
Can. J. Math., XXVIII , No. 5, 1976, pp. 905-914 

LIMIT POINT AND LIMIT CIRCLE CRITERIA FOR 
A CLASS OF SINGULAR SYMMETRIC 

DIFFERENTIAL OPERATORS 

ROBERT L. ANDERSON 

In t roduc t ion . For certain classes of singular symmetric differential opera
tors L of order 2n, this paper considers the problem of determining sufficient 
conditions for L to be of limit point type or of limit circle type. The operator 
discussed here is defined by 

(0.1) L(y) = y<2n> + py on a ^ t < oo , 

where P is a symmetric, k X k matrix of real measurable functions which are 
Lebesgue integrable on compact subintervals of (a, oo ) and y is a &-vector. 

Let H be the Hilbert space of complex vector-valued functions/: [a, oo ) —» C* 
such that / is Lebesgue measurable on [a, oo ) and J™ f*(s)f(s)ds < oo. In 
Sections 15-17 of [11] the basic theory is developed for the scalar case. The 
arguments for the vector case follow exactly as in the scalar problem except 
for Lemmas 1 and 2 of Section 17. There a slight but obvious modification is 
needed in order to carry through the argument. The emphasis in this paper is on 
the theory in Section 17 of Naimark. The details of the proofs for the modifica
tion are found in [1]. 

The classical arguments in [11] show that the number m of linearly inde
pendent solutions of L(y) = \y in H is the same for all non-real X, and satisfies 
nk ^ m S 2nk. It is well known that any value of m between nk and 2nk can 
occur. For examples, see [7]. References to other examples are given in Sec
tion 17.5 of [11]. Here we are concerned only with the problem of finding 
conditions which imply that m = nk (limit point type) or m = 2nk (limit 
circle type). 

Everitt [4; 5], Everitt and Chandhuri [6], Walker [12; 13], and others have 
given effective limit point criteria for scalar fourth-order operators and recently 
Hinton [8] gave sufficient conditions on growth rates of the coefficients, for the 
general even-order formally self adjoint scalar operator to be of limit point 
type. In [10] Lidskii studies the second-order version of (0.1) above and gives 
sufficient conditions for it to be of limit point type or of limit circle type. 

In Sections 1 and 2 of this paper, a slight generalization of Hinton's tech
niques for the scalar equation are applied to the operator in (0.1) in order to 
generalize the first result of Lidskii. In Section 3, the second result of Lidskii is 
generalized. 
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906 ROBERT L. ANDERSON 

In a later paper I will give a thorough discussion of this operator for the 
second-order case. 

1. Inequalities for a system of equations. Consider the system of dif
ferential equations 

(1.1) X' = wBX 

where X = [xiT, x2
T, . . . , X2n

T]T is a column vector and each xt is a ^-vector, 
w is a positive continuous scalar valued function on [a, oo ), and 

B = 

5 n 5 i . In 

B 2n , l ^ 2 n , 2/i 

is a 2w& X 2w& matrix where the Bi/s are k X k block matrices of measurable, 
locally integrable, complex valued functions on [a, GO ) satisfying 

Bij-\±Ik iij = i + lf 

THEOREM 1.1. Suppose X is a solution of (1.1) and that on [a, co )\y*Btjx\ ^ 
X|^*x| for some constant K, i ^ n, and all k-vectors x and y. Let 

Wi — ™<i(t) = m a x ) 1 L, I wixfxi) 
J a 

)ds> (i = 1, . . . ,2») . 

Suppose mi(oo ) < oo . Then for i = 1, . . . , w as / —» oo 

(1.2) Wj = 0(mi+i /l) and x?xt = 0(mi+i ( 2 i - l ) / 2 i 
)• 

The proof is omitted here since the calculations are very similar to those for 
the scalar case (see [8]). 

