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C*-ALGEBRAS WITH REAL RANK ZERO AND THE 
INTERNAL STRUCTURE OF THEIR CORONA AND 

MULTIPLIER ALGEBRAS 
PART III 

SHUANG ZHANG 

0. Introduction. In this part, we shall be concerned with the structure of 
projections in a simple a-unital C* -algebra with the FS property, and in the 
associated multiplier and corona algebras. We shall also consider the closed 
ideal structure of the corona algebra. Most of results appear to be new even for 
separable simple AF algebras, and are technically independent of the previous 
parts I and II ([37] and [38]). The whole work develops after finding a new 
property of a a-unital (nonunital) simple C*-algebra with FS, which was not 
known even for a separable simple AF algebra. We relate this new property to 
the structure of the multiplier and corona algebras from vairous points of view. 

We will try to make this part as self-contained as possible. Let us recall 
some concepts and known facts first. A C*-algebra is said to have FS if the 
set of self-adjoint elements with finite spectra is norm dense in the set of all 
self-adjoint elements ([4, 2.6], [26] and [37]). The class of C*-algebras with 
FS has been recently investigated from various perspectives in [9] and in [33] 
to [41], which contain a number of interesting subclasses of C*-algebras, for 
example, AF algebras (not necessarily cr-unital), von Neumann algebras, AW*-
algebras, the Calkin algebra, the Bunce-Deddens algebras ([2] and [6]), the 
Cuntz algebras On (2 ^ n ^ +00) and OM if M is an irreducible matrix ([Part 
I, 2.1]), more generally all purely infinite simple C*-algebras ([Part I, 1.3] or 
[41]), the multiplier and corona algebras of nonunital separable matroid algebras 
([9] and [Part I, 3.4]), the corona algebras of a-unital nonunital purely infinite 
simple C*-algebras, the multiplier algebras of cr-unital purely infinite simple 
C*-algebras with trivial ^1-group ([Part I, 3.3]), certain irrational rotation C*-
algebras ([22]), and all the above C*-algebras tensored with K ([9]), where K 
is the C*-algebra of all compact operators on a separable Hilbert space. 

We denote the multiplier algebra of a C*-algebra A by M (A). For more in
formation on the multiplier algebras of C*-algebras, the reader is referred to 
the articles [1], [10], and, more recently, [8], among many others. Many as
pects of the multiplier algebras of C*-algebras, even for separable nonunital 
AF algebras, are not clear. This series of articles is an attempt to give some 
structural description for the multiplier and corona algebras of cr-unital nonuni
tal C*-algebras with FS. The content of this part is arranged in the following 
way: 

Received March 31, 1989. This research was partially supported by a grant from the National 
Science Foundation. 

159 

https://doi.org/10.4153/CJM-1990-010-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1990-010-5


160 C*-ALGEBRAS AND MULTIPLIER ALGEBRAS 

In Section 1, we shall prove a technical lemma (1.1) concerning the relation 
between two projections in a C*-algebra with FS, which is one of the key 
ingredients for the results in the later sections. The main result of this section 
is that if A is a cr-unital (nonunital) simple C*-algebra with FS, then A has 
an approximate identity consisting of a sequence of increasing projections {en} 
such that en+\ — en is Murray-von Neumann equivalent to a subprojection of 
en — en-\ for each n ^ 1, where e0 = 0- Such an approximate identity is 
called a fundamental approximate identity or "telescopic approximate identity". 
Moreover, if a nonzero projection q of A is given, then we can choose the 
above sequence {en} such that e\ is equivalent to a subprojection of q, so that 
en — en-\ is equivalent to a subprojection of q for each n ^ 1. A result of 
this type was proved recently in [23, Theorem 2] for certain special separable 
simple AF algebras, heavily relying on the traces on the dimension group of 
an AF algebra. We prove the above general result via a purely C*-algebraic 
construction. We establish a necessary and sufficient condition for a cr-unital 
non-projectionless simple C*-algebra to be stable, in terms of the telescopic 
approximate identity. 

In Section 2, we consider a short exact sequence of C*-algebras 

( ) - • / -+A-+A/I ->0 . 

We shall prove that if / is a a-unital simple C*-algebra with FS such that every 
projection in A/I lifts (in particular, if K\{I) — 0), and if both / and 7r(A0) 
have fundamental approximate identities, then A$ has a fundamental approxi
mate identity, where AQ is any cr-unital hereditary subalgebra of A and IT is the 
canonical quotient map. This result generalizes a recent result of [23, Theorem 
1], which proves a weaker conclusion under the assumption I — K. We must 
overcome some technical obstacles to prove the result at the above level of gen
erality. In later sections, this result proves to be very useful for studying the 
structure of M (A). 

In Section 3, we shall find an application of the lifting theorem in Section 2 
to the structure of certain multiplier algebras. We prove that if A is a cr-unital 
nonunital simple C*-algebra with FS such that every projection in M (A)/A lifts 
and M (A)/A is also simple, then any <j-unital hereditary C*-subalgebra of M (A) 
has either a unit or a fundamental approximate identity. Under the same assump
tion, the author proved in [Part I, 3.3] that M (A) has FS, or, equivalently, that 
any hereditary C*-subalgebra of M (A) has an approximate identity consisting 
of projections. Here, we strengthen the earlier result. 

In Section 4, we investigate the structure of projections in M(A)\A and in 
M (A)/A, if A is a cr-unital (nonunital) simple C*-algebra with FS. We prove that 
for any two projections p and q in M(A)\A, p can be decomposed into a sum p — 
HZi Pi s u c h t h a t <? %Pi ^P2 > . . . and n(pi) < n(pj), ir(pj) < it(pi) for any pair 
(ij) wherept G M(A)\A. (So any projectionp in M(A)\A can be decomposed 
into either a finite or an infinite sum p = Ylpi such that pt > pi > . . . and 
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TT(/7/)< IT(PJ)I n{pj)< ir(pi) for each pair (ij).) Moreover, we prove that if 
{pi} is any sequence of nonzero projections in M(A)/A, then there exists a 
nonzero projection p0 in M (A)/A such that p0 <pt for each / ^ 1. 

In Section 5, we obtain two sufficient conditions for M (A)/A to be purely 
infinite, under the assumption that A is a cr-unital (nonunital) C*-algebra with 
FS (not necessarily simple). We prove that if every a-unital nonunital hereditary 
C*-subalgebra of A has a fundamental approximate identity, then M (A)/A is 
purely infinite. This slightly generalizes a previous result of the author in [34, 
1.3], using a different proof. There, we proved that if A is simple, then M (A)/A 
is purely infinite. We shall also prove that if no nonzero closed (two-sided) ideal 
A is contained in pAp for any projection p of A, then M (A)/A is purely infinite. 

In Section 6, we provide some new information about the closed ideal lattice 
of M (A) and M (A)/A, assuming that A is a a-unital (nonunital) simple C*-
algebra with FS. For example, we prove that the intersection of countably many 
nonzero closed ideals of M (A)/A is nonzero, and that a nonzero closed ideal of 
M (A)/A has a nonzero intersection with any nonzero hereditary C*-subalgebra 
of M(A) J A. We also prove that any nonzero closed ideal of M (A)/A is never 
a-unital, or equivalently, any proper closed ideal of M (A) strictly containing A 
is never cr-unital. In addition, if B is a nonzero hereditary C*-subalgebra of 
M(A)/A, then no nontrivial closed ideal of B is ever a-unital, no matter whether 
B is a-unital or not. 

If B is a C*-algebra, we shall denote two Murray-von Neumann equivalent 
projections p and q in B by "/? ~ cf\ The local semigroup consisting of equiva
lence classes of projections in B is denoted by D(B). " < " means "is equivalent 
to a subprojection of. TX will denote the canonical map from B to B/A if A 
is a closed two-sided ideal of B. {eij} will denote the matrix units of K, the 
C* -algebra consisting of all compact operators on a separable Hilbert space. 

The author wishes to thank the referee for his prompt response and valuable 
suggestions. 

1. A property of simple C*-algebra with real rank zero. In [23, Theorem 
2], H. Lin found that a certain special subclass of separable simple AF C*-
algebras has an approximate identity consisting of a sequence of increasing 
projections, say {en}, such that 

0 < en+\ — en < en — en-\ for all n ^ 1 (where eo = 0), 

which he called a fundamental approximate identity. Intuitively, we may call 
such an approximate identity a "telescopic approximate identity". Lin's proof 
relies heavily on the traces over the dimension group of a separable AF algebra. 
We shall prove the same conclusion for a general a-unital (nonunital) simple 
C*-algebra with FS, via a technical construction not referring to traces at all. 
Certainly, simple AF algebras have FS, and hence Lin's result is included. We 
start with the following technical lemma, which is one of the key ingredients of 
our generalization and proves to be very useful. 
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LEMMA 1.1. If A is a C*-algebra with FS and q is a projection in A which 
generates A as a closed two-sided ideal, and if p a projection in A, then there 
exist mutually orthogonal projections n , ri,..., rn in A such that 

= ^2r» afld r^r^^"'^rn-l<rn<q-

Proof The proof of this lemma uses a combination of the arguments in the 
author's two recent papers [36, 2.3] and [35]. We divide the proof into three 
steps, as follows. 

