply by q(h) or by h2. Therefore, (H2(X, Z), qX) is naturally a lattice.
We try to use the notation h for elements of the cohomology lattice and the capital letter H for
divisors/line bundles (but no confusion should hopefully arise if we do otherwise somewhere).

Definition 2.1. Let Λ be a free Z-module of finite rank endowed with a symmetric bilinear
form. If h is an element of Λ, the divisibility of h is the non-negative integer t such that

h · Λ = tZ.

It will be denoted by div(h). If (X, h) is a polarized irreducible holomorphic symplectic variety,
then the divisibility of h is its divisibility as an element of the lattice H2(X, Z) endowed with
the Beauville–Bogomolov form.

We use the following maps relating a lattice (Λ, q) and its dual Λ∨.
There is a natural map

Λ ↪→ Λ∨, λ �→ q(λ, ·). (2.1)

Given a class c ∈ Λ∨ there exists a unique class λc ∈ Λ ⊗ Q such that for all λ′ ∈ Λ we have

q(λc, λ
′) = c(λ′).

This induces a natural map
Λ∨ ↪→ Λ ⊗ Q, c �→ λc. (2.2)

Using the previous results we can endow Λ∨ with a quadratic form taking rational values. By
abuse of notation, we still denote it by q.

We often make use of the following set-theoretic map:

Λ ↪→ Λ ⊗ Q, λ �→ λ

div(λ)
. (2.3)

One may easily check that the image is contained in the image of Λ∨ under the map (2.2) and
gives all primitive elements in it.
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Finally, the map given previously will be composed with the projection onto the discriminant
group Λ∨/Λ:

Λ ↪→ Λ∨ → Λ∨/Λ, λ �→
[

λ

div(λ)

]
. (2.4)

2.2 Hilbert schemes of points on a K3 surface
Let S be a compact complex projective surface. If n is a positive integer, denote by S[n] the
Hilbert scheme (or the Douady space in the non-projective case) of length n subschemes of S.
By [Fog68], S[n] is a smooth complex variety. The general theory of the Hilbert scheme shows
that S[n] is projective if S is.

Assume that S is a K3 surface. By [Bea83], S[n] is an irreducible holomorphic symplectic
variety: it is simply connected, and the space H0(S[n], Ω2

S[n]) is one-dimensional, generated by a
holomorphic symplectic form. Let X be an irreducible holomorphic symplectic variety. We say
that X is of K3[n]-type if X is deformation equivalent, as a complex variety, to S[n], where S is
a complex K3 surface.

Let S be a K3 surface, and let n > 1 be an integer. We briefly recall the description of the
group H2(S[n], Z) as in [Bea83, Proposition 6].

Let S(n) be the nth symmetric product of S, and let ε : S[n] → S(n) be the Hilbert–Chow
morphism. The map

ε∗ : H2(S(n), Z) → H2(S[n], Z),

is injective. Furthermore, let π : Sn → S(n) be the canonical quotient map, and let p1, . . . , pn be
the projections from Sn to S. There exists a unique map

i : H2(S, Z) → H2(S[n], Z),

such that for any α ∈ H2(S, Z), i(α) = ε∗(β), where π∗(β) = p∗1(α) + · · · + p∗n(α). The map i is
an injection.

Let En be the exceptional divisor in S[n], that is, the divisor that parametrizes non-reduced
subschemes (we will drop the index n and simply write E = En when no confusion is possible).
The cohomology class of E in H2(S[n], Z) is uniquely divisible by two; see [Bea83, Remarque
after Proposition 6]. Let δ := δn be the element of H2(S[n], Z) such that 2δn = [E]. Then we have

H2(S[n], Z) = H2(S, Z) ⊕⊥ Zδn, (2.5)

where the embedding of H2(S, Z) into H2(S[n], Z) is that given by the map i.
The decomposition (2.5) is orthogonal with respect to the Beauville–Bogomolov form q, and

the restriction of q to H2(S, Z) is the canonical quadratic form on the second cohomology group
of a surface induced by cup product. We have

δ2 = −2(n − 1).

By Poincaré duality, H2(S[n], Z) may be identified to the dual lattice of H2(S[n], Z). There-
fore, using (2.2), to a class Z ∈ H2(S[n], Z) we can associate a unique class DZ ∈ H2(S[n], Q)
such that for all D′ ∈ H2(S[n], Z) we have

q(DZ , D′) = Z · D′.

The class DZ is called the dual of Z with respect to the Beauville–Bogomolov quadratic form. In
this way, we obtain a quadratic form on the homology group H2(S[n], Z) taking rational values
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and such that
H2(S[n], Z) = H2(S, Z) ⊕⊥ Zrn,

where rn is the homology class orthogonal to H2(S, Z) and such that

rn · δn = −1. (2.6)

In particular, we have

rn =
1

2(n − 1)
δn,

which implies

q(rn) = − 1
2(n − 1)

.

Geometrically, rn is the class of an exceptional rational curve that is the general fiber of the
Hilbert–Chow morphism (see, e.g., [HT10]).

By abuse of notation, if h ∈ H2(S, Z), we again denote by h the induced class in H2(S[n], Z)
as well as that in H2(S[n], Z), using the embedding (2.1).

2.3 Polarized deformations of varieties of K3[n]-type
In this paper, we are interested in the possible deformation types for primitively polarized vari-
eties (X, h), where X is a variety of K3[n]-type and h is a primitive polarization of X, that is,
the numerical equivalence class of a primitive and ample line bundle on X.

Definition 2.2. Let X and X ′ be two compact complex manifolds, and let h, h′ be numerical
equivalence classes of line bundles on X and X ′, respectively. We say that the pairs (X, h) and
(X ′, h′) are deformation equivalent if there exists a connected complex variety S, a smooth,
proper morphism π : X → S, a line bundle L on X and two points s, s′ of S such (Xs, c1(Ls))
is isomorphic to (X, h) and (Xs′ , c1(Ls′)) is isomorphic to (X ′, h′).

Remark 2.3. Let X be a variety of K3[n]-type, and let h be a polarization on X. Then Markman
shows in [Mar11, Proposition 7.1] that there exists a K3 surface S and a polarization h′ on S[n]

such that (X, h) is deformation equivalent to (S[n], h′).

In the surface case, that is, when n = 1, the global Torelli theorem implies that two primitively
polarized K3 surfaces (X, h) and (X ′, h′) are deformation equivalent if and only h2 = h′2. The
situation is different in higher dimension.

Let X be a variety of K3[n]-type. If n = 1, the lattice H2(X, Z) is unimodular, so that the
divisibility of any non-zero primitive element of H2(X, Z) is 1. This is no longer the case as soon
as n > 1.

By (2.3) we have the following map of sets

H2(X, Z) → H2(X, Q), h �→ 1
div(h)

h. (2.7)

Let (X, h) be a primitively polarized irreducible holomorphic symplectic variety. Both h2 and
the divisibility of h are constant along deformations of (X, h). However, as shown in [Apo14], it
is not true that these two invariants determine the deformation type of (X, h). In this section, we
give explicit representatives for all the deformation-equivalence classes of primitively polarized
varieties of K3[n]-type.

We start by describing results due to Markman on deformation-equivalence of polarized
varieties of K3[n]-type. These results rely both on the global Torelli theorem [Ver13] and the
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computation of the monodromy group of varieties of K3[n]-type in [Mar10]. Recently, Kreck
and Su [KS21] provided a counterexample to some of the statements contained in Verbitsky’s
global Torelli theorem. However, this does not affect the results we are using, as they rely on
Markman’s formulation of the global Torelli theorem using marked moduli spaces instead of the
Teichmuller space used by Verbitsky. We refer the reader to [Loo21, Theorem 3.1 and Remark
3.3] for the correct statement and a comment about the difference between the Teichmuller space
and marked moduli spaces with respect to the global Torelli theorem (see also [Ver20]).

Let S be a K3 surface, and n > 1 an integer. Let Λ̃ be the Mukai lattice of S

Λ̃ = H0(S, Z) ⊕ H2(S, Z) ⊕ H4(S, Z),

endowed with the quadratic form defined by

〈(a, b, c), (a′, b′, c′)〉 = bb′ − ac′ − a′c.

