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Stellarator configurations with reactor relevant energetic particle losses are constructed
by simultaneously optimizing for quasisymmetry and an analytically derived metric
(Γc), which attempts to align contours of the second adiabatic invariant, J‖ with
magnetic surfaces. Results show that with this optimization scheme it is possible
to generate quasihelically symmetric equilibria on the scale of ARIES-CS which
completely eliminate all collisionless alpha particle losses within normalized radius
r/a = 0.3. We show that the best performance is obtained by reducing losses at
the trapped–passing boundary. Energetic particle transport can be improved even
when neoclassical transport, as calculated using the metric εeff, is degraded. Several
quasihelically symmetric equilibria with different aspect ratios are presented, all with
excellent energetic particle confinement.
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1. Introduction
In non-axisymmetric equilibria, confinement of guiding-centre orbits is not

guaranteed, and enhanced neoclassical losses occur at low collisionality (Galeev et al.
1969; Connor & Hastie 1974; Nemov et al. 1999). Significant optimization efforts are
used to reduce neoclassical losses to acceptable levels (Mynick 2006, and references
therein). However, even with good optimization for thermal particle confinement,
energetic losses, such as those from alpha particles in stellarator fusion reactors, can
be high. Calculations showed that when scaled to a reactor, both the quasihelically
symmetric experiment HSX and the quasiaxisymmetric configuration NCSX had a loss
of most magnetically trapped alpha particles within a thermalization time (Mynick,
Boozer & Ku 2006; Nemov, Kasilov & Kernbichler 2014). In this paper, we look
at optimizations specifically targeting energetic particle losses in stellarator equilibria
and show that it is possible to generate quasihelically symmetric configurations at
the ARIES-CS scale (Najmabadi et al. 2008) which reduce energetic particle losses
within the mid-radius to below 1 %.
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Energetic particle confinement has long been thought of as a weak point
for stellarators. For example, a simple scaling of the NCSX configuration, a
quasiaxisymmetric configuration, to a reactor scale equilibrium (450 m3 volume
at 5.7 T) produced a configuration which lost 27 % of alpha particles promptly,
nearly equivalent to the trapped particle fraction (Mynick et al. 2006). Prompt
losses of this magnitude negatively affect the energy balance and impact ignition
requirements. Further optimization of the equilibrium reduced alpha particle energy
losses to ∼5 %. However, this level of alpha particle loss was still large enough
that the resulting heat flux from alpha particles alone exceeded engineering limits on
the divertor plates (Mau et al. 2008). These calculations did not include the effects
arising from finite coils. Finite coils can give rise to components of the magnetic field
spectrum in which the toroidal mode number is a integer multiple of the number of
coils. These high-order magnetic field spectral modes can be deleterious to energetic
particle confinement. Coil-ripple modes also appear in tokamaks and can produce
energetic particle losses. Tokamaks such as ITER include ferritic inserts to reduce
energetic particle losses from coil ripple (Tobita et al. 2003).

Recent optimizations of a quasiaxisymmetric equilibrium with volume 1900 m3 and
magnetic field on axis of 5 T by Henneberg et al. (2019) show losses at normalized
toroidal flux s=ψ/ψa = 0.25 of ≈5 % after 100 ms, when collisions and an electric
field are included in the simulation. Here, ψa represents the toroidal flux at the edge.
The normalized flux s will be used throughout the paper.

In contrast to quasiaxisymmetric equilibria, energetic particle calculations performed
by Lotz showed that quasihelically symmetric equilibria could provide improved
alpha particle confinement (Lotz et al. 1992). Lotz calculated that collisionless alpha
particle losses for a quasihelically symmetric (QHS) equilibria with volume 727 m3

and magnetic field of 5 T were 3 % after 200 ms for s≈ 0.2. Lotz also showed that
for configurations optimized to eliminate bootstrap current, finite plasma pressure
improves confinement. In examining a HELIAS configuration, a reactor scale device
based on an early design of W7-X, Lotz found core alpha particle losses were
reduced to 10 % at normalized pressure, β = 2µ0P/B2

= 0.05 from losses of ≈30 %
at β = 0.0. In the above expression for β, P is the plasma pressure and B is the
magnetic field strength.

