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IMBEDDING C1 INTO Hx 

JINGZHI TIE 

ABSTRACT. This article gives a direct proof of Theorem 7.58 of Greiner [4]. This 
result implies that the classical Mikhlin-Calderôn-Zygmund calculus for the principal 
value convolution operators on C is, in a natural way, the limit of the Laguerre calculus 
for principal value convolution operators on Hi = C x R. 

1. Introduction. The simplest noncommutative nilpotent Lie group is the Heisen-
berg group Hi with underlying manifold R3 and with the group law 

(1) (x\,x2,t)(yi,y2,s) = (xi +y\,x2 + y2,t + s + 2[x2y\ -x\y2]) 

(1) should be looked upon as the non-commutative analogue of Euclidean translation on 
R3. Note that IR3 = C x R, and by writing z = x\ + ix2 and w = y\ + iy2 the Heisenberg 
group law can be written in the following form 

(2) (z, 0 O , s) = (z + w, t + s + 29m(zw)). 

The unit of Hi is (z, t) = (0,0) and the inverse of (z, /) is (z, i)~x = (—z, —t). 

Given functions <f)(u) and \jj{u) in C^°(Hi), the //-convolution (Heisenberg convolu
tion) is defined by 

<\> *H ip(u) = JR3 <j)(v~lu)il;(v)dv, 

where u = (z, t\ v = (w, s) and dv = dy\dy2ds with w = y\ + iy2, is the Lebesgue measure 
onIR3. 

It is useful to define the Hi analogues of Mikhlin-Calderôn-Zygmund principal value 
convolution operators on R2. Let r(z, t) = (rz, r2^, r > 0 denote the Heisenberg dilation. 
F is said to be H-homogeneous of degree m on Hi if 

F(rz? r
20 = rmF(z,0, Vr > 0. 

TheKoranyinormonHi is defined by ||(z,f)|| = (|^|4 + ^ 2) i , which is//-homogeneous of 
degree 1. The distance J(w,v)ofthe points wand vin Hi isd(v,w) = J(w_1v, 0) = ||w_1v||. 

Suppose that F G C°°(IR3 \ 0) is //-homogeneous of degree 7. Then F is locally 
integrable if and only if 7 > —4. The main result in this paper is concerned with 
functions which are //-homogeneous of the critical degree —4. 
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DEFINITION 1.1. Let F G C°°(IR3 \ 0) be //-homogeneous of degree - 4 . F has mean 
value zero if 

f Fda = 0, 
M«,0)=i 

where da is the induced measure on the Heisenberg unit ball J(w, 0) = 1. 

The basic result concerning principal value convolution operators on IHI i follows—see 

[3]. 

PROPOSITION 1.1. Let Y G C°°(R3 \ 0) be H-homogeneous of degree - 4 with mean 
value zero. Then F induces a principal value convolution operator, 

(3) F *H (/>(«)= lim f ¥(v^u)<t>(v)dv 
e—>0+ Jd(u,v)>e 

on functions </>(w) G Cg°(D^3). F can be extended to a bounded operator F:L2(M\) —> 

I 2 ( i i ) . 

In particular principal value convolution operators can be composed, and their com
position yields another principal value convolution operator. 

The Euclidean Fourier transform (/> of <f> G CQ°(R3) is given by 

</>(£, r) = JR3 e^^^x, 0 dx dt, 

where x = (xi,Jt2), £ = (£1, £2), dx = dx\dx2 and (£, x) = £1*1 + £2*2- Its inverse is 

</>(x, 0 = (2TT)-3 ^ ^ * > + ^ ( £ , r) rf£ rfr, 

withd£ = d^\d^2- If F G C°°(IR3\0),//-homogeneous of degree— 4 with vanishing mean 
value, then F(£,r) exists as a tempered distribution. Furthermore F (£ ,T ) G C°°(R3 \ 0) 
and //-homogeneous of degree 0 ([9]). The following result can be found in [1] and [4]. 

PROPOSITION 1.2. Let F induce a left-invariant principal value convolution operator 
onM\. Then F *# </> has the following representation as a pseudo-differential operator 

F *H </>(x71) = (2^ r 3 jT3 ̂ <W+frtF(d - 2x2r, & + 2x!T, rtyfê, T) rf£ rfr, 

wAere (/>(x, 0 G ÇQ°(R3). 