Step 1. Working in A ® Mn, we identify A with A<g> e\\, p with p ® en and 
q with q®e\\. We show that there exists a partial isometry WQ of A ® Mn such 
that 

W0WQ = p ® en and WQW0 = q\ ® eu + qi ® e22 + • • • + qn ® enn, 

where (7, is a subprojection of # in A for 1 ̂  1 ^ w. 
Since # generates A as a closed ideal, there exist elements xi and yi in A such 

that 

^*«t fy , - -p 
1=1 

< 1 . 

It is obvious that there exist partial isometries v,- in A ® Mn such that v*v; 
# ® en and v/v* = q ® e« for each 1 ̂  / ̂  n. It follows that 

<7 ® en = v*(q ® e„)v; for 1 ^ 1 ^ /i. 

Set 

z\ = (p ® en) 53^-v*(^ ® e/;) and 
1=1 

2̂ = 5^(^ ® ejj)vjyj(p ® en). 

Then ||ziZ2 — (/? ® en)|| < 1 and so ziz* is invertible in pA/? ® e\\. Set 

M = (z1zrr1/2zij 

where of course the inverse is taken in pAp®e\\. Clearly, « is a partial isometry 
in A ® Mn such that 

uu*=p<g>e\i and w*w = ^0 = T ^ <7 ® e// ([13, 1.5]). 

/=! 
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Since A has FS, A®Mn has FS ([9]). By the Riesz decomposition of D(A®Mn) 
([36, 1.1]), there exists a partial isometry w in A ® M„ such that 

ww* = <7o and w*w = 2 J 47 ® £//, where #; ^ ^ (1 ^ / ^ n). 
1=1 

Let wo = ww. Then wo is a partial isometry in A 0 Mn such that 

ô̂ o = X] ̂  ® *" and W o H ;o = P ® * I b 
1=1 

namely, p ® en ~ <?i ® en + 42 ® e22 + • • • + <7« ® e#w. 

Step 2. Working in (qAq)<g>Mn, we want to adjust the # ' s to get projections 
/?, such that 

px ^ p2 = • * * = Pn ^ q and 

P ® * 1 1 ~P\ ® *?11 + P 2 ® ^22 + • • •+ /?» ® * W 

We use induction on w. If « = 2, 

p ® en ~ <7i ® en + <72 ® 2̂2-

Applying the Riesz decomposition of D(qAq) ([36, 1.1]), we obtain that <7i ^ 
q\+q*2 in #A<7, where g^ and q'2 are two projections in qAq such that ^ j Ik qi 
and q'2^ q — q2- (By [35, 5] we can actually conclude that q\ is path connected 
to q\+q 2 in the set of projections of qAq). It follows that 

p~q'i®en+ {q'2 + 42) ® ^22-

Let p\ = q\ and P2 = #2 + q'i- Clearly, /?i ^ /?2-
Assume that 

P ~ YlP'i ® *» SUCh t h a t P2=P3 = --=Pn' 
Ï = 1 

Applying the Riesz decomposition property to p'j and p'n, we have pj ~ sn + q'n 

in #A<7, where sn and #'„ are projections in qAq such that sn ^ q — p'n
 anc* 

^ / C Clearly, 

p ~ <?'„ ® en + 5 3 p j ® <?« + (Pn + ̂ ) ® *««• 
1=2 
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Repeating this argument to q'n and p'n_^ we get that q'n ~ q'n_\ + sn-\ in qAq, 
where q'n_\ and sn-\ are two projections in qAq such that sn-\ ^ p'n —p'n_\ and 
q'n_x ^ p'n_x. It follows that 

n-2 

p ~ q'n-i ® eu + ^p'i ® *« 

i=2 

+ (/^-l + ^-l)® w*—l,n—1 

Proceeding in this way, we can write 

n 

i= i 

for some projections si in #Ag such that si =5 p'i+l — p\ for 2 == / == AI, î ^ 

Pi (P»+i = !) a n d 

p ~ 5i <g> en + ]T)(p- + 5/) ® el7. 
i=2 

Let pi = 5i and p, = p\ + 5, for 2 =W Si w. Then 

pi^p2^"'^Pn and p ~ y ^ P i ® g « -
i= i 

Let vo be a partial isometry in A (g) Mn such that 

VOVQ = p ® *n and VQV0 = p\ <g> en + P2 ® 2̂2 + • • -p« ® enn. 

Step 3. Let w, = vo(p/ 0 £«)v/. Then w, is a partial isometry in A ® en such 
that 

w/wf = r,- ^ p <8> e\\ and w*w; = v*(p,- ® ^)v/ =5 <? ® <?n (1 =s / =? w). 

It is easy to check that r^j — 0 if / ^ y, 52/=1 r* = P ® £11 and 

H < r2 < • • • < rn-\ <rn<q for each Ki<n. 

Remark. It was pointed out in [36] that a projection q is a full projec
tion in a C*-algebra A with FS (in M (A), resp.) if and only if [q] generates 
D(A) (D[M(A)], resp.) as an ideal, where a subset D0 of £>(A) is said to be 
an ideal if Do is additively closed and hereditary. It is certainly known to G.A. 
Elliott if A is a separable AF algebra ([20]). The generalized version was es
tablished after the Riesz decomposition property of D(A) and of D[M(A)]), if 

https://doi.org/10.4153/CJM-1990-010-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1990-010-5


SHUANG ZHANG 165 

A is a C*-algebra with FS, was found ([36, §1 and §2]). Therefore, we can 
use the Riesz decomposition property proved in [36, §1] and the arguments in 
[20], or the arguments in [36, §2] to give two different proofs for the following 
equivalent version of Lemma (1.1): 

LEMMA (1.1/. If A is a C*-algebra with FS, and if [q] generates D(A) as an 
ideal, then for any nonzero element [p] in D(A), there exist nonzero elements 
[/"lL [ri\, • • • ? lrn\ in D(A) such that 

[p] = [ri] + [r2] + --- + [rn] and [rx] £ [r2] £ • • • £ [rn] £ [q]. 

We suggest the reader to read [20], [36, §1 and §2] and the above proof for 
Lemma (1.1) in detail to come up with the proofs. 

Now we prove the main theorem of this section. This result will be useful 
later for studying the structure of the multiplier and corona algebras. It includes 
[23, Theorem 2] as a special case. 

THEOREM 1.2. If A is a a-unital (nonunital) simple C*-algebra with FS, and 
q is a fixed nonzero projection of A, then A has a sequential increasing approx
imate identity, {en}, consisting of projections such that 

0 < en+\ -en<en- en-X for n^ 1 (e0 = 0) and ex <q. 

In other words, A has a fundamental approximate identity. 

Proof Since A is cr-unital with FS, by [33, 1.2] A has an approximate identity 
consisting of an increasing sequence of projections, say {rn}. Applying Lemma 
(1.1) to r\ and q, we conclude that 

r\ = m + r i 2 + --- + ri#!1, 

where the n/ 's are nonzero projections of A such that 

r\nx<--<rn<rn<q. 

Applying Lemma (1.1) to r\ni and r2 — n , we have 

ri-n =r2\ +r22 + '-' + r2n2, 

where the r2i's are nonzero projections of A such that 

f2n2<"'<r22<r2l<rlnr 

Repeating Lemma (1.1) recursively in this way to r\nm and rm+i — rm, we get a 
double sequence of nonzero projections, {r/ /}i^n . , such that 

rm ~ rm-\ = rmX + rm2 + • • • + rmrlm, m = 1 ,2 , . . . , 
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where r0 = 0, and such that 

rmnm <"'<rm2<rm\< ^m-l,/im_,, m = 1, 2 , . . . , 

where r^m = q. 
Set 

e\ = rn,e2 = rn +r\2,...,enx = ru 

eni+\ = H + r2ueni+2 = n + 2̂1 + ^22, •. . , eni+n2 = r 2 , . . . , 

^«i+---+«TO_i + l ^m—\ ' ^m\i ' • • 5 €n\+n2+...nm-\+nm *̂m? • • • • 

By the construction, it is routine to check that {en} constitutes an approximate 
identity of A consisting of projections satisfying the requirements. 

A C*-subalgebra B of a C*-algebra A is said to be hereditary if 0 ^ a ^ b, 
a E A and b E B =» a G B; equivalently, if (BAB)~ = £, or if B = L HL* for 
some closed left ideal L of A. The following corollary will be useful later. 