Let p be a positive function on [a, oo ) such that p Ç Cn[a, oo ). Consider the 
following conditions: 

(1.3) For some K > 0, ( - l ) V n P ^ - KI (i.e., {-l)np*nP + # / is positive 
semidefinite), 

(1.4) PP
7 = 0(1) a s / - > o o , 

(1.5) /a°°P4w-2 = oo, 

(1.6) For j = 1,. . . , w [p4n-2]^> = 0(p4w-2-^') and [p4*]^ = 0{pAn~2j). 

For (0.1) definite quasiderivatives y[i] by ^ [z ] = y(i) for i = \, . . . ,n and 
y[»+0 = - (yin+i-uy for i = 1, . . . , w - 1 with y2*J = L(y). 

Then the equation L(y) = X̂  has the vector matrix formulation 

(1.7) Y' = AY 
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where 

F = 

;[0] 

, [2»- l ] 

and 

A = 

0kh 

0* 

. 0* 0» . . . 0, 

h . 
0* h 0* 

. . 0 * 0 * - / * . . . 0* 

P-\I ... 0* 0* o* 

Transform equation (1.7) by the transformation X = M Y where M = diagonal 
[plk, p3/*, . . . , p*-1 /*]. 

Then 

X = MY = 

pi* 
P3/* 

P x i* 

;[0] 

;[1] 

. [2w-l] 

X' = [M^iM-1 + M'M-^X. 

X' = ( l /p2)£X, where 5 = p2[MAM~l + if'Af-1] 
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Then 

B 

PP'h 

Spp'h 

0* 
o, 

p4"(P - XI) 

0* 0, 

-h 

-h 

o* (4M - l)PP'Ik 

Hence condition (1.4) implies btj is bounded for i ^ nk and bi_i+k = 1. As a 
matter of fact 

|y*5^3c| ^ -K|y*x| for some constant K and i ^ w a n d 5 < i i + i = ±7*. 

N o w l = MFyie lds* , = p ^ - y - n hence (l /p2)(x (*x i)= p 4 ' - 4 ^ * - 1 ! * ^ - 1 1 ) 
and we have the integral relations: 

)ds (t = 1, . . . , n + 1), 

(1.8) 

f'\(xt*Xt)ds= ['p*'-\y"-»*y"-» 
J a P Ja 

r A (*,**,)<fo = f1 pu-\y[i-1]*y[i-1]ds (i = n + 2, . . . , 2n). 
J a P J a 

For quasi-derivatives the Lagrange bracket takes the form 

(1.9) [y,z] = E (2 I J " M 1 *y f l - S
U ] * ^ [ 2 n ~ i - 1 1 } . 

i=0 

Note that Z.(y) = X;y and L(z) = \z implies 

[y,zY =z*(\y) - (\z)*y = 0. 

For L(y) = \y, by expanding {^21=0 y[i^*y[2n-i~1^}f and using the facts that 
y[2n-i]f = (p - \l)yf and y™ = 31W we have 

(l.io) -x(y*y) + (yn)Vn)) + ypy = { Ê y'V2*"'-13}'. 

LEMMA 1.2. Z,e/ 3/ fre -m Fi, s &£ in F2, where for X fixed, not real, V\ = 
{y\Ly = \y,y G #} awd F2 = {y\Ly = X ,̂ y G H], and assume (\A) and (1.6). 
Define J\ and J2 by 

Mt) = max | l , j ^ ' p V ' V ] ^ } , 

/»(<) = max <1, J'p4"[s (" )*a (" )]d5| . 
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Then for i — n, . . . , 2n — 1 and (wi, w2) = (y, z) or (s, y) 

(i) f W ' K i - VO^V^V" = oct/!^]172) 
J a 

as t —> oo /or a / / j , & swc& that j + k = 2n — i — 1. 

(ii) P W ] i ( i - V0V"}a)^ = OCJ/2"-1''2"') 
J a 

as t—>co for allj, k such that k ^ 1 and i+j + k = 2n(r = 1 if Wi = y, r = 2 
if Wi = z). 