Let vn = (1, 0, 1 − n). We identify H2(S[n], Z) endowed with the Beauville–Bogomolov quadratic
form with the orthogonal of vn in Λ̃. The inclusion

H2(S, Z) ↪→ (vn)⊥,

is compatible with the decomposition (2.5).
If h is any class in H2(S[n], Z) ⊂ Λ̃, let TS(h) be the saturation in Λ̃ of the lattice spanned

by h and vn.

Proposition 2.4. Let S and S′ be two K3 surfaces, and let n > 1 be an integer. Let h (respec-
tively, h′) be the numerical equivalence class of a big line bundle on S[n] (respectively, S′[n]). The
pairs (S[n], h) and (S′[n], h′) are deformation equivalent if and only if there exists an isometry

TS(h) → TS′(h′),

mapping h to h′.

Proof. In case h and h′ are ample, this is the result of Markman written up in [Apo14, Proposition
1.6].

In the general case, choose small deformations (X, h) and (X ′, h′) of (S[n], h) and (S′[n], h′),
respectively, such that both X and X ′ have Picard number 1. By a theorem of Huybrechts
[Huy99], h and h′ are ample classes on X and X ′, respectively.

The construction of the rank 2 lattices TS(h) and TS′(h′) generalizes to X and X ′ to pro-
vide rank 2 lattices TX(h) and TX′(h′). This follows from the work of Markman as in [Mar11],
Corollary 9.5. We refer to [Mar11] and the discussion in [Apo14], § 1 for the precise construction.

The formation of TX(h) is compatible with parallel transport. As a consequence, the iso-
morphism TS(h) → TS′(h′) mapping h to h′ induces an isomorphism TX(h) → TX′(h′) mapping h
to h′. It follows once again from [Apo14, Proposition 1.6], that (X, h) and (X ′, h′) are deformation
equivalent. �

We now state the main result of this section.

Theorem 2.5. Let n > 1 be an integer and let (X, h) be a primitively polarized irreducible
holomorphic symplectic variety of K3[n]-type. Let t be the divisibility of h, and let I ⊂ Z be a
system of representatives of Z/tZ, up to the action of −1 on Z/tZ. Then t divides 2n − 2 and
there exists a K3 surface S, a primitive polarization hS on S and an integer μ ∈ I such that the
pair (X, h) is deformation equivalent to (S[n], thS − μδn).

Remark 2.6. The class thS − μδn is not ample in general. However, the argument of the proof of
Proposition 2.4 shows that it is big.
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Proof. Remark 2.3 allows us to assume that X = S[n] for some K3 surface S. Let Λ̃ = H0(S, Z) ⊕
H2(S, Z) ⊕ H4(S, Z) be the Mukai lattice of S and let vn = (1, 0, 1 − n).

Write 2d and t for the Beauville–Bogomolov square and the divisibility of h, respectively. We
start by describing the structure of the lattice TS(h).

Write

h = (μ, λhS , μ(n − 1)) = λhS − μδn,

where λ and μ are two integers and hS is primitive. As h is primitive, λ and μ are relatively
prime. It is readily checked that the divisibility of h is

t = gcd(λ, 2n − 2),

and that μ and t are relatively prime.
The element

w =
1
t
h − μ

t
vn =

(
0,

λ

t
hS ,

μ(2n − 2)
t

)
∈ Λ̃, (2.8)

belongs to TS(h), and the computation of [Apo14, Proposition 2.2] show that w generates the
group TS(h)/(Zh ⊕ Zvn) � Z/tZ.

The lattice N spanned by h and vn in Λ̃ is isomorphic to 〈2d〉 ⊕ 〈2n − 2〉. Its discriminant
group N∨/N is Z/2dZ ⊕ Z/(2n − 2)Z.

As in paragraph 4 of [Nik79] and under the identifications given previously, the inclusion

〈2d〉 ⊕ 〈2n − 2〉 � Zh ⊕ Zvn ⊂ TS(h),

induces an injective morphism

ϕ : Z/tZ � TS(h)/(Zh ⊕ Zvn) ↪→ Z/2dZ ⊕ Z/(2n − 2)Z.

By (2.8), ϕ sends 1 to (2d/t, μ(2n − 2)/t).
Let S′ be a K3 surface with a primitive polarization hS′ . Let μ′ be an arbitrary integer, and

define

h′ = thS′ − μ′δn ∈ H2(S′[n], Z) = H2(S′, Z) ⊕ Zδn.

By [Nik79, Proposition 1.4.2] and the discussion given previously, a sufficient condition ensuring
that there exists an isomorphism of lattices TS(h) → TS′(h′) sending h to h′ is that

t2h2
S′ − μ′2(2n − 2) = 2d,

and
μ′(2n − 2)

t
= ±μ(2n − 2)

t
mod 2n − 2,

that is,

μ′ = ±μ mod t.

Now let μ′ be an integer in I such that

μ′ = ±μ mod t.

Then μ′ is prime to t because μ is. Furthermore, λ is divisible by t and h2
S is even, so that λ2h2

S

is divisible by 2t2. In addition, (μ2 − μ′2)(2n − 2) is divisible by 2t2: both (μ2 − μ′2) and 2n − 2
are divisible by t, and at least one of these terms is divisible by 2t, depending on the parity of t.
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As a consequence, the integer

2d + μ′2(2n − 2) = λ2h2
S − (μ2 − μ′2)(2n − 2),

is divisible by 2t2. Write
2d = t22d′ − μ′2(2n − 2),

and let S′ be a K3 surface with a primitive polarization hS′ of degree 2d′.
By construction, there exists an isomorphism of lattices TS(h) → TS′(h′) sending h to h′.

Proposition 2.4 shows that (S[n], h) and (S′[n], thS′ − μ′δn) are deformation equivalent. �
The following is an immediate consequence of the theorem.

Corollary 2.7. Let n > 1 be an integer and let (X, h) be a primitively polarized irreducible
holomorphic symplectic variety of K3[n]-type. Let I ⊂ Z be a system of representatives of
Z/(2n − 2)Z, up to the action of −1 on Z/(2n − 2)Z. Then there exists a positive integer m, a
K3 surface S, a primitive polarization hS on S and an integer μ ∈ I such that the pair (X, mh)
is deformation equivalent to (S[n], (2n − 2)hS − μδn).

We use the dual statement on curve classes.

Corollary 2.8. Let n > 1 be an integer and let X be a primitively polarized irreducible holo-
morphic symplectic variety of K3[n]-type. Let C ∈ H2(X, Z) be a primitive curve class with
positive square.

Then there exists a K3 surface S, a primitive polarization hS on S and an integer μ ∈
[0, n − 1) such that there exists a polarized deformation from X to S[n], carrying C to hS − μrn.

Proof. Following (2.2) and (2.3) we write C = h/div(h), for some primitive and positive h ∈
H2(X, Z). As in the proof of Proposition 2.4 we may assume that h is ample. By Corollary 2.7
there exists a polarized K3 surface (S, hS) and an integer μ ∈ [0, n − 1) such that the pair (X, mh)
is deformation equivalent to (S[n], (2n − 2)hS − μδn), for some integer m > 0. The divisibility of
(2n − 2)hS − μδn equals 2n − 2. Therefore, via the map (2.7), we obtain

(2n − 2)hS − μδn �→ 1
2n − 2

((2n − 2)hS − μδn) = hS − μrn.

This class yields the desired parallel transport of C. �
Remark 2.9. The proofs of the previous two corollaries work for any choice of a system of
representatives of Z/(2n − 2)Z, up to the action of −1 on Z/(2n − 2)Z.

3. Deforming rational curves

Let π : X → B be a smooth projective morphism of complex quasi-projective varieties of relative
dimension d, and let α be a global section of Hodge type (d − 1, d − 1) of the local system
R2d−2π∗Z. Fixing such a section α, we can consider the relative Kontsevich moduli stack of
genus zero stable curves M0(X /B, α). We refer the reader to [BM96, FP97, AV02] for details
and constructions.

