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On the associativity of
the torsion functor

John Clark

Let R be a.commutative ring with identity. We say that tor

is associative over R if for all i?-modules A, B, C there

is an isomorphism

tor^U, tor*(B, C)J ^ tor^ftor^U, B), c\ .

Our main results are that

(1) tor is associative over a noetherian ring R if and only

if R is the direct sum of a finite number of Dedekind

rings and uniserial rings, and

(2) tor is associative over an integral domain R if and only

if R is a Priifer ring.

1. Introduction

In Cartan and Ei lenberg [2] i t is proved that any commutative semi-

hereditary ring R has the property that there is an i?-module isomorphism

tor^U, tor*(S, C)\ ^ tor^ftor^U, B), c\

for all i?-modules A, B, C . It is the purpose of this paper to examine

rings having this isomorphism property.

All the rings that we consider are commutative with identity. For
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simplicity we write tor(j4, B) instead of tor. (A , B) for any two modules

A and B over the ring R , except when i t is necessary to specify the
ring. Also given a ring R we say that tor is associative over R if
there is an i?-module isomorphism

tor [A, tor(B, C)} ^ tor( torU, B), c) ,

not necessarily natural, for al l i?-modules A, B, C .

Our main result is that if R is a noetherian ring then tor is
associative over R if and only if R is the direct sum of finitely many
Dedekind rings and uniserial rings. We also show that tor is associative
over an integral domain R if and only if R is Priifer.

2. The associativity of tor over local noetherian semi-prime rings

We prove in this section that tor is associative over a local
noetherian semi-prime ring R if and only if R is a discrete valuation
ring.

In the following result (and throughout the paper) the term "local
ring" simply means that the ring has precisely one maximal ideal.

PROPOSITION 2.1. Let R be a local ring with maximal ideal M and
let x be cm element of R which is not a zero-divisor. If tor is
associative over R then, for any element y of R , either y divides
x or x divides y .

Proof. Suppose that y is any element of R and that y does not
divide x and x does not divide y . Since x is not a zero-divisor,
for any ideal a of R we have

tor(i?/xfl, a) = ker(xff ® a •* xa) = 0 .

In particular, tor(R/xR, xR+yR) = 0 . Thus, since tor is associative
over R , we have

tor(tor(xfl+j/i?, R/(xR+yR)), R/xR) = to r [R/{xR+yR), tor{xR+yR, R/xR))

= tor [R/{xR+yR), o] = 0 .

Now,

tor (xR+yR, R/(xR+yR)) = ker{g : (xR+yR) © (xR+yR) •* xR+yR) ,
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where g[(ax+by) ® (cx+dy)) = (ax+by) (cx+dy) for all a, b, a, d in R .

Thus g(x ®y-y®x)=xy-yx=Q , so that

x®y-y®xt tor[xR+yR, R/(xR+yR)) .

We wi l l now show that x ® y - y ® x i s non-zero.

We define / : (xR+yR) x (xR+yR) •* R/M by f[(ax+by, cx+dy)) = ad + M

for a l l a, b, c, d in R . Suppose px + qy = 0 for p, q in i? .

Then p is not a uni t , since otherwise y divides x , contradicting our

assumptions. Similarly, q i s not a uni t . Thus

f[(px+qy, cx+dy)) = pd + M = 0

since pd is not a unit and so must belong to the maximal ideal M . This

shows that / i s well-defined on {xR+yR) x (xR+yR) . Also, eas i ly , /

is b i l inea r . Thus, there i s a homomorphism / : (xR+yR) ® (xR+yR) -»• R/M

such that f[(ax+by) ® (cx+dy)) = ad + M for a l l a, b, a, d in R . Now

7 U ® 2/ - 2/ ® x) = J(x ® i/) - 7(2/ ® «) = (l+«) + (O+Af) = 1 + A/ .

Thus x®y-y<3xt 0 . Thus tor[xR+yR, R/(xR+yR)) t 0 .