LEMMA 1.3. (Hinton) Let F be a nonnegative, continuous function on [a, oo ) 
and define H(t) = J« (t - s)nF(s)ds. If as t-> oo, H(t) = 0(tn[H^]a), where 
a = (2n - l)/2n, then j * F(s)ds = 0(1) as * -> oo. 

For the proof, see [8]. 

2. Limit point criteria. 

THEOREM 2.1. Under the conditions (1.3)-(1.6), the equation L{y) = \y has 
exactly nk linearly independent solutions in H, X not real. 

Proof. Let Re(X) = 0 and let y be in Fi, z be in V2. Suppose J\ and Ji are as 
in Lemma 1.2. We first show Ji(oo ) < oo . 

From (1.10) and an integration by parts, 

(2.1) 
V [-\(y*y) + y*Py + y*MyM](l - s/t)npinds 

J a 

= - f £ (y'V'-'^Mtt - s/ifP
inYds + 0(1). 

By part (ii) of Lemma (1.2), the right side of (2.1) isO(J^2n~1)/2n). We have 
by (1.3) that 

Re I % [y*(P - \I)y](l - s/t)np*nds ^ -K I (y*y)ds. 
J a J a 

Then from (2.1) we have 

\ (t - s)n
P

An(y(n)*y(n))ds = 0(f/i (2w-1) /2w). 
J a 

Lemma (1.3) with F = p*
n(yW*yW) now applies to yield Ji(oo) < oo. Simi

larly, 72(oo) < oo. 
Now dim V\ = dim Vz. Suppose dim V\ > nk. By the argument in [10] or 
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the one in [8] we may choose y in Vi and z in F2 such that [y, z] = 1 ; hence 

(1 - s/t)n-yn-2ds 
•J a 

-J. 
* w—1 

E 
a i=0 

= 0([JiJ*]1/2) 

by part (i) of Lemma 1.2. Now J\(oo ) < oo and J"2(°° ) < oo ; thus 

lim sup I ' (1 - s/0"~V"""*<fr < « , 
Z-400 ^ a 

contrary to (1.5), i.e.,j™ pAn~2ds = oo . Therefore dim V\ ^ nk and the proof is 
complete. For Im X ^ 0, dim Fi = dim F2 = ft£. 

By choosing p = 1 we get the following corollary. 

COROLLARY 2.2. 7/ ( —1)WP(/) ^ 0, then L is of limit point type. 

Remark. We have not been able to put the fourth-order scalar equation 
y(iv) _ (gyf) -\- py = 0 into a system form where we could apply the above 
result to obtain any information, but it is conjectured that if q ^ 0, p è 0, the 
equation is of limit point type. This problem is discussed in [9]. 

If we choose p = t~1/(in~2) we get the next corollary. 

COROLLARY 2.3. If {-l)nP + Kt2n/<2n-»I ^ 0, then L is of limit point type. 

Two special cases for which Corollary 2.3 is of interest are: 

(1) If P = \ a ° , {-l)n+la ^ Kt2n'(2n~v and ( - l ) w + 1 7 ^ Kt2n^2n~l\ 

then L is of limit point type. 

(2) If P = jM , /ftew 0 ^ Kt2n^2n-l) implies L is of limit point type. 

Note that if we let p = g~1/4, w = 1, we get the second part of Lidskii's first 
theorem as a corollary to Theorem 2.1. Just for a point of interest we will now 
state the implications of Lidskii's first theorem (both parts) for the second 
order system. 

THEOREM 2.4. Consider 

(2.2) L(y) = / ' + P(t)y = iy, 

[a 7 "I 
w/zere P = ; a, 7, /3 a/-£ a// continuous real valued functions on (a, 00 ) 

(i/ is sufficient for them to be integrable on finite subintervals of (a, 00 )). If a(t), 
P(t)i IT (01 a ^ a ^ =&(0 wAere g~1/2(0 w iw Za (a, 00 ) awd 
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(0 g(0 ^ positive, continuous and monotone, or 
(ii) g(t) ^ b > 0, differentiable and lim s u p ^ œ |g '(0|/g3 / 2(0 < °° » ^ w -̂  ^ 

6?/ /imi£ /ww£ type on (a, co). 