The space M0(X /B, α) parametrizes maps f : C → X from genus zero stable curves to
fibers X = Xb of π such that f∗[C] = αb. The map M0(X /B, α) → B is proper. If f is a stable
map, we denote by [f ] the corresponding point of the Kontsevich moduli stack.

For the remainder of this section, let X be a smooth projective irreducible holomorphic
symplectic variety of dimension 2n and let f : C → X be a map from a stable curve C of genus
zero to X. We assume furthermore f is unramified at the generic point of each irreducible
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component of C. Let X → B be a smooth projective morphism of smooth connected quasi-
projective varieties and let 0 be a point of B such that X0 = X. Let α be a global section of
Hodge type (2n − 1, 2n − 1) of R4n−2π∗Z such that α0 = f∗[C] in H4n−2(X, Z).

Proposition 3.1. Let M be an irreducible component of M0(X, f∗[C]) containing [f ]. Then
the following hold:

(1) the stack M has dimension at least 2n − 2;
(2) if M has dimension 2n − 2, then any irreducible component of the Kontsevich moduli stack

M0(X /B, α) that contains M dominates B.

In other words, when assumption (2) holds, the stable map f : C → X deforms over a finite
cover of B. Related results have been obtained by Ran, see, for instance, Example 5.2 of [Ran95].
See also [AV15, Theorem 4.1] for an alternative proof.

Proof. Let X̃ → S be a local universal family of deformations of X such that B is the
Noether–Lefschetz locus associated to f∗[C] in S. In particular, B is a smooth divisor in S.

Lemma 11 of [BHT11] and our hypothesis on f show that we have an isomorphism

RH om(Ω•
f , OC) � Nf [−1],

in the derived category of coherent sheaves on C, for some coherent sheaf Nf . As a consequence,
standard deformation theory shows that any component of the deformation space of the stable
map f over S has dimension at least

dim S + H1(RH om(Ω•
f , OC)) − H2(RH om(Ω•

f , OC)) = dimS + χ(Nf ) = dimB + 2n − 2,

the latter equality following from the Riemann–Roch theorem on C and the triviality of the
canonical bundle of X.

As the image in S of any component of the deformation space of the stable map f is contained
in B, the fibers of such a component all have dimension at least 2n − 2. If any fiber has dimension
2n − 2, it also follows that the corresponding component has to dominate B, which shows the
result. �

This result holds for any smooth projective variety X with trivial canonical bundle. In order
to use it, we need to study the locus spanned by a family of rational curves. The following gives
a strong restriction on this locus, and makes crucial use of the symplectic form on X.

Proposition 3.2. Let X be a projective manifold of dimension 2n endowed with a symplectic
form, and let Y be a closed subvariety of codimension k of X. Let W ⊂ X be a subvariety such
that any point of Y is rationally equivalent to a point of W . Then the codimension of W is at
most 2k.

For a similar result, see [AV15, Theorem 4.4].
Before proving the proposition, we first record the following fact from linear algebra.

Lemma 3.3. Let (F, ω) be a symplectic vector space of dimension 2n and V a subspace of
codimension k of F . Then V contains a subspace V ′ of codimension at most 2k in F such that
the restriction ω|V ′ of the 2-form is symplectic on V ′. In particular, ω2n−2k

|V = 0.

Proof of Lemma 3.3. Let V ⊥ be the orthogonal to V with respect to the symplectic form ω. As
ω is non-degenerate, we have

dim(V ⊥) = k,

which implies that dim(V ∩ V ⊥) ≤ k.
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Let V ′ be a subspace of V such that V ′ and V ∩ V ⊥ are in direct sum in V . Then
dim(V ′) ≥ 2n − 2k. Furthermore, any v ∈ V is orthogonal to V ∩ V ⊥, so that (V ′)⊥ = V ⊥. As
a consequence, V ′ ∩ (V ′)⊥ = V ′ ∩ V ⊥ = 0, and the restriction of ω to V ′ is non-degenerate. �

Let us recall the following result, proved by Voisin [Voi16, Lemma 1.1] as an application of
Mumford’s theorem on 0-cycles.

Lemma 3.4. Let f : Z → X be a morphism between smooth projective varieties. Assume that
there exists a surjective morphism p : Z → B to a smooth projective variety with the property
that any two points of Z with the same image under p are mapped by f to rationally equivalent
points of X.

Then for any holomorphic form η on X there exists a holomorphic form ηB on B such that

f∗η = p∗ηB.

Proof of Proposition 3.2. Assume by contradiction that W has dimension at most 2n − 2k − 1.
We argue as in [Voi16, Proof of Theorem 1.3]. If w is any point of W , define

Ow := {x ∈ X : x ≡rat w},
where ≡rat denotes rational equivalence. Then Ow is a countable union of subvarieties of X, and
a dimension count shows that for any w, Ow contains a component of dimension at least k + 1.

By the countability of Hilbert schemes, there exists a generically finite cover ϕ : B → W ,
a family f : Z → B of varieties of dimension k + 1 and a morphism f : Z → X mapping every
fiber of p generically finitely onto points that are all rationally equivalent in X. We can assume
that B and Z are smooth and projective. Lemma 3.4 shows that for any holomorphic form η on
X there exists a holomorphic form ηB on B such that

f∗η = p∗ηB. (3.1)

On the other hand, if ω is the symplectic form on X, then, by Lemma 3.3, the (2n − 2k)-
holomorphic form η = ωn−k verifies

f∗(ωn−k) = 0.

As dim(B) = dim(W ) < 2n − 2k, the latter contradicts (3.1). �
These results allow us to give a simple criterion for the existence of uniruled divisors on

polarized deformations of a given holomorphic symplectic variety X. For similar results, see
[AV15, Corollaries 4.5 and 4.8].

Corollary 3.5. Let f : C → X be a genus zero stable curve in X, and let α = f∗[C]. Assume
that f is ruling. Then the following holds.

(1) There exists an irreducible component of M0(X /B, α) containing [f ] that dominates B. In
particular, the stable map [f ] deforms over a finite cover of B.

(2) For any point b of B, the fiber Xb contains a uniruled codimension 1 subscheme D whose
codimension 1 component of its cohomology class is a positive multiple of the Poincaré dual
of α, and such that D is ruled by a curve of class α.

Proof. Let M be an irreducible component of M0(X, f∗[P1]) containing [f ] such that, denoting
by Y the subscheme of X covered by the deformations of f parametrized by M, Y is a divisor
in X.

Let C → M be the universal curve. By Proposition 3.1, the dimension of M is at least 2n − 2.
We claim that equality holds, which implies statement (1), again by Proposition 3.1. Assume

299

https://doi.org/10.1112/S0010437X20007526 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X20007526


F. Charles, G. Mongardi and G. Pacienza

by contradiction that dim(M) > 2n − 2. As dim(Y ) = 2n − 1, this implies that any fiber of the
evaluation map C → Y ⊂ X is at least one-dimensional, which, in turn, shows that there exists
a subvariety W ⊂ X of dimension at most dimY − 2 = 2n − 3 such that any point of Y is
rationally equivalent to a point in W . Proposition 3.2 provides the contradiction.

To show statement (2), it suffices to consider the case where B has dimension 1 and passes
through a very general point of the Noether–Lefschetz locus associated to α. Let M be an
irreducible component of M0(X /B, α) containing M. Then M dominates B. Let Y ⊂ X → B
be the locus in X covered by the deformations of f parametrized by M . Since M dominates B,
any irreducible component of Y dominates B. Since the fiber of Y → B over 0 is a divisor in
X0 = X, the fiber of Y → B at any point b has codimension 1.

By construction, the irreducible codimension 1 part of Yb is ruled by a curve of class α. Note
that we cannot deduce that the class of the divisor Yb inside Xb equals that of Y because Y0

contains Y and the inclusion could be proper.
Let b be very general in the Noether–Lefschetz locus. The Néron–Severi group of Xb has

rank at most 2, and it is generated over Q by the Poincaré dual α∨ of α and the class of the
polarization. In particular, the codimension one component of the cohomology class of Yb is a
linear combination of α∨ and the class of the polarization. As a consequence, the same holds for
Y0. This holds for any choice of a polarization on X.