COROLLARY 1.3. If A is a o-unital (nonunital) simple C*-algebra with FS, 
then any o-unital {nonunital) hereditary C*-subalgebra of A has a fundamental 
approximate identity. 

Proof Let Ao be any cr-unital (nonunital) hereditary C*-subalgebra of A. It is 
easy to see that AQ is still simple and has FS (see [21]). Theorem (1.2) applies 
to Ao to reach the conclusion. 

COROLLARY 1.4. If A is a o-unital simple C*-algebra with FS, and if 
p\,P2,...1pm are any finitely many nonzero projections of A, then there ex
ists a nonzero projection po in A such that po </?/ for 1 ^ i û m. Equivalently, 
if[p\]-> [pi\i • • • ? iPn] are any finitely many nonzero elements in D{A), then there 
exists a nonzero element [po] in D(A) such that [po] ^ [pi]for each 1 ^ / ^ n. 

Proof Applying Lemma (1.1) to p\ and p2, we can find a nonzero projection 
p\ in A such that/Zj <p\ and//j <p2. Applying Lemma (1.1) again to p[ and/73, 
we can find a nonzero projection p'2 in A such that p'2 <p[ and pf

2 < P3- Clearly, 
Pi %Pi for / = 1,2,3. The conclusion follows from the induction. 

The following proposition gives a necessary and sufficient condition for a 
a-unital simple C*-algebra to be stable. The proof uses a recent result of L. G. 
Brown ([8, 4.23]). 

THEOREM 1.5. If A is a o-unital simple C*-algebra with a nonzero projection, 
then A is stable if and only if A has a fundamental approximate identity {en} 
such that for some nonzero projection f in A,f <en — en-\ for all n^ 1. 

Proof If A is stable, then A = A ® K = pAp ® K for any nonzero projection 
p in A ([7, 2.8]). Then 

n 

en = ^P®eu (n ^ 1) 
1=1 
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constitute a fundamental approximate identity such that 

/ =p®en<en-en-\ for all n ^ 1. 

If A has a fundamental approximate identity and a nonzero projection / such 
that/ ~fn = en — en-i for all n ^ 1, then it is routine to check that q = Yl^Lxfn 
is a projection in M(A) \ A. Clearly, gAg is a stable hereditary C*-subalgebra 
of A, and #A# generates A as a closed ideal. The conclusion follows from [8, 
4.23]. 

2. On lifting problems. H. Lin considered in [23] the following extension 
problem: in the short exact sequence 

0—>A —>B—>B/A-+0, 

where A and B are C*-algebras, if A and B/A have fundamental approximate 
identities, does B have a fundamental approximate identity? 

Lin gave a positive answer for a very special case, assuming A = K. We 
shall provide a positive answer for the problem in considerable generality, by 
breaking past some technical obstacles if A ^ K. We start with some necessary 
lemmas as follows: 

LEMMA 2.1. If A is a C*-algebra and I is a a-unital closed ideal of A, then 
A is a-unital if and only if A/I is a-unital. 

Proof If a is a strictly positive element of A, i.e., if (aA)~ = A, then the 
image of a in A/1 is a strictly positive element of A/1. 

If A/I has a strictly positive element a, choose a positive element a in the 
preimage of a. Let b be a strictly positive element of / . Then h = a + b is a 
strictly positive element of A. 

The following lemma is useful for working on the lifting of projections. 

LEMMA 2.2. Assume that A is a C*-algebra, I is a closed ideal of A with FS 
and every projection in A/1 lifts to a projection in A. If AQ is any hereditary 
C*-subalgebra of A (not necessarily containing I), then every projection p in 
7r(Ao) lifts to a projection in Ao-

Proof. Since every projection in A/I lifts to a projection in A, there exists a 
projection p in A such that TT(P) = p, but p may not be in AQ. Our job is to find 
a projection q in AQ such that n(q) = p. 

Let x be any positive element in 7r_1(p) n AQ. Then x — p = a is an element 
in / . Since / has FS, pip and (1 — p)I(\ — p) have FS. It follows that there 
exist an approximate identity {p\} of pip and an approximate identity {q^} of 
(1 —p)I{\ —p) both consisting of projections. Clearly, {p\ + ^ } constitutes an 
approximate identity of / consisting of projections. Hence, there exists (A, p) 
such that 

||[1 - (P\ + ?„)](* -p)[\ - (px + <fo)]|| < c < 1. 
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Since 

\\(p-px)x(p -px) - (p -Px)\\ 

^ ||[1 - (px +q„)](x -p)[\ - (PA + ^ ) ] | | , 

we see that (p —px)x(p —px) is invertible in (p — px)Mp — Px)- Set 

v = i(p -PXMP -px)]~'2(P -Px)*'2-

Then v is a partial isometry of A such that vv* —p—px- Set 

v*v =xi[(p-px)x(p-px)]~lx~i = q. 

Since x is a positive element of Ao and Ao is hereditary, the projection q belongs 
to Ao- Since ir(p — px) = n(p) = n(x) = p, it is easily verified that 7r(q) = p. 

The following proposition once more recaptures a recent result in [9] by a 
different proof (see [Part I, 3.2] for another proof). We also have one more 
different proof of this fact which shall appear in a subsequent paper. We hope 
that each proof will provide some new information about the lifting problem. 

Let us recall that a C*-algebra is said to have 'HP' if every hereditary C*-
subalgebra has an approximate identity consisting of projections. It is known 
([4, 2.7] and [21], see also [26]) that a C*-algebra has FS if and only if it has 
HP. 

PROPOSITION 2.3. Suppose that A is a C*-algebra, and I is a closed ideal of 
A with HP. If every projection in A/I lifts to a projection in A, then A has the 
HP property if and only if A/1 has the HP property. Equivalently, A has FS //* 
and only if A/1 has FS. 

Recall that the author proved in [33, 2.12] that "#i(/) = 0" implies that every 
projection in A/I lifts. 

Proof. If A has HP, of course A/I has HP. We need only prove that if A/I 
has HP, then A has HP. 

Let B be any hereditary C*-subalgebra of A. We want to show that B has an 
approximate identity consisting of projections. Since / has HP, any hereditary 
C*-subalgebra of I has HP. We can assume that B (£_ A. It suffices to prove that 
for any positive element x of B and any positive number e > 0, there exists a 
projection p in B such that 

\\(l-p)x\\<e. 

Since A/1 has HP, we can find a projection q in ir(B) such that 

\\(l-q)x(l-q)\\<e. 
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Since every projection in A/I lifts to a projection in A, by Lemma (2.2) we can 
find a projection q in B such that 7r(q) = q. Since n(B) = B/B Pi/, by [1, 4.3], 
there exists an element b in (1 — q)(B D/)(l — q) such that 

||(1 - q)x{\ -q)- b\\ = ||(î - qm - §)|| < 6. 

Since / has HP and B HI is a hereditary C*-subalgebra of / , (1 - q)(B DI) 
(l—q) has an approximate identity consisting of projections. Choose a projection 
r in (1 - q)(B n / ) ( l - q) such that 

| | ( l - r ) & ( l - r ) | | < e . 

Set p = q + r. Then p is a projection in B and 

||(1 - p M l - P ) | | ^ lid -P) [ ( l " q)x(\ -q)~ ft](l - p ) | | 

+ | | ( l - p ) f t ( l - p ) | | < 2 c . 

This completes the proof. 

COROLLARY 2.4. //"A w a nonunital C*-algebra with FS a/zd every projection 
in M {A) /A lifts to a projection in M (A), then M (A) has HP if and only if M (A)/A 
has HP; equivalently, M (A) has FS if and only if M (A) jA has FS. 

Proof. This is a special case of Proposition (2.3). 

The following Lemma (2.5) slightly strengthens a previous result of the author 
([33, 2.5]). Since this strengthening is sometimes important, we note it here for 
further reference. 

LEMMA 2.5. Assume that A is a C*-algebra and I is a closed ideal of A with 
FS. If B is a hereditary C*-subalgebra of A (not necessarily containing I) and 
p and q are two projections in 7r(B) which lift to projections in A (and hence 
lift to projections in B by Lemma (2.2)), then the following hold: 

(i) Ifp _L q and q lifts to a projection q in B, then we can choose a projection 
p in B such that p A.q and ir(p) = p. 

(ii) Ifp ^ q and q lifts to a projection q inBf then we can choose a projection 
p in B such that p ^ q and ir(p) = p. Ifp ^ q and p lifts to a projection p in 
B, then we can choose a projection q in B such that p = q and n(q) = q. 

(iii) If every projection in A/1 lifts, then two commuting projections in ir(B) 
lift to two commuting projections in B. 

Proof The proof is the same as that of [33, 2.5], except that one works with 
projections in B rather than in M(/), and applies Lemma (2.2) as needed. We 
leave it to the reader to check the details. 