The best known example of a left invariant principal value convolution operator on 
Hi is induced by the singular Cauchy-Szegô kernel: 

S(Z't)= "27M2 7*2' 
7rz(\z\z — it)2 

If Hi is viewed as the boundary of the generalized upper half-plane T) = {(zi,Z2) : 
Smz2 > |zi |2} via the identification (z, 0 <-> (z, £ + i\z\2), then £*// may be viewed as 
the orthogonal projection of L2(M\) onto its subspace of boundary values of the Hardy 
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space H2CS)) of holomorphic functions in S). A simple calculation yields the Fourier 
transform, S of S, namely 

5 ( £ , T ) = ( 2 e x p ( - g ) , i f r > 0 
[ 0? if r < 0. 

See details in [2],[4] and [6]. S turns out to be the simplest of a large number of basic 
operators on M\ induced by Laguerre functions. Laguerre functions have been used in 
the study of the twisted convolution for several decades [1] [4] [10]. 

One defines the generalized Laguerre polynomials, L%\x), n,p = 0 ,1 ,2 , . . . via the 
following generating function formula 

00 1 

exp h?;)-
Then 

#>(*) = 
r(« + i) 1/2 

jfl2I%\x)e-* 
[T(n+p+\)\ 

are known as the Laguerre functions, where x > 0. It is well known that {£^{x) : 
n = 0,1,2, . . .} is a complete orthonormal set of functions in L2([0,00)) for each 
/> = 0 ,1 ,2 , . . . . (See [11]). 

DEFINITION 1.2 ([4], [5]). The exponential Laguerre functions 2„ (£) are denned on 
Cby 

and 

€P\o = sf (o = 2i"(-iy #>(|€|V** 
where «,/? = 0 ,1 ,2 , . . . and £ = £i + i^ = \£\el6 

Note that £(£, r) = £0 (£/y 2|r|) for r > 0. Now suppose that we are given F(£, r), 
//-homogeneous of degree 0, i.e. 

m , ?T) = F(£, T ) , ( $ , T ) € C X R for r > 0, 

then the homogeneity permits us to write F(£, r) as a direct sum of two functions on C: 

(4) ^M^ïH-M^H^b)1 

where 

and 

vV2lTM 10, ifr<0 

U = {*Mw'-*)> ifT<0 

2 H ; lo, if r > 0. 
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In particular one has, formally, the decomposition F = F+ 0 F_, where 

F+(z, 0 = (2TT)
 3 r <f» dr f e ^ t + ( -^Ll d& 

Jo JR \\2\T\J 

and 

F_(M) = (27T)"3 / ° ^frrfr / e^x>F f ^ Q </£, 

with z = x\ + ûf2- Proposition 1.2 implies that F+ *# F_ = 0, see [4] for a proof. 
F+ and F_ can be expanded in an exponential Laguerre series, namely, with CGC, 

(5) F±(0= E E*t!A (0 
p=—oo n=0 

This expansion is unique. In [4], Greiner studied and gave an outline of a proof of the 
following result: 

THEOREM [GREINER]. Let F induce a principal value convolution operator on Hi with 
exponential Laguerre expansion (5). Assume that F(£,r) w Lipschitz of order a > 1/2 
wzY/z respect to the r-variable atr = 0, /.e., //zere ex/sf 0 < 5 < 1 and C(6) G L1 [0,2ir], 
such that 
(6) |F(e", r) - F ( ^ , 0)| < C(fl)|r|ff /or |r| < 8. 

Then F(T = 0) = F+(r = 0) = F„(r = 0) /zas //ze Fourier series expansion 

oo 

(7) F(T = 0 ) = 5 ] ape
ip{e-^ with ap = lim Ff ' 

Note that F(r£, rV) = F(£, r) for r > 0, so if we set r = 0 and r = |£|_1, we have 

F(T = 0) = F(£, 0) = F(|£|e*, 0) = F(e", 0), 

hence the Fourier series (7) for F(£, 0) makes sense in the theorem. This result implies 
that the Laguerre calculus for the principal value convolution operators on Hi is the 
natural extension of the classical Mikhlin-Calderôn-Zygmund calculus for the principal 
value convolution operators on C2. The purpose of this article is to give a direct proof of 
this theorem. 