First assume that b2(X) ≥ 5, so that h1,1(X) ≥ 3. Assume that α∨ is not proportional to
the codimension one component of the cohomology class of Y0. Then the Picard number of Xb

is 2 for general b, and we may choose B in such a way that there exists b′ in B such that the
Néron–Severi group of NS(Xb′) has rank at least 3. We may replace X with Xb′ and assume
that NS (X ) has rank at least 3.

Let h and h′ be two ample classes on X such that α∨, h and h′ span a subspace of rank 3
of NS (X ). Then the codimension one component of the cohomology class of Y0 is both a linear
combination of α∨ and h and of α∨ and h′. As a consequence, it is proportional to α∨.

To give a general argument that covers the case b2 = 4, we may replace the moduli space of
stable genus 0 curves – for which classical references require projectivity assumptions – with the
(relative) Douady space parametrizing rational curves, and work with non projective manifolds as
well. In this framework, we may deform X with the class α and the uniruled codimension one sub-
scheme under consideration to an irreducible holomorphic symplectic variety with Néron–Severi
group generated by α∨, which proves the proportionality result.

Knowing that the cohomology class of the codimension 1 component Yb is proportional to
the Poincaré dual of α, let λ be the rational number such that

[Yb] = λ[α]∨.

Then λ is independent of b. To prove that λ is positive, we may assume that Xb is projective
by choosing a suitable deformation of the pair (X, α). Let H be an ample class on Xb. Then
q(H, Yb) > 0 and Hα > 0, so that the coefficient of proportionality is positive. �

4. Examples, proof of Theorem 1.2 and further remarks

In this section, we use the notation and the basic facts recalled in § 2.1. We start by constructing
examples of uniruled divisors using the classical Brill–Noether theory applied to the desingular-
izations of curves on a K3 surface. Then we present the proof of Theorem 1.2. We also compare
conditions (i) and (ii) in Remark 1.4 with the condition appearing in [OSY19, Corollary A.3].
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Finally, we show the existence of codimension 2 coisotropic subvarieties on projective holomor-
phic symplectic manifold of K3[n]-type in some of the cases where Theorem 1.2 does not provide
uniruled divisors.

4.1 Examples
Let n be a positive integer, and let k be an integer between 1 and n. Write g = k − 1. Let (S, H)
be a general polarized K3 surface, m > 0 an integer and L := mH with pa(L) := p ≥ g. Consider
the Severi variety parametrizing nodal genus g curves inside |L|. It is a locally closed subvariety
of |L| (see, e.g., [Ser06] for the basic facts on Severi varieties).

Recall that the Severi variety on regular surfaces has the expected codimension (equal to the
number of nodes) whenever non-empty (see, e.g., [CS97, Example 1.3]). In the case of multiples
of the hyperplane section on a general K3 surface non-emptiness has been shown by [Che02]
(see also [GK14] for another proof and a generalization). The case m = 1 corresponds to the
‘classical’ Bogomolov–Mumford theorem (see, e.g., [BHPV04, Ch. VIII, § 23]).

Consider a g-dimensional family CT → T, T ⊂ |L|, of curves of geometric genus g whose
general member is a nodal curve. Hence, T is given by an irreducible component of the Severi
variety parametrizing curves with (p − g)-nodes inside |L|.

It is well known that the relative symmetric product C
(g+1)
T is uniruled. Indeed, for each

t ∈ T the symmetric product C
(g+1)
t is uniruled as the Abel–Jacobi morphism AJg+1 : C̃

(g+1)
t →

Picg+1(C̃t) onto the g-dimensional Picard variety of the desingularization C̃t → Ct has fibers
isomorphic to PH(C̃t, L), for all L ∈ Picg+1(C̃t).

Its dimension is 2g + 1. We have the following key result.

Proposition 4.1. Let S and L be as given previously. Then S[g+1] contains a uniruled divisor

that is the image of C
(g+1)
T under the natural rational map

C
(g+1)
T ��� S[g+1],

for a certain irreducible component T of the Severi variety parametrizing curves with (p −
g)-nodes inside |L|.
Proof. We may assume that Pic(S) = ZH. We prove this statement by induction on g. For g = 0,
the statement is simply the existence of nodal rational curves proved by [Che02].

It is sufficient to show the claim on the symmetric product S(g+1) of S. More precisely, we
prove the following statement: there exists an irreducible component V of the Zariski closure of
the Severi variety parametrizing nodal genus g curves inside |L| such that, if CV → V denotes
the universal curve and C

(g+1)
V → V the relative symmetric product, the natural morphism

C
(g+1)
V → S(g+1),

is generically finite onto its image. Note that this is equivalent to saying that (g + 1)-generic
points on a generic curve of the family lie only on a finite number of curves of the family.

Indeed as

dimC
(g+1)
V = reldim(C (g+1)

V ) + dimV = (g + 1) + g = 2g + 1,

it follows that the image is a divisor inside S(g+1), and such divisor is uniruled as observed
previously.

Note also that the positive dimensional fibers of the morphism C
(g+1)
V → S(g+1) cannot lie

in a fiber of C
(g+1)
V → V , as C

(g+1)
t injects into S(g+1) for every t ∈ V .
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By inductive hypothesis, there exists an irreducible component W of the (Zariski closure
of the) Severi variety parametrizing nodal genus g − 1 curves inside |L| such that, if CW → W

denotes the universal curve and C
(g)
W → W the relative symmetric product, the natural morphism

C
(g)
W → S(g),

is generically finite onto its image.
Now let V be the Zariski closure of an irreducible component of the Severi variety of nodal

genus g curves in |H| obtained by smoothing one node of the curves in W (which can be done
again by the regularity of the Severi variety, [CS97, Example 1.3]). By construction, W ⊂ V . Let
CV → V be the universal curve. Its restriction over W yields a map CW → W . Let D be the
image of the morphism

C
(g+1)
V → S(g+1).

Observe that D contains the image DW of

C
(g+1)
W → S(g+1).

We claim that by the inductive hypothesis DW has codimension 2 or, equivalently, that the
morphism C

(g+1)
W → S(g+1) is generically finite onto its image. Indeed if ξ = x1 + · · · + xg+1 is a

generic point of the image, then, say, x1 + · · · + xg is a generic point of the image of the morphism
C

(g)
W → S(g). By the inductive hypothesis the points x1, . . . , xg lie on finitely many curves of the

family W , a fortiori that will be true for x1, . . . , xg, xg+1 and the claim follows.
We want to prove that D contains DW strictly. If this were not the case, by irreducibility, we

would have D = DW . Let U ⊂ D be an open subset over which the morphisms C
(g+1)
W → S(g+1)

and C
(g+1)
V → S(g+1) are smooth and let p1 + p2 + · · · + pg+1 be a point in U . Let C be a nodal

genus g curve in V containing these points. Let us fix the first g points p1, . . . , pg. By induction,
these points are contained inside a finite number of curves of genus g − 1 belonging to W . Let
B1, . . . , Bm be all such curves. Let UC ⊂ C be an open subset such that for all q ∈ UC we have
p1 + · · · + pg + q ∈ U . As we have shown previously, p1, . . . , pg, q lie on finitely many curves of
genus g − 1 belonging to W , and these curves must be B1, . . . , Bm. Therefore, as q varies in UC ,
we deduce that UC is a subset of a finite union of genus (g − 1) curves. As C is irreducible, there
is an i such that C = Bi, which is clearly a contradiction. Therefore, D must strictly contain
DW and be a divisor, which is necessarily uniruled. �

Remark 4.2. Let n ≥ 2 be an integer. Let S be a general projective K3 surface, H an ample
divisor on it and L = mH, m ≥ 1, a line bundle with pa(L) ≥ n − 1. For all k = 1, . . . , n, consider
a (k − 1)-dimensional family T ⊂ |L| of nodal curves of geometric genus k − 1. Then consider
the closure of the image of the rational map

C
(k)
T + S(n−k) ��� S[n].