The following theorem will be very useful in studying the structure of certain 
multiplier algebras and corona algebras in the next section. It includes [23, 
Theorem 1] as a special case (but with a different proof). We shall state the 
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result in a general setting as follows (note that on replacing A$ by A and / by 
K, we get the result in [23, Theorem 1]): 

THEOREM 2.6. Assume that A is a C*-algebra and I is a a-unital simple closed 
ideal of A with FS such that every projection in A/I lifts to a projection in A (in 
particular, this holds if K\(I) = 0, [33, 2.12]). If A$ is any a-unital hereditary 
C*-subalgebra of A such that AQ <f_ I, and if both I and 7r(Ao) have fundamental 
approximate identities, then AQ has a fundamental approximate identity. 

Proof. Let {ên} be a fundamental approximate identity of 7r(Ao). (Note that 
if A0 = A, then by Lemma (2.1), A must be a-unital.) By Lemma (2.2), every 
projection in 7T(AQ) lifts to a projection in Ao. Since 7r(Ao) has a fundamental 
approximate identity, by Lemma (2.3) and its proof, Ao has an approximate 
identity consisting of projections. Since Ao is cr-unital, Ao has an approximate 
identity consisting of an increasing sequence of projections by [33, 1.2], say 
{pn}- We divide the remainder of the proof into the following steps: 

Step 1. Let pn be the image of pn in 7r(Ao). It follows that {pn} constitutes 
an approximate identity of 7r(Ao) consisting of projections. Thus, by applying 
G. A. Elliott's arguments in the proof of [19, 2.4], we can choose a unitary u 
in [7r(Ao)]+, the C*-algebra obtained by joining an identity to 7r(Ao), such that 
| |w- ï|| < e < 2 and 

ûëxu* ^ pnx ^ ^ ûëmi_{û* ̂  pni ^ ûëmiû* ^ pnM ^ • • • (m0 = 1). 

Step 2. Repeatedly applying Lemma (2.5) (ii), we can find projections {emi} 
in Ao whose image in 7r(Ao) is uemJt for each / ^ 0, and 

^1 = Pn\ = €m\ = ' ' ' = €mi-\ = Pit; = ^w, = Pni+\ = • • • • 

It is routine to check that {emi} constitutes an approximate identity of A0 con
sisting of projections. 

Step 3. Consider subprojections of ûëmiû*, namely 

Ue\u*\ ûë2Û*,..., uëmiù*\ 

in (ùëmiù*)7r(Ao)(ùêmiû*). Since {ën} is a fundamental approximate identity of 
7r(Ao), it is clear that 

ûën+\û* — ûënU* < ûenû* — ûen-\ït for each n ^ l(êno = 0) 

By an argument in the first paragraph of the proof of [23, Theorem 1] or in the 
proof of [18, 9.8], there exist projections fx ^ / 2 ^ • • • £fmi ^ emi in emiA0emi 

such that the image off in 7r(Ao) is ùëiù* and 

fi+i~fi<fi-f-i ( l ^ i ^ m 1 - l , / o = 0). 
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It follows that emx —fmi < emi and emi —fmi is a projection in / . Using the same 
argument in (em2 - emi)A0(em2 - emi), we can find projections/Wl+1 ^ fmi+2 ^ 
• • • ûfm2 ^ em2 - emi in (emi - emi)A0(em2 - emi) such that the image offmi+i in 
7r(Ao) is ùëmi+iïi* — ûëmiû* and 

Jmi+l %,Jm\ ~Jm\ — 1 a n d Jmi+(i+i) — Jmi+i < Jmi+i ~' Jm\+(i—\) 

for 1 ^ / =5 A7i2 — 1 — mi. Moreover, em2 — emi —fm2 is a projection in {emi — 

Repeating the above arguments recursively, we obtain projections /m.+i =? 
fm.+2 ^ =fmM = emM -em. in (emi+l - emi)A0(emi+l -emi) for each i =t 1 such 
that the image of/m/+y in n(Ao) is ûëmi+jû* — UëmM* and 

frm+1 < frm — frrii-1 a n d frm +(;+1 ) ~ / m , +/' < /m, +/ — /m, +(7-1 ) 

for 1 ^ y =̂  mi+\ — 1 — mt.lt is clear that em/+1 — em — /m/+1 is a projection in 

By the construction, we conclude that 

/ l > / 2 —/l > * ' * > / m i —fnn-1 > / /» i+l 

^ / m i + 2 ~~Jm\+l £j ' ' ' -£Jm2 ~ Jm2—\ ^jJm2+\ 

•£Jm2+2 ~~Jm2+l ?C * ' * ^ / / M / — Jmi—l ^ / m ( + l 

^ //w,+2 ~ / m , + l ^ ' * ' < , /w l+i ~~Jmi+i~\ < , Jmi+i+l £ 

Set 

1 = 1 

m/—m,-_ i — l 

frm-i+l + / ^ (/m,_i+O+l) "—//»,•_!+/) 

7=1 

(m0 = 0). 

Then it is routine to show that p is a projection in M(Ao). It follows that 
1 — /? is a projection in M(Ao), also. Since em/+1 — £OTl. — /m.+1 is a projection in 
(̂ w,+, — emi)I(emi+l ~ emi) f° r e a c n z - 1 anc* {̂ w,-} is a n approximate identity of 
AQ, it follows that 

1 -p = ^2(emi 
1=1 

-A) 

can be identified with a projection in M (I) and so can/? (actually/? G M (Ao, Ao fï 
/)). Moreover, it is easily verified that, by the construction, 

(1 -p)A0(l -p) = (1 - /?)(A0n/)( l - /?) . 

Step 4. Consider the equality 

(1 -p)A0(l -p) = (l - p ) ( A 0 n / ) ( l - /?) . 
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Since / is a-unital simple and has FS, (1 — p)Ao(l — p) is a cr-unital simple 
hereditary C*-subalgebra of both A0 and / with FS. By Corollary (1.3), (1 — 
p)Ao(l —p) has either a unit r or a fundamental approximate identity, say {rn}. 
We set either 

n 

qn = r + Y^(fm-fm-\) or 

n 

qn = 5 ^ [ ( / m -fm-\) + (>*m - r m _ i ) ] 

m=\ 

for each w ^ 1, respectively, where ro = 0. It is easily seen that 

qn+i -qn<qn- qn^x for each n ^ 1. 

Therefore, AQ has a fundamental approximate identity {<?«}• This completes the 
proof. 

2.7. Examples. Many C*-algebras satisfy the hypotheses of Theorem (2.6) in 
the place of/. For example, in general all nonunital cr-unital simple C* -algebras 
having FS and trivial A4 -group satisfy the hypotheses of Theorem (2.6) in the 
place of/ ([33, 2.12]). We give some specific examples as follows: 

Example (i). If / is a nonunital cr-unital simple AF algebra, in particular if / 
is a separable nonunital simple AF algebra, then / has FS and K\(I) = 0 ([32]). 

Example (ii). If / is the tensor product of a type III factor and K, then 
K\(I) = 0,/ is cr-unital simple and has FS. 

Example (iii). If / is the tensor product of a Cuntz algebra and K, then / is 
simple, Ki(I) = 0 ([13]) and / has FS by [Part I, 1.3] or [41]. 

Example (iv). If / = [M(B)/B] (g) K, where B is a nonunital finite matroid 
algebra, then / is cr-unital simple ([19, 3.1]), KX{I) = 0 ([19] and [34, 2.4]) and 
/ has FS by [37, 1.3] or [41]. 

Example (v). If / is a a-unital (nonunital) simple C*-algebra with FS such 
that K\(I) — 0, then / <g) K is cr-unital (nonunital) simple with FS ([9]) and has 
a trivial A4 -group. 

The reader can find more examples in Section 2 of part I ([37]) of this series. 

3. An application of theorem (2.6). In this section, we shall apply the result 
of the last section to the multiplier algebras of certain C*-algebras with FS. Let 
us recall some previous results relevant to this section first. 

3.1 Recall that the author has recently proved the following results: 
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(i) ([34, 1.3]) If A is a cr-unital (nonunital) simple C*-algebra with FS, then 
M(A)/A is purely infinite, i.e., every nonzero hereditary C*-subalgebra contains 
an infinite projection. 

(ii) ([Part I, 1.2]) If B is a a-unital purely simple C*-algebra, then B is either 
unital or stable. 

(iii) ([Part I, 1.3]) A C*-algebra B is purely infinite simple if and only if B is 
simple with FS and every nonzero projections of B is infinite, and if and only 
if every nonzero hereditary C*-subalgebra of B is purely infinite simple, and, 
also, if and only if B (g) K is purely infinite simple. 

With the aid of Theorem (1.2) and Theorem (2.6), we can now provide some 
new information on the structure of certain multiplier algebras, beyond [Part I. 
3.3]. The author has proved ([37, 3.3]) that if A satisfies the hypotheses in the 
following theorem, then M (A) has FS and hence has HP. The following theorem 
proves that every a-unital nonunital hereditary C*-subalgebra of M (A) actually 
has a fundamental approximate identity (a property which is stronger than that 
M(A) has HP). 