Proof. Let q(t) = 2g(£) where g(0 is as in Lidskii's theorem. Then for any 
2-vector h = [hi, h2]

T, 

h*P(t)h = a ( / ) N 2 + P(t)\h2\
2 + 2 Re(7(*)Ai*a) 

^ g(t)(\h^ + \h2\') + g(t)(\h^ + \h2\
2) 

^ q{t)h*h. 

3. Limit circle criteria. We will now generalize the limit circle criteria of 
Lidskii for the second-order system. First we need a few important lemmata. 

LEMMA 3.1. If Q(t) is real, symmetric, differentiable k X k matrix such that 
h*Q(t)h > 0 and h*Qf (t)h ^ 0 for any h and all t > a, then all solutions of the 
equation 

(3.1) y" + Q{t)y = 0 

are bounded as t —* co . 

Proof. Let y be a solution of (3.1) and consider 

V(t) =y'(tYQ-^t)y\t)+y{t)*y{t). 

Clearly y'{t)*Qrl(t)y'(t) > 0 and hence V(t) > 0. 

Now V{t) = yW*(Q~1(0)y(t) and (ç-UO)' = -c-KOCWC-UO, so 
V'(t) = -(Q-Kt)y'(t))*Q'(t)Q~l(t)y'(t), since Ç is symmetric and hence Q~l 

is symmetric. Thus V {t) = h*Q'(t)h where A = O " 1 ^ ) / ^ ) , and F ' (0 ^ 0. 
Hence V(t) ^ F(a) for all / ^ a and y(t)*y(t) ^ F(a). So y it) is bounded as 
£ —• o o . 

LEMMA 3.2. If M has integrable norm and Q is as in Lemma 3.1, then all 
solutions of 

(3.2) y" + [Q{t) + M(t)]y = 0 

are also bounded as t —-> oo . 

Proof. We will use |-| to denote the matrix norm. Put equations (3.1) and 
(3.2) in vector-matrix form where 

We then have that (3.1) is equivalent to (3.3) and (3.2) is equivalent to (3.4) 
where 

(3.3) z' = A (t)z, 

(3.4) z' = A(t)z + b(t). 
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Let $(£) be the fundamental solution matrix for (3.3) such that $(0) = / . 

If we let K be the 2k X 2k matrix K = \° ~ J l , then $-»(0 = -K$TK 

To see that this is true note that K~l = KT = —K and let ^ = — K$TK. 
Then 

¥'(*) = -K(&(t))TK = -K(A(t)$(t))TK 

= K$T(t)AT(t)KT = -X$ r (* ) ( t f j 4 (0 ) 

since if Q is symmetric then (i^^4)T = KA. 
But by uniqueness of solutions to initial value problems and since ^ (0) = I 

we have that $_1(/) = \F(/) is the only solution to >£' = >M(/), ^ (0) = I. 
Hence 

*-l(t) = -K<S>T{t)K. 

Now any solution s(/) of (3.4) can be written as 

*(0 =zh(t) + J $(/) $-'(5)6(5)^, 

where zh(t) is a solution to the homogeneous problem (3.3). We are interested in 
a solution y(t) to the problem (3.2), hence only in the first k components of 
z{t). 

Now write $(/) in block form 

^(f) = ^ U / . \ ^12/,\ > where 3>0 is a & X k matrix. 
L$2l (0 $22(/)J Then 
-$2l(0 $22(0 

*(t)*T\s)b(s) = -3>(t)K3>T(s)Kb(s)} 
r(s)M(s);y(s) - $n(t)$uT(s)M(s)y(s) 

Hence 

K> W l j L$2i(0*i2r(5)M(5)y(5) - <!>2i(t)$nT(s)M(s)y(s)J 

y(t) = yh(f) + J ' [*n(0*» r (*) - *i*(0*iir(*)]M(j)y(s)<fo. 