By Proposition 4.1 we obtain n distinct uniruled divisors D1, . . . , Dn inside S[n].

Let us now compute the class of the curve in the ruling of the divisors given previously. Let
us denote by P1

g1
k
⊂ S[k] the image of a rational curve associated to one of the g1

k given, as in the
proof of Proposition 4.1, by any k-points on the curve. We remark that the hypotheses imply
that for a general choice, these linear series are simple and the nodes of the curve are non-neutral
(a node p ∈ C is said to be non-neutral with respect to a linear series g1

k on the desingularization
ν : C̃ → C if g1

k(−ν−1(p)) = ∅, i.e. if the two points above the node do not belong to the same
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fiber of the morphism associated to the linear series). Then, the Riemann–Hurwitz formula (see,
e.g., [CK14, § 2]) yields

[P1
g1

k
] = mh − 2(k − 1)rk, (4.1)

where mh is the class of L in the Néron–Severi group of S.
If we add (n − k)-distinct generic points η = q1 + · · · + qn−k to P1

g1
k
⊂ S[k] we obtain a rational

curve inside S[n], which we denote by Rk.

Proposition 4.3. Let k be an integer between 1 and n. Then:

(1) the class of Rk ⊂ S[n] in H2(S[n], Z) is mh − (2k − 2)rn;
(2) the class of Dk ⊂ S[n] in H2(S[n], Z) is proportional to (2n − 2)mh − (2k − 2)δn.

Proof. (1) Write Rk = ah − brn. As Rk = P1
g1

k
+ η, the intersection product Rk · h equals 2p − 2,

from which, using the facts recalled in § 2.1 we deduce a = m. Again for the choice of η we have
that Rk · δn = P1

g1
k
· δk. From this, from (4.1) and from § 2.1 we deduce that b = 2(k − 1). This

proves the first statement.

(2) For the second statement we argue similarly as follows. Write Dk = ah − bδn. Let
x1, . . . , xn−1 ∈ S be general points and let C ∈ |L| be a general curve. Set ξ := x1 + · · · + xn−1

and consider the curve in S[n] given by ξ + C. Such a curve has class h ∈ H2(S, Z). We first
describe all the points in the intersection between Dk and ξ + C. Let I be a subset of k − 1
indices among {1, . . . , n − 1} and let ξI be the corresponding zero-dimensional subscheme of
length k − 1. Notice that, as shown in Proposition 4.1, there exists a finite subfamily Tξ of car-
dinality M given by curves in T passing through ξI . For each curve C ′ ∈ Tξ and each point q of
the 2p − 2 intersection points between C ′ and C we get an intersection between Dk and ξ + C
given by q + ξ. All in all we obtain that

Dk · h = M

(
n − 1
k − 1

)
(2p − 2),

from which we deduce that a = mM
(
n−1
k−1

)
.

Consider p, x1, . . . , xn−2 ∈ S general points. Set ξ = x1 + · · · + xn−2 and consider the curve
PTp(S) + ξ, which has class rn. We now describe all the points in the intersection between
Dk and PTp(S) + ξ. Let I be a subset of k − 2 indices among {1, . . . , n − 2} and let ξI be
the corresponding zero-dimensional subscheme of length k − 2. As above, there exists a finite
subfamily Tp+ξ of cardinality M given by curves in T passing through p + ξI . For each curve
C ′ ∈ Tp+ξ we get an intersection between Dk and rn given by pC′ + ξ, where pC′ is the length
two zero-dimensional subschemes supported on p and determined by the tangent direction of C ′

at p. We therefore have

Dk · rn = M

(
n − 2
k − 2

)
,

from which we deduce that b = M
(
n−2
k−2

)
. Therefore

Dk = M

(
n − 2
k − 2

)
1

(k − 1)
(m(n − 1)h − (k − 1)δn)

and we are done. �
To account for other polarization types, we proceed as follows. For k = 2, . . . , n let ξ′ ∈ S[k]

be a zero-dimensional non-reduced subscheme corresponding to a ramification point of a g1
k on
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a general curve C̃t. Let ξ ∈ S[n] be a zero-dimensional subscheme obtained by adding (n − k)
distinct generic points to ξ′. Let P1

ξ the exceptional rational curve passing through ξ. Consider
the curve

R′
k := Rk ∪ P1

ξ ,

obtained by glueing along ξ the curve Rk corresponding to the g1
k and the exceptional ratio-

nal curve P1
ξ . Working with families of rational curves, we obtain as before uniruled divisors

D′
2, . . . , D

′
n. The divisor D′

k is the union of Dk with the exceptional divisor of S[n]. As a direct
consequence of Proposition 4.3, we can compute the relevant cohomology classes.

Proposition 4.4. Let k be an integer between 2 and n. Then:

(1) the class of R′
k ⊂ S[n] in H2(S[n], Z) is h − (2k − 1)rn;

(2) the class of D′
k ⊂ S[n] in H2(S[n], Z) is proportional to (2n − 2)h − (2k − 1)δn.

We now move on to the result we alluded to in Remark 1.4 the introduction.

Theorem 4.5. Let (X, H) be a polarized holomorphic symplectic variety of K3[n]-type. Suppose
there exist integers p, g and ε such that p ≥ g and ε = 0 or 1 such that the following two conditions
hold:

(i) the class α := H∨/div(H) ∈ H2(X, Z) can be written as γ + (2g − ε)η, with η in the
monodromy orbit of the class of the exceptional curve on a K3[n] and γ ∈ η⊥;

(ii) q(γ) = 2p − 2 (hence, q(α) = 2p − 2 − (2g − ε)2/(2n − 2)).

Then there exists an integer m > 0 such that the linear system |mH| contains a uniruled
divisor covered by rational curves of primitive class equal to α.

Proof. Let α ∈ H2(X, Z) as in the statement of the theorem. By Corollary 2.8, there exists a K3
surface S as given previously such that the pair (X, α) is deformation equivalent to (S[n], [Rk])
for some k between 1 and n, or to (S[n], [R′

k]) for some k between 2 and n (with Rk and R′
k

as in Propositions 4.3 and 4.4). Note that being deformation equivalent means that (X, α) and
(S[n], Rk) (or (S[n], [R′

k])) are connected by a family f : X → B, where B is an irreducible curve,
so that the parallel transport brings α to [Rk] (respectively, [R′

k]).
Corollary 3.5 shows indeed that X contains a uniruled divisor with class a multiple of h and

the theorem now follows. �

4.2 Finiteness of the exceptions and proof of the main theorem
In this section we prove that, for every dimension, there is at most a finite number of components
of the moduli space of polarized irreducible holomorphic symplectic manifolds (X, H) of K3[n]-
type where the strategy of the previous sections does not work. Together with Theorem 4.5 this
will conclude the proof of Theorem 1.2.

The uniruled divisors we constructed in the previous paragraph have class hS − (2g)rn (or
hS − (2g − 1)rn), with 2p − 2 = h2

S and hS the primitive polarization on the K3 surface. We
have the following result.

Proposition 4.6. Let C be a primitive class of a curve on a manifold of K3[n]-type such that
its square C2 with respect to the Beauville–Bogomolov form is > 0. If q(C) ≥ n − 1, then C is
deformation equivalent to the class of one of the curves constructed in the previous section.