THEOREM 3.2. Assume that A is a a-unital simple C*-algebra with FS such 
that every projection of M (A) jA lifts to a projection in M (A), and such that 
M(A) IA is simple. If B is any a-unital hereditary C*-subalgebra of M (A), then 
either B is unital or B has a fundamental approximate identity. 

Proof. We may assume that B (f. A by Corollary (1.3), where B is non-unital. 
By (3.1) (i) and (iii) above, 7r(#) is purely infinite and simple. Since B is cr-unital, 
ir(B) is cr-unital. By (3.1) (ii), ir(B) is either unital or stable. 

If TT(B) is stable, then 

TT(B) *Ê ir(B) ®KÇ* pir(B)p <g> K 

by [7, 2.8], where p is any nonzero projection in n(B); the existence of such a 
nonzero projection is garanteed by [34, 1.1]. Certainly, ix(B) has a fundamental 
approximate identity. Theorem (2.6) applies to A and B to reach the conclusion. 

If TT(B) is unital, with unit p, by Lemma (2.2) there exists a projection p in 
B such that 7r(p) = p. It follows that 

TT(B) = ir(pBp) = n(pM(A)p). 

Thus, 

(1 -p)BpUpB(l -p)U(l -p)B(\ -p)CA. 

It follows from Corollary (1.3) and 

(1 -p)B{\ -p) = (1 -p)(B HA)(1 -p) 
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that (1 — p)B(l — p) has a fundamental approximate identity, say {pn}- Set 
qn = P +Pn for each n ^ 1. It is routine to check that {qn} is an approximate 
identity of B consisting of projections. Since 

qn+\ ~qn= Pn+\ ~Pn <Pn ~ Pn-\ = Qn - qn-\ for each « è l , 

{qn} is, moreover, a fundamental approximate identity. 

Remark 3.3. In [Part II, 4.7], the author proved that if A is a cr-unital (nonuni-
tal) purely infinite simple C*-algebra, then every essentially non-unital hered
itary C*-subalgebra of M (A) is stable. Theorem (3.2) can be regarded as a 
complementary result to [Part II, 4.7] for certain C*-algebras which have FS 
but are not necessarily purely infinite. Both results describe the set of hereditary 
C*-subalgebras of the multiplier algebra, and there are common and noncom-
mon parts in the conclusions. The reader is invited to compare these results. 

4. On the structure of projections in M (A) and in M (A)/A. In this section, 
we shall apply the results of Section 1 to obtain results concerning projections 
in M(A), if A is a cr-unital simple C*-algebra with FS. 

If A is a cr-unital simple C*-algebra with FS, Lemma (1.1) gives a relation 
between two nonzero projections in A. The following theorem gives a relation 
between two projections in M (A) \ A. 

THEOREM 4.1. Suppose that A is a o-unital (nonunital) simple C*-algebra 
with FS. If p and q are two projections in M(A)\A, then there exist countably 
many mutually orthogonal subprojectijons of p in M(A)\A, say {pn}> such that 

oo 

^Pn = P and pn+i <pn<q for n ^ 1, 

where the sum converges in the strict topology of M (A). Equivalently, if[p] and 
[q] are any two nonzero elements in D[M(A)], then there exists a decreasing 
sequence of elements {[pn]} C D(M(A))\D(A) such that 

oo 

[p]=J2lP"l aHd [q]^[Pl]^lP2]^'-'^[Pn-l]^[Pn]^.-.-

Moreover, n(pn) < 7r(pm) and 7r(pm) < ix(pn) for m,n^\. 

Proof. Since A is cr-unital with FS, by [33, 1.2], we conclude that 

oo oo 

p = Y^ei and q = ^fh 

where the £/'s are mutually orthogonal nonzero projections in pAp, the/j's are 
mutually orthogonal nonzero projections in qAq, and the sums converge in the 
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strict topology of M (A). Applying Lemma (1.1) to e\ and/i, we can decompose 
e\ into a sum of mutually orthogonal nonzero subprojections as follows: 

e\ = / i i + / i2 + - "+ / i / i 1 9 

where 

f\nx </l,n,-l < '"<f\2<fn < / l -

By Corollary (1.4), there exists a nonzero subprojection f{ of fz such that 
f2<f\m- Applying Lemma (1.1) to f[ and e>i, we can decompose ei into a 
sum of mutually orthogonal nonzero subprojections as follows: 

ei =fl\ +f22 + '"+f2n2i 

where 

hn2<"'< fl2 < fl\ < /2-

Proceeding in this way by repeatedly using Corollary (1.4) recursively, for each 
/ ^ 2 we can find a nonzero subprojection f( of fi such that 

Ji $>//—l,n,-_i • 

Then we can decompose e, into a sum of mutually orthogonal nonzero subpro
jections as follows: 

?i =fi\ +fi2 + '-+fini, 

where 

here/jy (1 ^ j ^ nt) are mutually orthogonal nonzero projections of eiAei. 
Set 

oo 

Pn = ^fn for each « ^ 1, 
1=1 

where/)„ = 0 if n s= w/ + 1. Since 

fi,n+i < fin < f{ for each pair (i, AI) 

by the construction (where f\ = / / ) , it follows that 

oo 

Pn+\<Pn<q forn^lmd^2Pn=P' 
n=\ 
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If 

SUp{fl;} = +00, 

then the sum Yl^L\Pn has infinitely many nonzero terms. Otherwise, the sum 
has only finitely many nonzero terms. (If A does not have a minimal projec
tion, we can always chooser ' s so that the sum has infinitely many nonzero 
terms.) It is routine to check that, by the construction, the sum converges in 
the strict topology. To see that ir(pn)<7r(pm) and 7r(pm)<7r(pn) for each pair 
(«,ra), we can assume n < m. Then, by the construction, pm<pn, and hence 
7r(pm)<ir(pn). On the other hand, 

m+l 

Pn -/Jin<Pm' 
i=\ 

Since Y17=\fin i s a projection in A, n(pn)< ir(pm). 

The following theorem gives another decomposition of a projection in M(A)\A 
into a sum, either finite or infinite, of projections in M(A)\A with a "telescopic 
property". 

THEOREM 4.2. If A is a a-unital simple C*-algebra with FS, and if p is any 
projection in M(A)\A, then for any 1 ^ n ^ +00 there exist mutually orthogonal 
nonzero subprojections {p; : 1 ^ / S n} of p in M (A) \A such that 

n 

P = YlPi and ^ i ^ ^ 2 > - - > A - i > A > - - - -

Equivalently, if [p] is any nonzero element in D[M(A)], then for any 1 ^ n ^ 
+00, there exist n elements [pf\ (1 S i Û n) such that 

n 

[/>] = £[/>«] and [Pl]^[p2]^-"^[pl-i]^[pl]^'--. 
1=1 

Moreover, n(Pi)<Tr(pj) and 7r(/?y) < TT(/?Z) for ij ^ 1. 

Proof By Corollary (1.3), pAp has a fundamental approximate identity, and 
hence 

00 

Z ' = l 

where the e/'s are mutually orthogonal nonzero projections of pAp such that 

e\ > ei > £3 > • • • > en-\ > en> 
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If n is finite, then we set 

oo 

Pi = ^2 ekn+i for each 1 ^ / ^ n. 
k=\ 

It is routine to show that the /?/'s are mutually orthogonal subprojections of p 
such that 

n 

Y^Pi=P and P\>P2>-->Pn-i>Pn. 
1=1 

If n is infinité, we write /? as a sum converging in the strict topology as 
follows: 

p = ei +^2 +e6 
+£7 + £ l 5 + £ l 6 + .. 

+£3 +e5 +£8 + £ l 4 + £ l 7 +é>27 + .. 

+e$ +eç + £ l 3 + £ l 8 +£26 +£31 + .. 

+ £ l 0 +e\2 +£>19 +£25 + £ 3 2 +<?42 + . . 

+£n +£20 +^24 +£33 +£41 +^50 + .. 
+e2\ +e23 +£34 +^40 +e5X + . . . + .. 

+£22 +£35 +£39 +£52 + . . . + . . . + .. 
+ . . . 

Set p\ equal to the sum of the first row in the above list, p2 equal to the sum of 
the second row, . . . , and pn equal to the sum of the «th row. Then it is routine 
to check that the pn's are projections in M (A) \ A, and 

PlZP2>'">Pn-\>Pn>-^' 

Using similar arguments in the proof for Theorem (4.1), we can prove that 
TT(/7/)< ir(pj) and ^{Pj)<^(pi) for each pair (ij), for the cases either the 
decomposition is finite or infinite. 

The following proposition establishes a property of projections in M(A)\A 
which we have already shown for A (see Corollary (1.4)). 