We now show that tor(i?/xff, tor [xR+yR, R/(xR+yR))) t 0 , thus

obtaining a contradiction to our i n i t i a l assumptions. In fact

tor(i?/xff, tor [xR+yR, R/{xR+yR)))

= ker(fc : xR ® tor(xfl+i/i?, /?/(xi?+j/fl)j •* tor(atf-tyfl, i?/(xi?+yi?))) ,

where /i(tx ® a) = txa for every a in tor(xi?+j//?, R/(xR+yR)) and every

t in i? . Thus, in par t i cu la r ,

7i(x ® (x ® y - y ® x)) = x(x ® y - y ® x)

= X®J /X-X! /®X = X®Z/X-X®J/X = 0 ,

so that x ® (x ® y - y ® x) i s an element of

tor[R/xR, tor[xR+yR, R/(xR+yR))) .

We now define k : xR x tor(xi?+yi?, R/(xR+yR)) •* R/M by

k ( ( tx , (rx+sy) ® (t<x+yz/))) = if{(rx+sy) ® (wx+uy))

for a l l t in i? and a l l suitable r , s , M, V . Since f i s a

homomorphism and x i s not a zero-divisor, k i s well-defined and clearly

a b i l inear mapping. Thus there is induced a homomorphism

k : xR® tor[xR+yR, Rl(xR+yR)) -* R/M
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such that

k[tx® [(.rx+ey) ® (ux*vy))) = tf[(rx+sy) ® (ux+vy))

for a l l sui table r , e , t, u, v in i? . Now x ® y - y ® x i s an element

of tor[xR+yR, if / (xif+t/if) ] and, moreover,

k[x ® {x ® y - y ® x)) = l . / ( x ® y - y ® x) = 1. (l+M) = 1 + M .

Thus x ® (x ® # - y ® x) is a non-zero element in
tor(if/xif, tor[xR+yR, R/(xR+yR))) . This gives a contradiction. Thus
either x divides y or y divides x , as required.

PROPOSITION 2 . 2 . Let R be a local ring with maximal ideal M and

GO

suppose that tor is associative over R . If D l/1 = 0 and if there
n=l

exists an element in R which is neither a unit nor a zero-divisor then R
is a valuation, ring.

Proof. We shall f irst of all show that R is an integral domain. By-

hypothesis , there exists an element x of R which is neither a unit nor

a zero-divisor. Let y "be any zero-divisor of if . Then, by Proposition

2 .1 , either x divides y or y divides x . Clearly the latter is

impossible and so x must divide y . In other words, there exists an

element c of R such that y = ox . Since c is then a zero-

divisor, by repeating the argument there exists a non-zero element c of

2

if such that e = ex . Then y = ex = ex and so <?„ is a zero-

divisor. Repeating this procedure a suitable number of times we get, for

any positive integer n , that y = ex where e is a zero-divisor in
00

if . Thus, since x is an element of M , we have y € D M . Hence
«=1

y = 0 . It follows that if is an integral domain. Thus, by Proposition
2.1 , since tor is associative over if , given any two elements a and b
of if either a divides b or b divides a . This means that if is a
valuation ring, as required.

I t can also be proved that the valuation ring of Proposition 2.2 is in
fact a discrete valuation ring by using, for example, Theorem 1^.3
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and Theorem ll+.5 of Gilmer [5]. We now come to the main result of this
section.

THEOREM 2.3. Let R be a Vocal noetherian ring with maximal ideal
M such that either annM , the annihilator of M , is zero or R is
semi-prime. Then tor is associative over R if and only if R is a
discrete valuation ring.

00

Proof. By Theorem 3, p. 50 of Northcott [13], fl w" = 0 . Thus, if
«=1

there exists an element of R which is neither a unit nor a zero-divisor,
then, by Proposition 2.2, R is a valuation ring. Since R is
noetherian, R must be a discrete valuation ring.

Suppose, on the other hand, that every non-unit of R is also a zero-
divisor. Then, by Theorem 80, p. 55 of Kaplansky [JO], M is the
annihilator of one of i ts elements. If annAf = 0 this is impossible. If
R is semi-prime then M = 0 so that if is a field and therefore ,
tr ivially, a discrete valuation ring.