More detailed calculations of energetic particle losses were also performed for
60 keV protons in W7-X by Drevlak et al. (2014). These protons have equivalent
normalized gyroradius, ρ∗ = ρ/a, the ratio of the ion gyroradius to the minor radius,
as alpha particles in a device with volume 1800 m3 and magnetic field on axis of 5 T.
It was seen that even in the most optimized configurations of W7-X presented by
Drevlak et al., prompt losses at the mid-radius exceeded 10 %. Importantly, these
calculations did include the actual magnetic fields produced from coils rather than
idealized equilibria.

Losses of energetic particles in non-axisymmetric equilibria come from two sources.
The first source is those from the configuration itself as defined by fixed boundary
magnetohydrodynamic equilibrium solutions. Generally, any three-dimensional
configuration will have particles with non-zero bounce-averaged radial drift. Perfectly
axisymmetric configurations are guaranteed to have no direct collisionless orbit losses.
However, in all experiments and prototype reactor designs, finite coils are necessary to
generate the magnetic field. These coils break axisymmetry in tokamak configurations
by providing ‘coil ripple’. Particles can be trapped within local magnetic wells and
then subsequently drift radially out of the plasma and escape. In stellarators finite
coils will always produce some error by not matching the target boundary exactly.
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These errors can produce unwanted terms in the magnetic spectrum, including a
coil-ripple term. As in tokamaks, coil ripple in stellarators causes losses due to
particles trapped within localized wells. Additionally in stellarators, finite coils can
lead to longer wavelength modes in the magnetic spectrum degrading confinement
mainly for thermal particles. In this paper, we focus mainly on eliminating the losses
from the idealized configuration alone without considering additional losses from
finite coils.

The layout of the paper is as follows. In § 2, we discuss the methods we use
to optimize stellarator equilibria in general, including a brief introduction to the
ROSE code used in this optimization study. Section 3 describes metrics used for
optimization of energetic particles in the past, and describes the Γc metric that was
used to generate the equilibria presented in this paper. Section 4 shows various
optimized quasihelically symmetric equilibria that demonstrate excellent confinement
of energetic particles, including configurations at different aspect ratios. Finally, § 5
summarizes the results and looks towards the future of energetic particle optimization.

2. Stellarator optimization
Numerous approaches have been developed to reduce neoclassical losses in

stellarators (Mynick 2006). One commonly used metric for achieving good neoclassical
transport is the effective ripple, εeff, introduced by Nemov in Nemov et al. (1999).
This metric can be calculated directly from VMEC equilibria or from field line
following and is the geometric component of the diffusion coefficients in the 1/ν
regime, in which the transport increases with decreasing collisionality. In this regime,
the perpendicular diffusion, D⊥ ∼ ε

3/2
eff v

2
dr/ν, where vdr is the radial drift velocity and

ν is the collision frequency. The collision frequency in this regime is restricted so
that it is greater than the poloidal precession frequency due to ∇B and E × B drifts
and less than the bounce frequency of a particle trapped in a local magnetic well.
As the radial electric field and the corresponding precession frequency increases, a
trapped particle can quickly exit from the 1/ν regime. Nevertheless, the effective
ripple is often used as a means of comparing neoclassical transport between various
configurations, as seen for example in figure 15 of Spong (2015).