This result was stated in [4] without the Lipschitz condition (6). Some such condition 
is essential. We shall discuss this at the end. 

There is an analogue result for H„, see Greiner [5] for details. 

2. Proof of Greiner's theorem. We only consider the case r —* 0+, the case of 
r —» 0~ can be proved similarly. First we write F ^ and ap in the integral form. 

LEMMA 2.1. 

(8) 4TTF% = fj\-i?dJ0
OOF(eie, ^-\f^\r)drde 

(9) 2irap = f j * " F(ei0,0)e~ipe d6. 
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IMBEDDING C1 INTO Hx 1321 

PROOF. Since 

and 

jR2 2i\o&i\odz = 4(-in-ir+mfl JR2 ifh\i\2)^m2)ei{p-q)6di 

= 4Trfi-p(-l)n+m6M f° if\\r)t^\r)dr 

- 4nSP:(l6„,m 

p=—oo n=0 

we have 

4*B% = j R l F(e, \)&?(Qdt = jR2 F(*. \)&(A0dt 

= j ^ J™v(rew, ^yfe-^i-lfefH^ydrde 

= f jf ** e-'P6 £° F (e">, Y ) ( -1 )" €<W)(r) rfr </0. 

We used the homogeneity of F in the third equality. This proves (8). (9) yields the 
coefficients of the Fourier series expression of F(é8,0). • 

LEMMA 2.2. Forp > 0, 

\-Vptfi\x)dx = T(« + l) 2Ï+T(f + LfJ + l) 
Lr(H+p+i)J rfl.fJ + 1) 

w/zere [xj = integer part ofx. 

PROOF. We will calculate this integral by the generating function formula of Laguerre 
polynomials: 

1 f zx \ 

S**** - ( • - *« 
The définition of l%\r) yields 

Let 

^ = (-i)"jf «-Mi^W^. 
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Then 

(10) Y,W = T,L xte-iI%Xx)(-zydx 

= rxE2e~if:L<£\x)(-z)ndx 

1 roo £ _x_ / zx \ 
~ 7\ ^77 / x2e 2 e x P ~, "X 

(1+z)^ 1 h *vl +zJ 

i r(f +1) 

2ï+inf +1) 
~ ( l + z ) ? ( l - z ) § + 1 

_ 22 + l r ( f+ i ) ( i+z) 

(1 - z2)!+1 ' 

The binomial formula yields: 

(1_z2)-(f+.) = f;(_irM-1b«. 
n=0 \ " / 

f - 1\ = (-f - IX-f - 2X~f - 3)- ••(-§-«) 
« y «! 

_ , iy(f + lXf + 2)-(f+H) _ /Tf+n+O 
1 ' n! l ' T(f + l)n! ' 

( } km + Dnr 

(1 +z)(l -z2)"^» = £ r ^ + " * V +z2"+1). ^ r(f+ l)n! 

£ ^ v = 2M r(£ + A g r$ + " + *y +z
2«+1) 

Since 

we have 

and 

Therefore 

Cf 
The last equation implies 

(11) Rg-R&L,- 2 h l r (^"+ 1 ) . *2w u*2«+l 
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We can write (11) as follows: 

R<f> 
2?+1r(§ + Lf J +1) 

r(L§J + i) ' 
and we obtain 

f(~iy^\x)dx = T{n + 1) 

[T(n+p+l)\ 

r ( n + l ) 

'*?> 

- 2 f + T ( f + LfJ + i) 
T(n+p+\)\ r(L|J + l) 

This proves Lemma 2.2. 