3. Uniserial rings

If R i s an art inian principal ideal ring then we say that R i s a

uniserial ring. In this section we shal l show that to r is associative

over any uniser ia l ring. We shall use the following proposition. Part ( l )

has been proved by Kaplansky [9 , Theorem 13.3] and part (2) i s a resul t of

Kothe [17] (see also Cohen and Kaplansky [3] ) .

PROPOSITION 3.1. (1) Any uniserial ring is the direct sum of
finitely many local uniserial rings.

(2) Any module over a uniserial ring is the direct sum of cyclic
submodules.

Let R be a local uniserial ring with maximal ideal M and suppose
that R is not a field. Then, since R is a principal ideal ring,
M = pR for some non-unit p of if . Moreover, since R is artinian,

tP = 0 for some least positive integer n . Also, any proper ideal of R

is of the form p R for some integer t such that 0 < t < n . Thus any

proper cyclic if-module is of the form R/p R for some integer t such
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tha t 0 < t < n . For convenience we wil l cal l this integer i the order

of the cyclic module R/p R . Any cyclic i?-module is completely

determined by i t s order.

PROPOSITION 3.2. Let R be a local uniserial ring with maximal

ideal pR such that p = 0 for some integer n > 1 hut pn~ t 0 . If

s, t are integers such that 0 < s < n and 0 < t < n then

t o r [R/p R, R/p R) is a cyclic R-module of order

min(w, s+t) - max(s, t) .

Proof. Suppose f i r s t that min(n, s+t) = n . Then

tor[R/pSR, R/ptR) = p m a x ( s ^R/pS+tR =

since pS+tR = 0 . Now define f : R + p " " ' 8 ' * ^ by f(l) =

Then ker / = p"~m a x t s> >R . Thus, since / is an epimorphism,

pms.x(s,t)R = fl/ker/ = R/pn-m*x(s,t)R _ H e n c e t o r ^ / p s i ? j fl/prfl) i g a

cyclic i?-module of order n - max(s , t) = min(n, s+t) - max(s, t) , as

required.

Now suppose that min(n, s+t) = s + t . Then

tor{R/P
SR,

Define g : R - p m a x ( s '* WpS+*/? by S ( l ) = p m a x ( S ' t }
 + pS+ti? . Then

i s an epimorphism with kernel p x i? . I t follows that

tor[R/pSR, R/p R] i s a cyclic i?-module of order

s+t - max(e, t) = min(n, s+t) - max(s, t) .

This completes the proof.

COROLLARY 3.3. Let R be a local uniserial ring with maximal ideal

pR such that pn = 0 for some integer n > 1 but p ± 0 . If r, s,

t are positive integers all less than n then

tor {R/prR, tor [R/pSR, R/ptR]) = tor (tor [R/pSR, R/ptR) , R/pTR)

is a cyclic R-module of order

{M, min(s+t, «)-max(s, t)+r) - max{r, min(s+t, n)-max(s, t )} .
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THEOREM 3.4. tor is associative over any uniserial ring R .

Proof. By part ( l ) of Proposition 3-1, any uniserial ring is the

direct sum of finitely many local uniserial rings. Thus, since tor

commutes with finite direct sums of rings, i t is sufficient to assume that

R is a local uniserial ring.

Suppose that R has maximal ideal pR where pn = 0 for some

integer n > 1 but p"~ * 0 (in the case of n = 1 the result is

obvious since R is a f ield). Let A, B, C be /?-modules. Then, by part

(2) of Proposition 3.1 we may write A = ® A. , B = © B . , C = © C,
I % J J K K

where each A., B., C, i s a c y c l i c i?-module. Moreover, s ince t o r

commutes with d i r e c t sums of ff-modules, we have

t o r ( t o r U , B), C) = © © © t o r ( t o r ( d . , B .) , c)
I J K „ j k

and

tor(i4, tor(B, C)) =@@@tor(A., tor(B. , C )) .
I J K 'l ° K

Thus to prove the theorem i t is sufficient to show that

tor [A, tor(B, C)) ^ t o r ( t o r U , B) , c)

for any cyclic i?-modules A, B, C .