A specific subclass of optimized equilibria, quasisymmetric configurations have
tokamak-like neoclassical transport provided there is symmetry in the magnetic field
strength. In perfect quasisymmetry there are no particles with net radial drifts and
hence no 1/ν neoclassical transport. Designs of quasisymmetric equilibria were
generated by Nührenberg & Zille (1988). In practice exact quasisymmetry cannot
be attained globally in a stellarator (Garren & Boozer 1991). However, stellarator
designs that approximate quasisymmetry generally have favourable neoclassical
transport. To date, only one quasisymmetric stellarator has been built and operated, the
quasihelically symmetric experiment (HSX) in the University of Wisconsin-Madison
(Anderson et al. 1995). However, many other quasisymmetric configurations have
been examined including NCSX (Zarnstorff et al. 2001), ARIES-CS (Najmabadi et al.
2008), CHS-QA (Okamura et al. 2001) and a more recent adaptation (Liu et al. 2018)
and also by Henneberg et al. (2019).

Besides HSX, the only other operating neoclassically optimized stellarator is the
quasi-omnigenous W7-X stellarator in Germany (Klinger et al. 2016). W7-X was
designed as a quasi-omnigenous device and did not target quasisymmetry. Instead,
the design targeted a number of physics properties including reduced Pfirsch–Schlüter
and bootstrap currents consistent with reduced neoclassical transport.
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2.1. Boundary optimization
Finding equilibria that possess good neoclassical transport, whether through quasisy-
mmetry or other optimizations is not trivial. While various schemes are being pursued
such as an analytic construction from first principles (Landreman & Sengupta 2018),
the conventional method, and the one used to design HSX, W7-X, and NCSX, is
to couple a nonlinear boundary optimization with an equilibrium solver. In this
optimization scheme, the plasma boundary is parametrized in Fourier modes, such
that,

R=
∑
m,n

Rc
m,n cos(mθ − nζ )+ Rs

m,n sin(mθ − nζ ) (2.1)

Z =
∑
m,n

Zc
m,n cos(mθ − nζ )+ Zs

m,n sin(mθ − nζ ). (2.2)

Here m is a poloidal mode number, n is a toroidal mode number, θ is the poloidal
angle and ζ is the toroidal angle. An additional restriction can be imposed, called
‘stellarator symmetry’ where Q(R, φ,Z)=Q(R,−φ,−Z) for any function Q. Imposing
stellarator symmetry eliminates all the Rs and Zc components, and only the cosine
terms are left in the equation for R and the sine terms in the equation for Z. That is

R(θ, ζ )=
∑
m,n

Rm,n cos(mθ − nζ ), (2.3)

Z(θ, ζ )=
∑
m,n

Zm,n sin(mθ − nζ ), (2.4)

where the superscripts have been dropped. All the quasihelically symmetric configura-
tions in this paper will have four stellarator symmetric field periods, n = 4nk, nk =

0, 1, 2, . . . .
For a given boundary, along with specification of the flux surface profiles for

plasma pressure and toroidal current, the equilibrium can be calculated assuming
ideal magnetohydrodynamics. Current optimization tools use the variational moments
equilibrium code (VMEC) to solve for the equilibrium (Hirshman & Whitson 1983).

With knowledge of the shapes of all equilibrium flux surfaces, it is possible to
calculate performance, F, by quantifying the configuration’s ability to attain prescribed
metrics. For example, it is often convenient to calculate the performance with respect
to many metrics in the least-squares format as is used in ROSE (described in more
detail below),

F({Rmn, Zmn})=
∑

i

wi[pi({Rmn, Zmn})− ti]
2. (2.5)

In (2.5) each pi represents a penalty function that evaluates the performance with
respect to a given metric. The desired targets are given by ti and each function is
weighted by wi. The performance of the equilibrium with respect to all weighted
penalty functions is used to calculate better equilibria in a global optimization scheme.
In the rest of this section we will first look at some equilibrium properties that will be
used in various optimization calculations, and then we will briefly discuss the global
optimization scheme.
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2.2. Metrics for equilibrium performance
In principle any quantity that is calculable from a plasma equilibrium can be used as
a penalty function. Here, we outline some basic equilibria quantities that we will use
in the global optimizations presented in this paper.