PROPOSITION 4.3. Suppose that A is a a-unital simple C*-algebra with FS. If 
q\,q2,...,qm are any finite number of projections in M(A)\A, then there exists 
a projection qo in M(A)\A such that 

qo == q\ and qo <qi for 2 S i H m. 

Proof Since A is a-unital with FS, by [33, 1.2], for each 1 ^ / ^ m we can 
write 

oo 

* • = & • > • 
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where {q^ : j ^ 1} are mutually orthogonal nonzero projections of qiAqi. For 
each j ^ 1, applying Corollary (1.4) to 

we can choose a nonzero projection qoj in A such that 

q0j ^ qy and q0j < qtj for 2 ^ / ^ m. 

Set 

oo 

It is routine to show that 

qo ^ q\ and q0 < qi for 2 ^ i ^ m. 

COROLLARY 4.4. If A is a o-united simple C* -algebra with FS, and if [qi] 
(1 ^ i ^ m) are any finite number of nonzero elements in D[M(A)/A], there 
exists a nonzero element [qo] in D[M(A)/A] such that [qo] ^ [qAfor I = i = m. 
(We shall see in Remark (6.4) that the same conclusion holds if we replace the 
words "finite number" by "countable number".) 

Proof Let */ be a positive element in the preimage of qt in M {A) for each 
1 ^ / ^ / M . Then the hereditary C*-subalgebra Bt of M {A) generated by xt is 
not contained in A. By [34, 1.1], we can find a projection qi in Bj \A for each 
\ ^ i ik m. Applying Proposition (4.3) to q\, q2,..., qm, we obtain a projection 
qo in M (A) \ A such that <?o < 47 for each 1 ^ / ^ m. Since OO?/)] ^ [#/], 

Mqo)] = [<?/] for each 1 ^ / ^ m. 

The conclusion follows. 

5. Purely infinite property of M (A)/A. In [34, 1.3], the author proved that 
if A is a a-unital (nonunital) simple C*-algebra with FS, then every nonzero 
projection in M (A)/A is infinité, or in other words, M (A)/A is purely infinite. 
The following theorem, combined with Corollary (1.3), recaptures this result 
and gives a generalization to the non-simple case. 

THEOREM 5.1. If A is a a-unital (nonunital) C*-algebra with FS, and if pAp 
has a fundamental approximate identity for each projection p G M(A)\A, then 
every nonzero projection in M (A)/A is infinite. 

Proof Let q be any nonzero projection in M (A)/A. By [34, 1.1], there exists 
a projection p in M (A) \ A such that 7r(p) ^ q. It suffices to show that 7r(p) is 
infinite. By the hypotheses, pAp has a fundamental approximate identity {pn}-
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If pn+\ —pn~qn<Pn —Pn-\ for only finitely many JI'S, then there exists «o 
such that 

Pn+\ ~Pn~Pn ~ Pn-l for a l l ft ^ H0. 

For all n^ no, let vn be a partial isometry in A such that 

V«V* =pn~ Pn-\ a n d V*V„ = p2n ~ Pln-X • 

Set 

oo 

n=n0 

Then it is routine to show that v is a partial isometry in M (A), and 

oo oo 

W * = ^2/iPn -Pn-\) a n d V*V = 5 ^ ( P 2 H ~ P 2 n - l ) < W * . 

n=/îo n=n0 

Clearly, ?r[52^ (/?„ ~~ Pn-\)] ls an infinite projection of M (A)/A. Since 
^[Yl^Lno^Pn ~Pn-\j] is a subprojection of 7r(/?), hence 7r(p) is infinite. 

If pn+\ — pn ~ qn < pn —pn-\ for infinitely many n\, say 

Pm+\ - Pm ~ qi < Pm ~ Pn-\ for / ^ 1. 

For each / == 1, let vf- be a partial isometry of A such that 

vi-v* = pn/+i -Pn(- and v*vf = 47. 

Set 

oo 

i = l 

It is routine to check that v is a partial isometry of M (A) such that 
oo oo 

w* = ] > J X + I ~pni)= Po and v*v = ^<fr . 
/=i i=i 

Clearly, p0 is a subprojection of /?. Since 

Pm -Pm-i - <?/ T̂  0 for all / §U, 

Z^iC/7", ~P«i-i ~~ <?*') *s a projection in M (A) \A and hence 

7T(po) ~ 7T(V)*7T(V) < 7T(/?o); 
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namely 7r(/?o), as a subprojection of 7r(/?), is infinite. It follows that ir(p) is 
infinite. 

Remark 5.2. In the following theorem, we use this hypothesis: every nonzero 
closed ideal is not contained in pAp for any projection p in A. This condition, in 
case A is separable, is equivalent to that the lifting of closed ideals of A from A 
to M (A)/A is nonzero, namely, M (A, I) is a closed ideal of M (A) not contained 
in A whenever / is a nonzero closed ideal of A (see the proof of [34, 3.5] for 
details). The condition, roughly speaking, avoids the situation that a closed ideal 
of A is contained in a direct summand of A, and so is weaker than the condition 
that A be simple. 

THEOREM 5.3. Suppose that A is a a-unital C*-algebra with FS (not neces
sarily simple). If any nonzero closed ideal of A is not contained in pAp for any 
nonzero projection p in A, then every nonzero projection in M (A)/A is infinite. 

Proof. If q is a nonzero projection, take a positive element x in M {A) such 
that 7T(JC) = q. By [34, 1.1], there exists a projection q in the hereditary C*-
subalgebra of M (A) generated by x but not in A. Then ir(q) ^ q. It suffices to 
show that 7r(q) is infinite. 

Since A is cr-unital with FS, by [33, 1.2] there exists an increasing sequence 
of projetions {fn} in qAq such that/„ converges to q in the strict topology. Let 
I(f\) be the closed ideal of A generated by f\. By the hypotheses, there exists 
n\ > 1 such that 

( / n , - / l ) / ( / l ) ( / i « 1 - / l ) ^{0} . 

Take a nonzero projection ex in (fni - f\)I(f\)(fni -f\) such that e\ <fnx -fn 
By Lemma (1.1), there exist projections £n, £12,..., e\mx in e\Ae\ such that 

ex = en + e\2 + --- + ei#n,, 

where 

€\mx < ' • * < £l9 < £ll < f\. 

We can assume that e\\ ~ r\ <f\. It follows that the closed ideal I(e\) of A 
generated by e\ is contained in I(f\), moreoever, I(e\) is equal to I (en), the 
closed ideal of A generated by e\\. By the hypotheses again, there exists «2 > n\ 
such that 

(fn2-fnx)I(en)(fn2-fnx)^{Q}-

Choose a nonzero projection <?2 in (fni — fnx)I(en){fn2 — fnx) such that e2 < 
fn2 ~fnx> Applying Lemma (1.1) again to e2 and e\\, we obtain projections 
*2i 1 <?22, • • • e2m2 in e2Ae2 such that 

e2 = £21 +^22 + - " + ^2m2, 
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where 

e2m2<--<e22<e2l<eu. 

We can assume that e2\ ~ r2 <e\\. Proceeding in this way recursively, we find 
a sequence of projections {en} such that 

e\\> e2\> - - -> £j-i i > en > en > • • • > ei+\ \ > e,+i 2 > . . . 

such that en ~ ri < e[-\,\ (where eo\ = /i) and en <fni —fn,_{ for each / ^ 1. 
Set 

oo 

1=1 

It is routine to show that qo is a projection in M(A)\A and <?o < #• For each 
/ ^ 2, we can choose a partial isometry v/ in A such that 

v/v* = en and v*v, = r,-. 

Set 

oo 

v = X>-
/=2 

Then 

oo 

vv* = qo — e\\ and v*v = Y^ r,. 
;=2 

Since £/-i,i — r/ ^ 0 for each / s= 1, X^2(^"-M — n) is a projection in M (A)\A. 
It follows that 

n(qo) = TT(VV*) ~ 7r(v*v) < 7r(^0), 

and hence 7r(qo) is infinite. On the other hand, Tr(qo) < ir(q). It follows that ir(q) 
is infinite also. 

We certainly do not expect that every nonzero projection in a general corona 
algebra is infinite. We give the following trivial examples for completeness. 

Examples 5.4. (i) If A is a nonunital commutative C*-algebra, then every 
nonzero projection in M (A)/A is finite. 

(ii) If A = Co(X) ® K, where X is a locally compact Hausdorff space, then 
7r(l 0 e\\) is a finite projection in M(A)/A. 

Questions 5.5. Two quite natural questions come to mind: 
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(i) Is every nonzero projection in a simple corona algebra infinite? 
(ii) Does a simple corona algebra with only two projections, namely 0 and 1, 

exist? 

6. On the ideal structure of M (A)/A. In this section, we shall find some 
consequences of the property of a <r-unital simple C*-algebras with FS found in 
Section 1 to the structure of the closed ideal lattice of the multiplier and corona 
algebras. Lemma (1.1) and Theorem (1.2) do give a lot of new information. 