Now the columns of <£>n and $ i 2 are solutions of (3.1), and by Lemma 3.1, $n 
and $12 are bounded. Let C be a constant such that | ^ ( 0 | = C and 
\*ii(t)$12

T(s) - $i2(t)$n
T(s)\ ^ C for a l ia ^ 5 ^ / a s / - > oo. Then 

\y(t)\£C+ I* C\M(s)\\y(s)\ds for all / è a 
^ a 

and by Gronwall's inequality 

b(0l ^ Cexp 

^ Cexp 

C J * |M(s)|dJ 

CJ \M(s)\ds\ for a l l / è a. 
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Since M (s) has integrable norm, y(t) is bounded as t —> oo. 

LEMMA 3.3. Suppose g is positive and has two continuous derivatives on 
[a, oo ). If g~*/2g" £ L[a, oo), then so is g-*/2g" - 9/4g-5/2(g')2-

Proof.Letp = g5/2, M = g~z'\ Then/i(£/x')' = g~ 3 / 2 ( -3/2g ' ) ' = -3 /2g- 3 / 2 g" 
so the hypothesis of Lemma 5 [3, p. 119] holds. Hence (pu')2 = 9/4g~5/2(g')2 £ 
L[a, oo ). 

THEOREM 3.4. Consider the system 

(3.5) y" +P(t)y = 0, 

where P(t) is a k X k matrix of real differentiate functions on [a, oo ). Suppose 
there exists a positive function g with two continuous derivatives on [a, oo ) such 
that 

(i)g~z/2g" e L[a,œ), 
(ii) P > 0, 

(iii) (P/g)f ^ 0, and 
(iv) g~1/2 e L[a,œ). 

Then (3.5) is in the limit circle case. 

Proof. First make a transformation on Equation (3.5). Let y = cor?, 
£ = / J co-2(s)ds where œ is a scalar function and rj(^) is a vector function. Then 
system (3.5) becomes 

<3-6> % + (%' + •*)••,-<>. 
If we choose œ(t) = g_1 /4(0 we have 

f = - i /4g- 5 / 4 (Og ' (o , $ = i / 4 [5 /4g - 9 ' 4 (0 (g ' ( / ) ) 2 - r 8 / 4 (0g" (0 i , 

or 

c o 3 ^ = l/4[5/4g-»(0(g f(0) ' - g-2(0g"(01 

= ^ [ 5 / 4 ( g ' ( / ) ) 2 - g ( 0 g " ( 0 ] 

= £& [9/4(g'(0)2 - (*(*)«'(*))']• 

Let 

then since dj = g~1/2(t)dt by (i) M (J) has integrable norm. Let Q(£) = œ*P(t). 
Then if Q(£) satisfies the hypothesis of Lemma 3.1, all solutions rç(£) of (3.6) 
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are bounded. But 77(f) bounded and œ(t) G L2[a, 00) implies y(t) Ç L2[a, 00). 
Hence we only need to verify that h*Q(£)h > 0 and h*Q'(£)h è 0 for all h and 
all f è 0. 

To this end, 

h*Q(t)h = h*(co4P(t))h > 0 

by (ii). 
Now 

* V ( ^ = ^ « 4 P ' ( O | ) A + A*(4« 8 ^|P(O)A 

= h*(g-"\t)P'(t))h - h*{g-b'\t)g'{t)P{t))h 

= g-b'\t)[h*{g(t)P'(t)-g'{t)P(t)h\ 

^ 0 

by (iii). This completes the proof. 

The referee has kindly pointed out that Lemma 3.1 can also be obtained 
from Theorem 5, p. 61 of [3]. I would also like to thank the referee for his help
ful suggestions for improvements in the first manuscript. 
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