LEMMA 2.3. 

lim n-iyi<P\r)dr = 2, for p = 0 ,1 ,2 , . . . . 
71—KX> JO 

PROOF. From Lemma 2.2, we have 

f(-lf^\r)dr = T(n+l) 

r(n+p+l) 
^22+1r(f+ Lfj + i) 

r(L§J + i) 
From p. 12 of [7] we know that 

T(n + a) 
(12) r ( w + / 3 ) ^" a -1 l + ^ - ^ + /?- l) + ^ - 2 ) 

for large integer n, which leads to 

lim n-lflV>(r)dr = 2?+1 lim U ^ ^ 
T ( K + 1 ) 

r ( « + ^ + i ) r(LfJ + i) 

^^- -H l îJ ) 1 - 2 -
This proves the lemma. • 

In the final stage of the proof of the theorem, we need certain norm estimate for 
the Laguerre functions (See Lemma 2.5). To show this estimate, we need the following 
asymptotic properties of Laguerre polynomials and functions. 

LEMMA 2.4. Let M > 1 be fixed constant, /i = An + 2p + 1 andp > 0, then 

(13) \L%Xx)\=x-$-*0(n$-*) forO<x<M, 

(14) \$\x)\<C 

x>3f, 
for some positive constants C and 1. 
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See Szegô [11] Theorem 7.6.4 for the proof of (13) and Section 8.22 for the proof of 
(14). 

LEMMA 2.5. Let M > 1 and a > 0 be fixed positive constants, p > 0 and (3 = 
max(l/2 — a, —1/4), \i - An + 2p + 1 as in Lemma 2.4. Then we have the following 
norm estimates for the Laguerre functions: 

(15) Jo
M\l%\x)\dx = 0(n-h 

(16) £x-a\l<?\x)\dx<Crf 

PROOF. First, formula ( 13) of Lemma 2.4 implies that as n 

r (w+l ) 

oo, 

£\e%\x)\dx = 
T(n+p+l) 

r(« + i) 

T(n+p+ 1) 

T{n+\) 

rfo 

JO 

JO 

x2e 2 L%\x)dx 

r (»+/?+!) . 

£ _ £ _ £ _ ! ~ , £ _ K j 
X2^ 2JC 2 4(9(«2 4 ) J X 

0 ( « 2 4) / x 4^ 2dx = 0(n 4). 

This proves ( 15). As to the proof of ( 16), we estimate the integrand in the various intervals 
as in Lemma 2.4. To keep track of the constants in the following estimates would be both 
wasteful and confusing. Thus C denotes a given constant which may change during the 
argument. 

For M > 1 and n sufficiently large, we only need to consider the integral in (16) in 
three intervals i.e. [M, /x/2], [/x/2,3/i/2] and [3/x/2, oo). LetI\, I2 and/3 be the integrals 
on these intervals respectively. We will estimate I\, L2 and I3 separately, then compare 
the bounds to obtain the final estimate. 

IL a 

h= j 1 x-a\^\x)\ dx<CJ2 x-a(xn)-^ dx 
tL 

= CuT* r x~a~* dx 
JM 

4 C , 3 ,/i/2 

» 4*4 L 3 - 4 a 
4C 4C _ l f / / i \ 4 - « 3 _ a 

= 3 = 4 ^ 4 K2) -M 4 <<V 

/2 = / / x-a\t<?\x)\ dx<C / / jc-a/i-i0*i + |/i — jc|)-* rfr 
J2 J 2 

<Cvrl-aJ*(nl+\»-x\r*dx 
ItL 

< C\T^~a j 2 |/x — Jt|~* dx 

= 2 C / i - i - Œ j T , f x - l £ È c = | c / i - i - Œ ( | ) i <C/ i*" a . 
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h = £x-a\e<£\x)\dx < C£x-"e-"xdx < c£e-»dx 

7 

Therefore 
f°x-a\lV>(x)\dx < C O Z + z i ^ + e r ^ ) . 

But p = max(l / 2 - a, - 1 /4), hence 

£x-a\$\x)\dx<Crf. 

This proves Lemma 2.5. 