We say a closed ideal / of a C*-algebra is nontrivial if / is neither the zero 
ideal nor the C*-algebra itself. We say a closed ideal / is proper if/ is not the C*-
algebra itself. If A is a nonunital simple C* -algebra, the proper closed ideals of 
M (A) strictly containing A correspond bijectively to the nontrivial closed ideals 
of M(A)/A, by passing to the preimage. In other words, to consider the set of 
closed ideals of M (A) strictly containing A but not M (A) itself, it is equivalent 
to consider the set of nontrivial closed ideals of M (A)/A. 

6.1. Previous results, (i) ([19]) If A is a separable nonunital infinite matroid 
algebra, then M (A)/A has only one nontrivial closed ideal. 

(ii) ([24]) If A is a separable nonunital simple AF algebra without a contin
uous scale, then, roughly speaking, M (A)/A has many nontrivial closed ideals 
corresponding to subsets of extremal traces on D(A) in certain way; M(A)/A 
may even have (uncountably) infinitely many nontrivial closed ideals. Moreover, 
M {A) J A has a smallest nontrivial closed ideal Jo in the sense that each nontrivial 
closed ideal of M (A)/A contains 7o-

(iii) ([20]) If A is a separable nonunital AF algebra, then the closed ideal lattice 
of M (A) is isomorphic to the lattice of additively closed hereditary subsets, or 
ideals, of D[M(A)]. A subset S of D(.) is said to be hereditary if for any two 
elements x and y in D{.) with 0 ^ ; t ^ y , y £ S implies x G S. 

(iv) ([36, 2.3]) If A is a a-unital C*-algebra with FS, then the closed ideal 
lattice of M (A) is isomorphic to the lattice of ideals of D[M(A)]. (Proof is the 
same as in [20], once D(A) is known to have the Riesz decomposition property. 
But the Riesz decomposition property of D(A) has been proved in [36]). 

(v) ([36]) If A is a a-unital stable simple non-elementary C*-algebra with 
FS and there exists a faithful trace defined on D(A), then M (A) has a largest 
closed ideal / strictly containing A, called the shell ideal, in the sense that each 
proper closed ideal of M (A) is contained in / . If the set of traces on D(A) is 
faithful, then M (A)/A has a smallest nontrivial closed ideal Jo. Here, the set of 
traces on D(A) is said to be faithful if r([p]) < r([q]) for any trace r defined on 
D(A) => [p] ^ [q] in D(A). 

THEOREM 6.2. If A is a a-unital simple C*-algebra with FS, then the intersec
tion of any countable number of nonzero closed ideals of M (A)/A is a nonzero 
closed ideal; equivalently, the intersection of countably many closed ideals of 
M (A) strictly containing A is still a closed ideal of M (A) strictly containing A. 

Proof Let {In} be countably many closed ideals of M (A) strictly containing 
A. By [34, 1.1], there exists a projection pn in In but not in A. Since A is o-
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unital with FS, pnApn is a-unital with FS also for each n ^ 1. Let {qn} be an 
approximate identity of A consisting of an increasing sequence of projections of 
A. The existence of such a sequence of projections is guaranteed by [33, 1.2]. 
Set 

en — qn — Qn-\ for all n ^ 1, where qo = 0. 

Hence, 1 = J2T=\ en-> where the sum converges in the strict topology. For the 
same reason, for each n ^ 1 there exists a sequence of mutually orthogonal 
nonzero projections, say {fnm : m ^ 1}, in pnApn such that 

oo 

^2fnm =Pn (« ^ 1)-

Applying Lemma (1.1) to two nonzero projections em and/im for each m ^ 1, 
we can write fXm as a sum of mutually orthogonal nonzero subprojections of em 

as follows: 

f\m = eXm(\) + eXm{2) + • • • + eXm(nXm) 

for m ^ 1 such that 

0 ^ eXm(nXm) < < eXm(2) < eXm(l) < em. 

Applying Lemma (1.1) to fim and eXm(nXm) for each m ^ 1, we have 

Hm = elm(X) + ^2m(2) + • • • + ^2m(«2m) 

such that 

0 T^ ^2m(«2m) < < ^2m(2) < ^2m(l) < eXm(nXm), 

Applying Lemma (1.1) recursively, tofim and e/-i,m(«/-i,m), we have 

fim = eim{\) + eim(2) + • • • + e/m(A7/m) 

such that 

0 ^ eim(nim) < < eim{2) < eim(\) < e/_i,w(w/-i,/fi), 

where e/m(y) (1 ^ y ^ nim) are all nonzero projections of fimAfim for each m ^ 1 
and each / ^ 1. 

By the construction, it is easily verified that 

ernrnW <"'< ^m-l,m(l) < < ^ m O ) < ' < eXm(l) < em 
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for each m ^ 1. Let emm(\) ~ e'mm{\) < em for each m ^ 1. Set 

p = e'n(\) + e'22(\) + --- + e'mm(\) + .... 

Since e»( 1)^(1) = 0 if / ^ 7, it is routine to show that p is a projection in 
M (A) \ A. Moreover, it is clear that 

P < P b P - * î l U ) < / > 2 , 
n - 1 

ro=l 

Since A C / „ and /?„ E In, it follows that /? is a projection in /„ \A for all AZ ^ 1. 
Therefore, p is in the intersection of the V s but not in A. 

The equivalence comes from the one to one corresponding between the set of 
nonzero closed ideals of M (A)/A and the set of closed ideals of M (A) strictly 
containing A via the canonical lifting from M (A)/A to M (A). 

COROLLARY 6.3. Suppose that A is a a-unital simple C* -algebra with FS. 
Then we have the following conclusions: 

(i) The intersection of finitely many closed ideals of M (A) strictly containing A 
strictly contains A; equivalently, the intersection of finitely many nonzero closed 
ideals of M (A)/A is again a nonzero closed ideal of M (A)/A. 

(ii) If M (A) has only countably many closed ideals, then M (A)/A has a small
est nonzero closed ideal, i.e., the intersection of all nonzero closed ideals of 
M(A)/A. 

Proof. This is an easy consequence of Theorem (6.2). 

Remarks 6.4. (i) In the above Corollary (6.3), if the intersection JQ of all 
nonzero closed ideals is nonzero, then, by [34, 1.3], Jo is a purely infinite 
simple C*-algebra. It follows from [Part I, 1.3] that Jo has FS. If, in addition, 
every projection in JQ lifts to a projection in TT~1(JO) = Jo, then Jo has FS by 
Proposition (2.3). 

(ii) The combination of Theorem (6.2) and [36, 2.3] has proved that the 
intersection of countably many nonzero hereditary subsets of D[M(A)/A] is a 
nonzero hereditary subset of D[M(A)/A]. Actually, we have proved in Theorem 
(6.3) that for countably many nonzero elements {[/?/]} of D[M(A)/A], there 
exists a nonzero element [p] in D[M(A)/A] such that 

[p]<[Pi] for all / ^ l , 

where [p] < [pt] if and only if p ~ po <pt. 

THEOREM 6.5. If A is a a-unital simple C*-algebra with FS, then 
(i) Any proper nonzero closed ideal of M (A)/A is not a-unital. Equivalently, 

any proper closed ideal of M (A) strictly containing A is not a-unital. 
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(ii) Any closed ideal of M (A) strictly containing A does not have a sequential 
approximate identity consisting of projections. 

Proof (ii) easily follows from (i). The equivalence stated in (i) follows from 
Lemma (2.1). We have two proofs for (i), a direct one and an indirect one. Here 
we present the direct proof, and will give the indirect one later. 

Suppose that a closed ideal / of M (A) strictly containing A were a-unital. By 
a standard construction, we could get a countable approximate identity {en} of 
/ such that 

enem = en if n < m. 

Clearly, we could then find a subsequence {eni} such that 

[(enM ~ en.)I(enM - eni)]~ = Bt 

is a nonzero hereditary C*-subalgebra of / for each / == 1, and B(Bj = BjBt = 
{0} if / ^ j . Since / is a closed ideal of M (A), I is hereditary. It follows that 

Bi = [(eni+l - eni)M{A){enM - eni)]~ (i ^ 1), 

namely, {Bi} are mutually orthogonal hereditary C*-subalgebras of M (A). By 
[34, 1.1], there is a nonzero projection pi in Bi for each / ^ 1 such that 

Pi(enM ~ en.) = (enM - en.)pi = pt for i ^ 1 

(see the proof of [Part, I, 1.2] if this is not clear). It follows that piPj = 0 
if / ^ j . It is routine that YlHiPt ~ P *s a projection in the multiplier algebra 
of/. 