Proof. We know by Corollary 2.8 that C is deformation equivalent to either hS − 2grn or hS −
(2g − 1)rn, with 2g ≤ n − 1 (respectively, 2g ≤ n). If p were < g, then, in both cases, we would
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have

n − 1 ≤ q(C) = q(hS) − 4g2 1
2(n − 1)

= 2(p − 1) − 4g2 1
2(n − 1)

< 2(g − 1) − 4g2 1
2(n − 1)

≤ n − 2,

which is a contradiction. �

Proof of Theorem 1.2. The components of M are in bijective correspondence with the mon-
odromy orbits of a given class of positive square in H2(X, Z), see [Apo14, Corollary 2.4]. For a
fixed square of h, there is a finite number of orbits (cf. [GHS10, Proposition 1.2]), so it follows
that if X has a uniruled divisor when q(h) is big enough, our claim will hold. Let C be a curve
class in H2(X, Z) such that C = h/div(h) under the map (2.7). The divisibility of h is at most
2n − 2, therefore if q(h) ≥ (2n − 2)2(n − 1) the curve class C has square at least n − 1, so that
Proposition 4.6 applies and both items of the theorem follow from Theorem 4.5. �

Corollary 4.7. Let X be a projective irreducible holomorphic symplectic variety of K3[n]-type
with Picard rank at least two. Then X has an ample divisor ruled by primitive rational curves.

Proof. As X is projective and has Picard rank at least two, its Picard lattice is indefinite and
contains primitive elements of positive arbitrary Beauville–Bogomolov square. The same holds
for ample classes. Let h be an ample divisor such that q(h) ≥ (2n − 2)2(n − 1). Let C be a curve
class in H2(X, Z) such that C = h/div(h) under the map (2.7). As in the proof of Theorem 1.2
it follows that q(C) ≥ n − 1 and Proposition 4.6 yields our claim. �

Remark 4.8. The estimate of Proposition 4.6 is definitely not sharp, indeed all primitive curves
of positive square on irreducible holomorphic symplectic manifolds of K3[n]-type with n ≤ 7 are
deformation equivalent to the curves we construct. Indeed, by Corollary 2.8 we can suppose
that our pair is (S[n], hS − μrn) with 0 ≤ μ ≤ n − 1 and S is a K3 of genus p. This curve is
constructed from a curve of class hS − 2grn with the eventual addition of a tail of class rn, so
that 2g ≤ n. Let us suppose that g > p and n ≤ 7. We have

q(hS − 2grn) = 2p − 2 − 2
g2

n − 1
≤ 2p − 2 − 2

(p + 1)2

n − 1
≤ 2p − 2 − 2

(p + 1)2

6
.

However, the last value is never positive, hence q(hS − 2grn) can only be negative. Analogously,
for C = hS − (2g − 1)rn, we have q(C) ≤ (20p − 25 − 4p2)/12 with g ≥ p + 1 and 2g ≤ n, which
is again not positive.

5. Comparison with the work of Oberdieck, Shen and Yin and further results

In this section we compare our results with those of Oberdieck, Shen and Yin [OSY19, Corollary
A.3]. We show that conditions (i) and (ii) in Theorem 4.5 are precisely satisfied in all cases where
the obstruction discovered by [OSY19] does not prevent uniruled divisors covered by primitive
rational curves to exist. In other words, we show that our result is sharp. We discuss how the
counterexamples to the existence of uniruled divisors covered by rational curves of primitive
class propagate in higher dimensions. Moreover, up to a relatively high value of the dimension
(2n = 26), we show that the existence of uniruled divisors can nevertheless be obtained via non-
primitive rational curves. Finally in some of the ‘exceptional cases’ (those where existence of
uniruled divisors covered by rational curves of primitive class is excluded) we show that the
codimension of the locus covered by the primitive rational curves is two.
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5.1 Comparison with the work of Oberdieck, Shen and Yin
To conclude this section let us recall the condition in [OSY19, Corollary A.3].

Proposition 5.1 [OSY19]. Let β be a curve class on a manifold X of K3[n]-type. Then there
is a uniruled divisor swept out by β if

β2 = −2 +
n−1∑

i

2di − 1
2n − 2

( n−1∑
i

ri

)2

, (5.1)

[β] = ±
[ ∑

ri

]
, (5.2)

4di − r2
i ≥ 0. (5.3)

Here [β] denotes the class of β seen as an element of the discriminant group H2(X, Z)∨/H2(X, Z)
(with a generator of square −1/(2n − 2), which is in the same monodromy orbit of the class rn

of exceptional lines on S[n] for any K3 surface S). The converse holds if β is irreducible.

Proposition 5.2. Let n, g > 0 be integers such that 2g ≤ n. Let p be an integer number. The
condition p ≥ g for a curve of class hS − 2grn with h2

S = 2p − 2, on an Hilbert scheme S[n] is
equivalent to the conditions in Proposition 5.1.

Proof. Let us call β = hS − 2grn. We have β2 = −2 + 2p − (1/(2n − 2))4g2 and [β] = [2grn] in
the discriminant group. Therefore, we must have∑

di = p, (5.4)∑
ri = 2g. (5.5)

If p ≥ g, we can set ri = 2 for g indices i such that di = 0 and set ri = 0 for all the others, so
that the conditions in Proposition 5.1 are satisfied. On the other hand, if g > p, there is at least
one ri > 2di, so that 4di − r2

i < 0, contradicting the third item in Proposition 5.1. �
Remark 5.3. Observe that if p, g and n are as in Proposition 5.2, then, for all n′ ≥ n, the integers
p, g and n′ again provide examples of primitive classes hS − 2grn′ ∈ H2(S[n′], Z) which cannot
rule a divisor.

Remark 5.4. Condition (ii) in Remark 1.4 is not sufficient to ensure the existence of a uniruled
divisor covered by primitive rational curves. Indeed, let n = 11 and consider two general polarized
K3 surfaces (S1, h1) and (S2, h2) of genus 2 and 4, respectively. One checks that the classes C1 :=
hS1 − r11 on S

[11]
1 and C2 := hS2 − 9r11 on S

[11]
2 have the same square = 2 − 1/20. The divisors

hi, i = 1, 2, such that Ci = hi/div(hi) are h1 = 20hS1 − δ11 and h2 = 20hS2 − 9δ11. Nevertheless,
they are not in the same orbit under the monodromy action. This can be seen as follows: by
Markman, two classes are monodromy equivalent if and only if they have the same square and
their images in the discriminant group are equal up to sign. Now the image of the first class is
[r11] whereas that of the second is [9r11]. Moreover, by Proposition 5.1, only the first can be the
class of rational curves covering a divisor.

5.2 Uniruledness via non-primitive rational curves
Let ε be equal to 0 or 1. Suppose n, p and g are positive integers such that

(n − 1 + ε)
2

≥ g ≥ p + 1; (5.6)

(2p − 2)(2n − 2) > (2g − ε)2. (5.7)
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Let (S, hS) be a general polarized K3 surface of genus p = pa(hS). Let C ∈ H2(S[n], Z) be a
primitive curve class of the form

hS − (2g − ε)rn.

Note that condition (5.7) is equivalent to q(C) > 0. By condition (5.6) we cannot apply our main
result to C (and by [OSY19, Corollary A.3] there is no way to obtain a uniruled divisor covered
by rational curves of class C). Nevertheless, it makes sense to ask the following.

Question 5.5. Does there exist an integer m > 0 such that mC is represented by rational curves
covering a divisor?

In particular, as the Severi varieties of |mhS | are known to be non-empty by [Che02], it is
natural to try and extend our approach to the multiple hyperplane linear system. Precisely, we
can look for an integral nodal curve C ′ ∈ |mhS | of genus g′ = �(2mg − mε)/2� and take g′ + 1
points on C ′ to obtain a rational curve in S[n] of class mC (possibly after the union of an
exceptional tail, depending on the parity of m).

The obvious necessary numerical conditions to be satisfied are

g′ + 1 ≤ n; (5.8)

g′ ≤ pa(mhS) = m2(p − 1) + 1. (5.9)

If such an integer m exists, by applying Proposition 4.1 and the same strategy of Theorem 1.2
we would obtain the existence of uniruled divisors in the components of M (which is the union
∪d>0M2d of the moduli spaces M2d of projective irreducible holomorphic symplectic varieties of
K3[n]-type polarized by a line bundle of degree 2d) left out from Theorem 1.2.

Let us define the following quantities (coming from conditions (5.8) and (5.9) by distinguish-
ing according to the parity of m):

meven
max :=

2(n − 1)
2g − ε

; (5.10)

modd
max :=

2n − 3
2g − ε

; (5.11)

meven
min :=

g − ε/2 +
√

(g − ε/2)2 − 4(p − 1)
2(p − 1)

; (5.12)

modd
min :=

g − ε/2 +
√

(g − ε/2)2 − 2(p − 1)
2(p − 1)

. (5.13)

From the discussion given previously, we deduce the following result.