Let r, s, t be positive integers a l l less than n . We must show

that

tor (tor (if /prR, R/pSR) , if/p*i?) ^ tor (i?/pr#, tor(i?/pSif, R/ptR)) .

By Corollary 3-3 these two modules are cyclic and so i t is sufficient to

show that they have the same order, in other words that

min{w, min(s+t, rc)-max(s, t)+r) - max(r, min(s+t, n)-max(s, £)}

= min{n, min(r+s, n)-max(r, s)+t) - max(t, min(r+s, n)-max(r, s)} .

This can be proved by either reducing one side of the equation to an

expression symmetric in r, s, t or by considering various cases - we omit

this verification.
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4. Local noetherian rings with aniw ± 0

Our objective now is to show that given a local noetherian ring R

with maximal ideal M then R is uniserial i f annM ? 0 and tor is

associative over R . We require the following.

PROPOSITION 4 . 1 . Let R be a local ring with, nan-trivial maximal

ideal M . If tor is associative over R then annW is contained in

every non-zero ideal of R .

Proof. Let a and b be non-zero elements of annAf and M
2

respectively. Then ab = 0 and a = 0 . Thus

tor(R/aR, RlbR) = ^j^f = aR n bR

and

torlR/aR, R/(aR+bR)) -

Hence

tor(tor[R/oR, R/(aR+bR)), R/bR) = tor(aff, R/bR)

= ker(aff ® bR -* aR) = aR ® bR *•• R/anna ® R/ennb

= R/M ® R/anub ^ ,. R , = R/M t 0 .Af+anno

However, since tor is associative over R ,

tor(tor(i?/aff, R/{aR+bR)), R/bR) c= tor (tor (if/a/?, R/bR), R/(aR+bR))

and so tor{R/aR, R/bR) * 0 . Hence, by above, aR n bR * 0 . Thus there

exists s £ R such that as ^ 0 and as € bR . Hence, since a € annA/ ,

s must be a unit and so a = (as)s £ bR . I t follows that annM c &i?

and so that annA/ is contained in every non-zero ideal of R , as

required.

COROLLARY 4.2. Let R be a local ring with non-trivial maximal

ideal M . If tor is associative over R then R has either no minimal

ideals or precisely one, namely annA/ .

Proof. Let a - xR be a minimal ideal of if . Then either aM = a

or aM = 0 . If aM = a then x = xm for some m i M . Thus

x(l-w) = 0 , which is impossible since x ± 0 and 1 - m is a unit. Thus
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aM = 0 and so ann/' ± 0 . The result now follows from Proposition U.I.

Recall that an ideal a of R is called large i f for every non-zero

ideal b of R we have a n b # 0 . Also, Z(i?) , the singular ideal of

/? , is the set of a l l elements of R which annihilate large ideals of R .

THEOREM 4.3. Let R be a local noetherian ring with non-trivial

maximal ideal M such that annM t 0 . If tor is associative over R

then R is uniserial.

Proof. By Propos i t ion U . I , annA/ i s conta ined i n every non-zero

i d e a l of R and so i t i s l a r g e . Thus M = ann(annM) c_ Z(R) and so

M = Z(i?) . Hence, by Propos i t ion 3 , P- 107 of Lambek [ )Z] the re i s a

n a t u r a l number n such t h a t M = 0 but M ? 0 . Moreover M <^_ annM

since M .M = 0 and so M = annW . Since annM i s a simple module i t

follows t h a t d1 ^ R/M .

Now l e t k be an in t ege r such t h a t 0 < k - n and suppose t h a t

y (. AT but y [ A T 1 . Then

tor[tor{R/yR, R/M*) , R/l/1) = tor

yM yM '

c= i?/(M+Ar) ® yR ̂  R/M® R/exmy c* R/(M+anny) = R/M .