Now we are ready to prove the theorem. By Lemma 2.3, it suffices to show that 

(17) 

in order to prove that 

lim 
n—>oo 

4TTF^ - 2irap^{-\)n^\r)dr\ = 0 

limF?»=ar 
n—>oo 

Apply Lemma 2.1 to write (17) in the integral form: 

(18) |4TTF^ - 2irap j^{-\)nl(^\r)dr\ 

=Ijf^jTK**' h) -^'°)](-i)"4wV)^^| 
Lipschitz condition (6) implies that there exists a positive function C(0) G L1 [0,27r] and 
constant M > 1 such that 

(19) \p(e'e, 1 ) - F(e'e, 0)| < C(0) |2 r r 

for r>M. Fix this M and rewrite (18) as the sum of two integrals: 

<AX+A2 4TTF^ - 27rap£(-l)n£M\r)dr\ 

M = \fe~iPdCHeW'h) -^^(-^T&^drd^ 

M = It6'* CW9' ^)-^W^)}(-lf&l)(r)drde[ 

Let N = max |F(£, ±)| with |£| < y/M, then Lemma 2.5 leads to 

Ax < 4TTN • JM\tfo\\r)\ dr = 4TTN • 0{rT^) -* 0 as n —> oo, 

with 

and 
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A2 < J**Qp(eie,±)-F(ew,0)\\l¥Hr)\drd9 

_£* C(6)d0 Jj2rya\lM\r)\dr 

/ / —» 0, as n —> oo, 

< 

< 2~aC\J C(6)d0 

where we used (19) in the second inequality, (16) in the third one, C is the constant from 
(16), and /i = An + 2p + 1 and (3 = max(| — a, — )̂ < 0 for a > \ for the limit. This 
proves (17), and therefore Greiner's Theorem. 

As we have noted in the introduction, this theorem was stated in [4] without the 
Lipschitz condition (6) which we used in the estimation of A2. A few remarks are in 
order about this condition. 

REMARK 1, Since the homogeneity of F(£, r) and F(£, 0) implies 

F«,r) = F(|^,r) = F^,^j j j , 

F(C,0) = F(|C|^,0) = F ( ^ ,0 ) , 

the condition 
| F ( ^ , r) - t(éB, 0)| < C{e)\r\a for \r\ < 8 

is equivalent to 

|F« , r ) -F (C ,O) |<C(0) 
ICI-2a for|r| < H £ | 2 . 

REMARK 2. We provide some evidence for the conclusion that the continuity of 
F(e 'V)atT = 0 
(20) 

r—->0 

alone is not strong enough to imply that A2 is small when n is sufficiently large. (20) 
implies that Ve > 0, 3M > 1 such that 

< e, for r>M. r ( ^ , J _ ) _ F ( ^ , 0 ) 

If we choose this M as in A2, we have 

<2*e-£\eM)(r)\dr. 

Meanwhile Lemma 2.5 implies that: 

£\e^\r)\dr<C-ni. 
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In fact, this can be refined to: 

ni < r\^\r)\dr<C-ni. 
JM 

c-1-
JM 

for some constant C, see Markett [8] Lemma 1 for proof. Hence we obtain A2 < 
lireC • w1/2, this upper bound for A2 is far too large, since we require that A2 be small 
when n sufficiently large. 

REMARK 3. The Lipschitz condition is sufficient but not necessary. We have the 
following example to illustrate this point. Let 

Ê(^è)=7? for'>0< 
then the homogeneity of F yields 

Substitute r by r2 in the above formula, we obtain 

P(rew , 5 ) = - , f o r r > 0 . 

Let £ = rew, then r = |£| and 

-( 1\ 1 ~ »( £ H \fW\ 

nv 
F(eld,T) does not satisfy the condition (6) since it is only Lipschitz of order 1/2. Now 
we calculate Ê!jP„ and ap. Apply Lemma 2.1, we obtain 

4TTF^ = f ^ ^ - ^ ^ F ^ ^ C - l f ^ C r ) ^ ^ 

= f J2\-ip01°° r-l2(-l)nl^\r)drd9 

and 

The definition of $\r) yields 

2irap = f J* F(eie, 0)e~ipe dô = 0. 

F ^ = 0, for/7^0, 

and 
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A simple calculation similar to that in the proof of Lemma 2.2 yields 

+'2n~V2 r(n + i) and F+>-1 °" 

Finally, Formula (12) implies 

lim /*°> = -5= lim n"i = 0 =*=>• lim f f„ = 0 = a0. 
n—>oo ' A / 2 W— °̂° «—>oo ' 

Therefore F satisfies the conclusion of the theorem. This example also yields the follow
ing interesting identity of the Laguerre polynomials: 
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