Proposition 5.6. If there exists an integer m > 0 such that

m•
min ≤ m ≤ m•

max, (5.14)

then Question 5.5 has a positive answer.

To apply Proposition 5.6, one must first check that m•
min ≤ m•

max. This easily follows from
(5.7) when m is even or ε = 0.

We can now show that the apparent persistence of the pathologies, observed in Remark 5.3,
can be avoided by taking non-primitive curves.

Proposition 5.7. Let n, p and g as given previously. Then for all n′ ≥ g + 1 + n there exists
an integer m > 0 satisfying (5.14).
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Table 1. Primitive curve classes not ruling a divisor.

Class p g ε m n

hS − 5rn 2 3 1 2 8
hS − 7rn 3 4 1 2 8
hS − 8rn 3 4 0 2 10
hS − 9rn 4 5 1 2 10
hS − 10rn 4 5 0 2 10
hS − 6rn 2 3 0 3 11
hS − 9rn 3 5 1 2 12
hS − 11rn 4 6 1 2 12
hS − 11rn 5 6 1 2 12
hS − 12rn 5 6 0 2 13

Proof. If n′ ≥ n + 1, we always have m•
min ≤ m•

max. Moreover, for n′ ≥ n + 1 + g the value of
m•

max increases by at least one. �
We have shown in Remark 4.8 that we do have existence of uniruled divisors covered by prim-

itive rational curves in sufficiently ample linear systems on irreducible holomorphic symplectic
manifolds of K3[n]-type with n ≤ 7.

There are cases in which condition (5.14) is easily checked to hold: for instance, for all p, g
and n verifying (5.6) and (5.7) and such that (2p − 2)|(2g − ε). In particular, this yields the
following.

Theorem 5.8. Let 8 ≤ n ≤ 13 be an integer. Let M = ∪d>0M2d be the union of the moduli
spaces M2d of projective irreducible holomorphic symplectic varieties of K3[n]-type polarized by
a line bundle of degree 2d. For all (X, H) ∈ M, there exists a positive integer a such that the
linear system |aH| contains a uniruled divisor.

Proof. We follow the strategy of taking a curve in the multiple hyperplane system |mHS | outlined
previously. In Table 1, we list the curve classes arising as exceptions to Theorem 1.2, together
with the genus p of the K3 surface S, the values of g and ε, the minimal m which satisfies (5.14)
and the smallest n such that hS − (2g − ε)rn does not satisfy Theorem 1.2.

The conclusion immediately follows from Table 1. �
The first case when this strategy does not work appears for n = 14, by taking

C := hS − 10r14,

where hS is a polarization of genus pa(hS) = 3 and one checks that 2 < mmin < mmax < 3.
The bad news is that, even asymptotically in n, there is no hope that condition (5.14) can

hold as shown by the following.

Example 5.9. Take g = �(n − 1)/3�, p − 1 = �(n − 1)/9� + 1 and n large enough. Conditions
(5.6) and (5.7) are satisfied. However, both m•

min and m•
max are < 3, but m•

min →n→+∞ 3.

Remark 5.10. One may wonder whether a minor modification of this strategy might still lead to
the existence of uniruled divisors in all cases. One possibility is to construct different rational
curves coming from the Brill–Noether theory of nodal curves in the multiple hyperplane linear
system of a general K3. This approach presents two difficulties. One has first to control the
Brill–Noether theory of such nodal curves (which does not seem to be an easy task, knowing
that already smooth curves in multiples of the hyperplane section are not Brill–Noether general).
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Second, even if one disposed of a family of g1
n on nodal curves in |mhS | of the right dimension,

the analogue of Proposition 4.1 should still hold for such a family.

5.3 Some codimension 2 coisotropic subvarieties
In this section, we look at the cases where, by [OSY19], there are no uniruled divisors ruled by
primitive rational curves, and try to study the codimension of the ruled locus in this case. In
particular, we have the following.

Theorem 5.11. Let X be a polarized irreducible holomorphic symplectic manifold of K3[n]-
type. Let C be a curve class such that the pair (X, C) is deformation equivalent to (S[n], hS −
(2g − 1)rn), where q(hS) = 2g − 4, for a certain integer n/2 ≥ g > 2. Then X has a codimension
2 locus covered by rational surfaces ruled by a primitive curve class.

This will follow from the following result, proven in [KLM19, Theorem 6.1]. We refer the
reader to [KLM19] for the notation.

Theorem 5.12 [KLM19, Theorem 6.1]. Let (S, hS) be a very general primitively polarized K3
surface of genus p := pa(hS) ≥ 2. Let 0 ≤ g ≤ p and n ≥ 2 be integers satisfying

2(p − g) + 2 ≤ χ := g − n + 3 ≤ p − g + n + 1. (5.15)

Then on S[n] there exists a (2n − 2)-dimensional family of rational curves of class

hS − (g + n − 1)rn, (5.16)

which covers a subvariety birational to a Pχ−2(p−g)−1-bundle on a holomorphic symplectic
manifold of dimension 2(n + 1 + 2(p − g) − χ).

This theorem applies only to finitely many deformation types of (X, h) for any dimension,
but it turns out that it can be used to produce coisotropic subvarieties of codimension at least 2
in the exceptions to Theorem 1.2.

Proposition 5.13. Let (X, h) be a polarized irreducible holomorphic symplectic manifold of
K3[n]-type and let C be the primitive curve class equal to h/div(h). Suppose that the conditions
in Proposition 5.1 are not satisfied. Then there exist a polarized K3 surface (S, hS) of genus
p = pa(hS) and an integer g ≤ p such that:

(i) p and g satisfy conditions (5.15);
(ii) X is deformation equivalent to S[n] and the class C is sent to hS − (g + n − 1)rn by the

parallel transport.

Proof. By Corollary 2.8 the pair (X, C) is deformation equivalent to (Σ[n], hΣ − (2γ − ε)rn),
where Σ is a K3 surface of genus π := pa(hΣ), γ a positive integer and ε = 0, 1. As the conditions
in Proposition 5.1 are not satisfied, by Proposition 5.2 we have pa(hΣ) < γ. By Remark 2.9
we can choose as system of representatives of Z/(2n − 2)Z, up to the action of −1, the set
[2n − 2, 3n − 3] ∩ N. Hence, we can deform to a different punctual Hilbert scheme on a polarized
K3 surface (S, hS) such that our curve has class hS − (2n − 2 + 2γ − ε)rn and the genus p of S
is p = π + n − 1 + 2γ − ε. Set g := n − 1 + 2γ − ε.

It follows that χ = 2γ + 2 − ε. The conditions we must check are

2(p − g) + 2 ≤ χ ≤ (p − g) + n + 1.

As p − g = π < γ and 2γ − ε ≤ n − 1, they are always satisfied and Theorem 5.12 applies, giving
the desired locus of codimension χ − 2(p − g) − 1 ≥ 2. �
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Proof of Theorem 5.11. Let C be as in the statement. The conditions of Proposition 5.1 are
not satisfied, as pa(hS) = g − 1. Hence, we can apply Proposition 5.13 and obtain a new pair
(S[n]

1 , hS1 − ((2g − 1 + n − 1) + n − 1)rn) satisfying conditions (5.15). Therefore, we can apply
Theorem 5.12 to (S[n]

1 , hS1 − ((2g − 1 + n − 1) + n − 1)rn) to deduce the existence of a (2n − 2)-
dimensional family of rational curves covering a coisotropic subvariety. By Proposition 3.1 these
rational curves deform to the initial variety X and by construction they have class equal to C.
By [OSY19], the codimension of the locus covered by their deformations on X cannot be less
than 2. Thus, if it is 2 on S

[n]
1 that must be the case also on a general point X ′ in the component

of the moduli space M containing (X, C). Observe that, in this case, we have χ = 2g + 1 and
the locus covered by these rational curves has therefore codimension 2g + 1 − 2g + 1 = 2. Hence,
we have a coisotropic subvariety Z ′ ⊂ X ′ covered by rationally chain connected surfaces F ′. The
flat limit Z ⊂ X of Z ′ is covered by the flat limits F of the RCC surfaces F ′ and of course F is
RCC. The theorem follows. �
Remark 5.14. For n = 8, 9, where the first exceptions discovered by [OSY19] appear,
Theorem 5.11 applies. This is not the case for the exceptions of classes hS − 8r10 and hS − 10r10

in dimension 20 (cf. Theorem 5.8).