However, since tor is associative over R ,

= tor(tor(fl/j/f?,

= tor

•z/A

c= i?/M ® iu±r; ex R/M (

y-lP

Thus rJl/tJi+1 c= i?/W . Hence for any k , 0 < k S M , / / / / /

M.l-I1

+1

simple module. Thus i ? 3 / O ^ T 3 . . . 3 / / 3M = 0 is a composition

series for R . It follows, since R is local, that M = xi? for some

x t M , each ideal of fl is of the form x R f6r some fc , 0 - k - rc+

and so /? is uniserial, as required.
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5. Arithmetical rings

Following Fuchs [4] we call a ring R arithmetical if

a n (b+o) = a n b + a n o

for a l l ideals a, b, a of R . Jensen [£] has shown that a ring R is

arithmetical if and only if, for any maximal ideal M , the ideals of the

local ring RM are totally ordered by set inclusion. Using this we are

able to summarise the main results proved so far in the following theorem.

THEOREM 5.1. Let R be a noetherian ring. Then the following

statements are equivalent:

(1) R is arithmetical;

(2) R is the direct sum of finitely many Dedekind rings and

uniserial rings;

(3) tor is associative over R .

Proof. The equivalence of (l) and (2) has been proved by Asano [7 ] .

Ey Theorem 3 . ^ , t o r i s associative over any uniser ia l r ing. Also,

since every Dedekind ring i s semi-hereditary, to r i s associative over any

Dedekind r ing, by Proposition 3-5, p . 115 of Car+an and Ei lenberg [2 ] .

Thus, since tor commutes with direct sums of r ings , (2) implies (3).

Now suppose t o r i s associative over R . Let S denote the

local iza t ion of if with respect to a par t icular maximal ideal of R .

Then, by Theorem 75 P- 171 of Northcott [74], t o r i s associative over

S . Let M denote the maximal ideal of S . Then, i f annM = 0 , by

Theorem 2 .3 , 5 i s a valuation ring. I f annM t 0 , by Theorem 1*.3, S

i s a local un iser ia l r ing. Since in both valuation rings and local

un i se r i a l r ings , the ideals are to ta l ly ordered by set inclusion, i t

follows that R i s ar i thmetical . Thus (3) implies ( l ) .

Because of Theorem 5.1 i t seems reasonable to conjecture that given

any ring R then to r i s associative over R i f and only i f R i s

ar i thmet ica l . We now give further evidence t o support t h i s .

A semi-hereditary in tegra l domain i s called a Priifer ring. A well-

known resu l t of Jensen T7] characterizes Priifer rings as those integral

domains which are ar i thmetical . Also Hattori [6] has shown that an
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integral domain R is a Prufer ring if and only if every torsion-free
R-module is flat .

Let R be an integral domain and suppose that tor is associative
over R . Let M be any maximal ideal of R . Then tor is associative
over the integral domain R.. and i t then follows from Proposition 2.1 that

R is a valuation ring. Hence R is arithmetical. I t may be of interest

to present here an alternative proof of this , independent of Proposition
2.1.

THEOREM 5.2. Let R be an integral domain. Then tor is associative
over R if and only if R is arithmetical.

Proof. Suppose R is arithmetical. Then, by the remarks above, R
is semi-hereditary and so tor is associative over R .

Conversely, suppose tor is associative over R . Let M be any
torsion-free /?-module. Let a be any non-zero ideal of if and choose
r € a , r t 0 • Then, for any i?-module A we have
tor(R/rR, A) = ker(r : A •*• A) where the mapping r is multiplication by
r (see, for example, Car+an and Ei lenberg [2], p. 129). Thus

tor(M, R/a) = tor(w, ker(r : R/a •* R/a)) = tor(w, tor(R/rR, R/a))
c~ tor (tor(R/rR, M), R/a) = tor(ker(r : M •* M), R/a) = tor(0, R/a) ,

since M is torsion-free. Thus, for any non-zero ideal a of R ,
tor(M, R/a) = 0 . Hence M is flat. I t follows now, from Hattorl's
result mentioned above, that R is Prufer and so arithmetical, as required.
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