Spectrophotometric properties of Moon's and Mars's surfaces exploration by shadow mechanism

Alexandr Morozhenko, Anatolij Vidmachenko and Nadiia Kostogryz

Main Astronomical Observatory of NAS of Ukraine, email: avshulga@mail.ru

Abstract. Typically, to analyze the data of the phase dependence of brightness atmosphereless celestial bodies one use some modification of the shadow mechanism involving the coherent mechanism. There are several modification of B.Hapke [2] model divided into two groups by the number of unknown parameters: the first one with 4 parameters [3,4] and the second one with up to 10 unknown parameters [1] providing a good agreement of observations and calculations in several wavelengths. However, they are complicated by analysing of the colorindex $C(\alpha)$ dependence and photometric contrast of details with phase $K(\alpha)$ and on the disk ($\mu o = \cos \alpha$) i). We have got good agreement between observed and calculated values of $C(\alpha) = U(\alpha) - I(\alpha)$. $K(\alpha)$, K(muo) for Moon and Mars with a minimum number of unknown parameters [4]. We used an empirical dependence of single scattering albedo (ω) and particle semi-transparency(α): $\alpha =$ $(1-\omega)$ n. Assuming that $[\chi(0^{\circ})/\chi(5^{\circ})] = \chi(5^{\circ})/\chi(0^{\circ})]$, where $\chi(\alpha)$ is scattering function, using the phase dependence of brightness and opposition effect in a single wavelength, we have defined $\omega, \chi(\alpha), \chi(\alpha), \chi(\alpha)$ (particle packing factor), and the first term expansion of $\chi(\alpha)$ in a series of Legendre polynomials x1. Good agreement between calculated and observed data of $C(\alpha) = U(\alpha) - I(\alpha)$ for the light and dark parts of the lunar surface and the integral disk reached at $n \approx 0.25$, g =0,4 (porosity 0,91), x1 = -0,93, $\omega = 0,137$ at $\lambda = 359$ nm and 0,394 at $\lambda = 1064$ nm;, for Mars with $n \approx 0.25$, g = 0.6 (porosity 0.84), $x1 \approx 0$, $\omega = 0.210$ at $\lambda = 359$ nm and $\omega = 0.784$ at $\lambda = 0.25$ 730nm.

1. Bowell E., Hapke B., Domingue D., Lumme K., *et al.* Applications of photometric models to asteroids, in Asteroids II. Tucson: Univ. Arizona Press. p.524-556. (1989)

2. Hapke B. A theoretical function for the lunar surface, *J.Geophys.Res.* 68, No.15., 4571-4586(1963).

3. Irwine W. M., The shadowing effect in diffuse reflection, *J.Geophys.Res.* 71,No.12, 2931-2937(1966).

4. Morozhenko A. V., Yanovitskij E.G. , An optical model of the Martian surface in the visible region of spectrum, *Astronomy Reports* 48, No.4, 795-809(1971).