6. Application to 0-cycles

In what follows, we always consider Chow groups with rational coefficients. Throughout this
section, let X be an irreducible holomorphic symplectic variety. If Y is a variety, let CH0(Y )hom

be the subgroup of CH0(Y ) consisting of 0-cycles of degree 0.

Definition 6.1. Let D be an irreducible divisor on X. We denote by S1CH0(X)D,hom the
subgroup

S1CH0(X)D,hom := Im(CH0(D)hom → CH0(X)),

of CH0(X). We denote by S1CH0(X)D the subgroup

S1CH0(X)D := Im(CH0(D) → CH0(X))

of CH0(X).

Lemma 6.2. Let D and D′ be two irreducible uniruled divisors on X and let R and R′ be the gen-
eral curves in the respective rulings. If DR′ = 0 and D′R = 0, then S1CH0(X)D = S1CH0(X)D′

and S1CH0(X)D,hom = S1CH0(X)D′,hom.

Proof. Let π : D̃ → T and π′ : D̃′ → T ′ be rulings of varieties D̃ and D̃′ mapping finitely to
D and D′, respectively. The curves R and R′ are the images of the general fibers of π and π′

respectively. As a consequence of the hypothesis, both projections in the diagram

π−1(Σ)

π|Σ
��

�� Σ := D ∩ D′ (π′)−1(Σ)��

π′
|Σ

��
T T ′

(6.1)

are surjective, which implies that

S1CH0(X)D = Im
(
CH0(Σ) → CH0(X)

)
= S1CH0(X)D′

and
S1CH0(X)D,hom = Im

(
CH0(Σ)hom → CH0(X)

)
= S1CH0(X)D′,hom. �
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Proof of Theorem 1.7. We give the proof for S1CH0(X)D. The proof for S1CH0(X)D,hom is
exactly the same.

Applying Corollary 3.5, we may find an ample divisor H, ruled by a rational curve of class
α, Poincaré dual to that of H. First note that, since H is ample, for any index i we have

Hi · α = q(Hi, H) > 0.

Then, by Lemma 6.2 we conclude that the groups S1CH0(X)Hi are independent of i.
Let D be an irreducible uniruled divisor on X and let R be a general curve of its ruling.

Since H is ample, we may find an integer i such that HiR = 0. Furthermore, as above, we have
that RiD = 0. By Lemma 6.2, we obtain the equality

S1CH0(X)D = S1CH0(X)Hi ,

which concludes the proof. �

Thanks to Theorem 1.7 we can drop the dependence on D from the notation and, in what
follows, under the same hypotheses, we will simply write S1CH0(X) and S1CH0(X)hom for the
groups S1CH0(X)D and S1CH0(X)D,hom.

Proposition 6.3. Let X be a projective holomorphic symplectic variety, and let D be an
irreducible uniruled divisor on X. Suppose that X possesses an ample ruling curve R. Then

S1CH0(X)hom = D · CH1(X)hom and S1CH0(X) = D · CH1(X).

Proof. We give the proof for S1CH0(X)hom. Basic intersection theory [Ful98, chapter 6]
guarantees the inclusion

D · CH1(X)hom ⊂ Im(CH0(D)hom → CH0(X)hom) = S1CH0(X)hom.

To prove the other inclusion consider any irreducible uniruled component Hi of the ample
divisor H ruled by R. By Theorem 1.7 we have S1CH0(X)D,hom = S1CH0(X)Hi0

,hom. Notice,
moreover, that by the hypothesis,

D · R = D · λH∨ = λq(D, H) = 0 for some λ = 0. (6.2)

Consider

Z :=
∑

nkxk ∈ S1CH0(X)Hi0
,hom,

where the xk lie in Hi0 . For each xk, let Rxk
be a curve in the ruling of Hi containing it. Then,

by (6.2), there exists a rational number μ > 0, independent of k, such that

xk = μD · Rxk
.

Hence

Z =
∑

nixi = μD ·
(∑

nkRxk

)

holds in CH0(D), from which we see that

S1CH0(X)D,hom = S1CH0(X)Hi0
,hom ⊂ D · CH1(X)hom. �
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Proof of Theorem 1.8. Write L =
∑

miDi, where Di is irreducible and uniruled for all i. We
have

L · CH1(X)hom ⊂
∑

Di · CH1(X)hom = S1CH0(X)hom,

where the last equality holds thanks to Proposition 6.3 (note that we do not automatically have
the equality, because some of the mi may be negative).

To prove the other inclusion we argue as in Proposition 6.3. We take an irreducible uniruled
divisor D such that L · RD = 0, where RD is a curve in the ruling of D. Such a divisor exists by
the hypothesis, as we can take any irreducible component of the divisor H ruled by the ample
curve R. Let Z :=

∑
nixi ∈ Im(CH0(D)hom → CH0(X)) = S1CH0(X). Then the equality∑

nixi = λL ·
( ∑

niDxi

)
,

holds in CH0(X) for some rational number λ, hence

S1CH0(X)D ⊂ L · CH1(X)hom. �

7. Some open questions

We briefly discuss some questions raised by our results. Theorem 1.2 suggests a natural extension
to general projective holomorphic symplectic varieties in the following way.

Question 7.1. Let X be a projective holomorphic symplectic variety of dimension 2n, and let k
be an integer between 0 and n. Does there exist a subscheme Yk of X of pure dimension 2n − k
such that its 0-cycles are supported in dimension 2n − 2k?

This question has been put into a larger perspective by Voisin, in [Voi16], as a key step
towards the construction of a multiplicative splitting in the Chow group. In view of our con-
structions, it seems natural to hope for a positive answer for Question 7.1. Note that this is the
case if X is of the form S[n] for some K3 surface S as follows by taking Y to be the closure in
S[n] of the locus of points s1 + · · · + sn, where the si are distinct points of S, k of which lie on
a given rational curve of S.

It would be interesting to refine Question 7.1 to specify the expected cohomology classes of
the subschemes Yk.

The particular case of middle-dimensional subschemes seems of special interest in view of
the study of rational equivalence on holomorphic symplectic varieties.

Question 7.2. Let X be a projective holomorphic symplectic variety of dimension 2n. Does
there exist a rationally connected subvariety Y of X such that Y has dimension n and non-zero
self-intersection ?

A positive answer to Question 7.2 would lead to the existence of a canonical 0-cycle of degree
1 on X, as in the case of K3 surfaces. This raises the following question.

Question 7.3. Assume that Question 7.2 has a positive answer for X and let y be any point
of Y . Let H1, . . . , Hr be divisors on X, and let k1, . . . , kn be non-negative integers such that
r +

∑
i 2iki = 2n.

Do we have

H1 · · · · · Hr · c2(X)k1 · · · · · c2n(X)kn = deg(H1 · · · · · Hr · c2(X)k1 · · · · · c2n(X)kn) · y (7.1)

inside CH0(X) ?
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The existence of a degree 1 0-cycle cX verifying the equality (7.1) is a consequence of the
Beauville conjecture. We wonder whether such a 0-cycle can be realized in a geometrically
meaningful way as a point on a rationally connected half-dimensional subvariety.

Even in the case of a general polarized fourfold of K3[2]-type, we do not know the answer to
the preceding questions.

Finally, Question 7.1 raises a counting problem as in the case of the Yau–Zaslow conjecture
for rational curves on K3 surfaces [YZ96], which was solved in [KMPS10]. We do not know of a
precise formulation for this question.
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