Let q be any nonzero projection in / \ A. We can write 

oo 

where f are mutually orthogonal nonzero projections of qAq and the sum con
verges in the strict topology of M(A). By Lemma (1.1), we can find nonzero 
projections rf- in piApi and r\ in fAf such that rt ~ r\ for each / ^ 1. Set 

oo oo 

r = Yln and r'= y£2ri-
i=i i=i 

It is routine to check that r is a projection in M (I) since p G M(/), and r' is 
a projection in / \ A since Y^L\fi converges in the strict topology of M (A). 
Clearly, there exists a partial isometry v in M (I) such that 

vv* = r and v*v = rf. 
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Hence, r is a projection in / \ A, since r' is in I \ A and / is a closed ideal of 
M (I). Since rt ^ /?; hence 

n(enM - eni) = (enM - eni)rt = rh 

we would conclude that 

\\(l-eni)r\\^\\(l-eni)n\\^l fori è l . 

This contradicts the fact that {en} is an approximate identity of/. 

An indirect proof of Theorem (6.5) (i) comes as a corollary of the following 
proposition. 

PROPOSITION 6.6. If A is a a-unital simple C*-algebra with FS, and if! is a 
nontrivial closed of M (A)/A, then 

î1 = {x G M(A)/A : xl = Ix = {Ô}} = {6}. 

Consequently, I is not a-unital. 

Proof. If IL ^ {Ô}, then clearly there exists a nonzero hereditary C*-
subalgebra B of M (A) jA orthogonal to 7. By [34, 1.1], there exists a projection 
p in TT~1(B) = B but not in A such that pi — Ip C A. By [34, 1.1] again, there 
exists a nonzero projection q in / but not in A such that qB — Bq C A. By 
Remark (6.4) or Corollary (4.4), there exists a projection r in M {A) but not in A 
such that r ~ ro < /? and r < q. Since / is a closed ideal of M (A) and r<q,r 
is a projection of / because q £ I. Since r ~ ro, ro is a projection in / but not in 
A. On the other hand, roi = r^I G A. This is a contradiction. Hence, JL = {Ô}. 
If 7 were a-unital, by [27, 15], we would reach 

M (A)/A = 7 1 1 = 7. 

This is contrary to hypothesis. 

Theorem (6.5) and Proposition (6.6) and the following Corollary (6.7) all tell 
us that every nonzero closed ideal of M (A)/A is rather "spread out" if A is a 
a-unital (nonunital) simple C*-algebra with FS. 

COROLLARY 6.7. Suppose that A is a a-unital simple C*-algebra with FS. 
If I is a nonzero closed ideal of M (A)/A and B is any nonzero hereditary 
C*-subalgebra ofM(A)/A, thenlnË ^ {Ô}. 

Proof If Ai is any C*-algebra, and I\ is a nonzero closed ideal of A\ and B\ 
is a nonzero hereditary C*-subalgebra A\, then I\ and B\ do not intersect if and 
only if B\ and I\ are orthogonal. 

In fact, if 11 C\B\ ^ {0}, then certainly #i and I\ are not orthogonal. Con
versely, if B\ and I\ are not orthogonal, then there exist b G B\ and a G I\ such 
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that ab ^ 0. It follows that b*a*ab is a nonzero element of B\I\B\ C I\ C\B\, 
and hence B{ ni\ ^ {0}. 

By Proposition (6.6), 7 1 = {Ô}. Hence, B is not orthogonal to 7, and so the 
intersection of B and 7 is not {Ô}. 

A proper closed ideal of a C*-algebra is said to be a shell ideal if it contains 
any proper closed ideal of the C*-algebra. Clearly, if the shell ideal exists, then 
it is unique. 

PROPOSITION 6.8. If A is a a-unital C*-algebra with FS, then M {A) has a 
shell ideal if and only ifl\ +h^ M {A) for any two proper closed ideals I\ and 
h ofM(A). 

Proof If M (A) has the shell ideal / , then any two proper closed ideals I\ and 
I2 are contained in / . Hence, / 1 + / 2 C / / M (A). Let us prove the converse. 

Set / equal to the closed ideal of M (A) generated by the union of all proper 
closed ideal of M (A). We shall show that J ^ M (A). It is sufficient to show that 
the identity is not in / . If 1 were in / , then, by the definition of / , there would 
exist finitely many projections pi and elements JC,-, y,'s in / such that 

Yl,XiPiyj 
i=\ 

< 1. 

It follows from this that YH=\ xiPiyi — z ls invertible in M (A). By the proof 
of [36, 2.3], 1 = r\ + r2 + • • • + rn for some mutually orthogonal projections r,-, 
where r, </?/ for each 1 ^ / ^ n. On the other hand, the r/'s can come from 
at most n proper closed ideals of M (A), say /i,/2, . . . , / „ , by the definition of / 
and the fact that each projection of/ belongs to a proper closed ideal of M (A). 
Since the sum of any two proper closed ideals of M (A) is again a proper closed 
ideal of M (A), it is easily verified, by induction, that / = I\ + h + • • • + In is a 
proper closed ideal of M (A). We would conclude that the identity of M (A) were 
in a proper closed ideal of M (A). This is not true. 

COROLLARY 6.9. If A is a C*-algebra with FS, and if the closed ideal lattice 
of M (A) is linearly ordered, then M (A) has a shell ideal. 

Proof Since the closed ideal lattice of M (A) is linearly ordered, the sum of 
any two proper closed ideals I\ and I2 is either I\, if I2 C I\, or I2 if I\ C h. 
The conclusion follows from Proposition (6.8). 

LEMMA 6.10. If A is a C*-algebra and B is any hereditary C*-subalgebra 
of A, then any closed ideal Ig of B has the form B H J A, where J A is a closed 
ideal of A. 

Proof. Let IB be any closed ideal of B. Let J A be the closed ideal of A 
generated by IB, i.e., J A = (AIBA)~. Clearly, 

JAnB = (BJAB)-=IB. 
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The converse is trivial. 

PROPOSITION 6.11. If A is a a-unital (nonunital) simple C*-algebra with FS, 
and if B is a hereditary C*-subalgebra of M(A) jA generating M (A)/A as a 
closed ideal, then the closed ideal lattice of B is isomorphic to the closed ideal 
lattice of M (A)/A. 

Proof By Lemma (6.10), we need only show that if 7 is a nontrivial closed 
ideal of M (A)/A, then 7 HB is a nontrivial closed ideal of B. I DB ^ {0} by 
Corollary (6.7). IHB ^ B since B generates M(A)/A as a closed ideal. 

The following theorem reveals a unusual aspect of certain corona algebras. 

THEOREM 6.12. If A is a a-unital simple C*-algebra with FS, and if B is a 
nonzero hereditary C*-subalgebra of M (A)/A, then every nontrivial ideal of B 
is not a-unital (no matter whether B is a-unital or not). 

Proof Let 7 be any nonzero proper closed ideal of B. Assuming that 7 were 
a-unital, we would reach a contradiction. 

Since 7 is hereditary in B and B is hereditary in M(A)/A, we conclude that 

{7[M(A)/A]7}~ = {IB[M(A)/A]Bl}- = QËly = 7, 

namely, 7 is a hereditary C*-subalgebra of M(A)/A. By [27, 15], we have 
7±-L = 7, where "_L" is taken in M(A)/A. Since B ^ 7, there exists a nonzero 
positive element b in B\l. Let Bo be the hereditary C*-subalgebra of B generated 
by b and 7. The same argument as above applies to show that Bo is hereditary 
C*-subalgebra of M (A)/A. Clearly, Bo would be cr-unital if 7 were cr-unital. By 
[27, 15] again, BQ1 = BQ. Since 7?o strictly contains 7, under the assumption that 
7 were <7-unital we would conclude that there exists a nonzero positive element 
x in Z?o such that x is orthogonal to 7. 

In fact, if we let z be a strictly positive element of B0, then for any element 
y G 7X, zyy*z is an element of Bo n 7 x . This is because for all a G 7, az and za 
are elements of 7, and hence 

zyy*zâ — âzyy*z = Ô. 

If zyy*z — Ô for all self-adjoint element y G 71 , then J1 CBQ. Thus, 

Bo = B^ C 7 ± x = 7. 

But Bo strictly contains 7. Therefore, there exists a nonzero element y in 7X such 
that x = zyy*z ^ Ô, which is an element in Bo P\1L. 

By [34, 1.1], we can find a projection p in M(A) \ A such that ir(p) is in 
the hereditary C*-subalgebra of M(A)/A generated by x, denoted by B*. Con
sequently, Ex is orthogonal to 7. Let q be any projection in M (A) \ A such that 
ir(q) is in 7. By Corollary (4.4), there exists a projection p0 ^ p in M (A) \ A 
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such that po < q. It would follow that / and B* were not orthogonal. This is a 
contradiction. 

Remark 6.13. In the part IV of this series ([40]), we shall prove various 
equivalent versions of the generalized Weyl-von Neumann theorem in M (A), 
assuming that A is a a-unital C*-algebra with FS (not necessarily simple). 
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