We specify basic features of the plasma in order to ensure that the equilibrium does
not diverge far from the starting configuration. In the following, we optimize by fixing
the aspect ratio and major radius. For the purpose of comparing energetic particle
confinement between configurations, we scale the equilibrium to ARIES-CS volume
and magnetic field strength.

An important metric for the optimizations presented here is the degree of
quasisymmetry. For a given flux surface, this is defined as the amount of magnetic
energy in non-symmetric modes compared to symmetric modes. The calculation
is achieved by first transforming coordinates from VMEC coordinates to Boozer
coordinates (Boozer 1982). After this is done, the magnetic field on the surface is
given as

B(θB, ζ B)=
∑
m,n

Bm,n cos(mθB
− nζ B), (2.6)

where θB and ζ B are the poloidal-like and toroidal-like coordinates in Boozer
coordinates. Only the stellarator symmetric components are considered.

For a four period quasihelically symmetric configuration, the quasisymmetric modes
are those where n/m= 4. Therefore the quasisymmetric penalty to minimize is

Pqhs =

(∑
n/m6=4

B2
m,n

)/
B2

00. (2.7)

The division by the m= 0, n= 0 mode is used for normalization purposes.
The rotational transform, or ι, profile is a very commonly specified parameter. In

the optimizations presented in this paper it is always left as a free parameter. It is
important to remember that VMEC cannot include the effects from magnetic islands,
so equilibria will not be penalized for producing profiles that pass through resonant
surfaces. In particular it is important to avoid the low-order rational surfaces, such as
the ι= 1 surface. At these surfaces, not only is it expected to have large islands, but
construction of Boozer coordinates is ill posed and quasisymmetry, along with other
metrics, cannot be properly assessed. Avoiding such surfaces is not guaranteed if the
rotational transform profile is unconstrained. For all the configurations shown here, the
configurations have rotational transform, 1< ι< 4/3.

With the exception of energetic particle metric Γc described below, the equilibrium
optimization is attempted with the above equilibrium penalties. We attempt to
minimize the quasisymmetric penalty, and we do not constrain the rotational transform
profile. We also constrain neoclassical transport by ensuring that the εeff metric
described above does not exceed a target value. In practice, good quasisymmetric
properties ensure good neoclassical transport, and thus the εeff constraint is never
exceeded in these optimizations.

2.3. Optimization
Optimization for the configurations in this paper are carried out with ROSE (ROSE
optimizes stellarator equilibria) (Drevlak et al. 2018).
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The global optimizer seeks to minimize the function given in (2.5). The optimizer
varies the boundary coefficients, Rc and Zs in the VMEC parametrization, in an
attempt to find a new configuration with a lower value of F. Specifically, for these
optimizations we use Brent’s algorithm (Brent 2013).

The optimization method, like many optimization methods, is subject to local
minima problems preventing further improvements of the metrics. A local minimum
exists where all small perturbations of the boundary coefficients, Rc and Zs result in
a larger value of F. Areas of phase space can exist far away with lower values of F,
but the optimizer cannot reach them along any local gradient descent path. For more
information on optimization with ROSE the reader is directed to Drevlak et al. (2018).

3. The Γc for energetic particle confinement
Optimization for energetic particles is a necessity for stellarator reactor configura-

tions. The simplest optimization metric, for isotropically distributed particles such
as alpha particles, is to use Monte Carlo methods. The Monte Carlo analysis is
done by launching a population of energetic particles, following the particle orbits,
and determining the fraction of particles that are lost. There are numerous options
for the analysis including whether to use guiding-centre approximations or full-orbit
calculation, whether to include collisions, and various choices involving the starting
distribution of particles. Integrating the guiding-centre drift orbit equations is fast
enough that it is feasible to implement Monte Carlo methods into an optimization
scheme for some moderate number of particles and short time scales of the order of
several hundred toroidal transits. This was the approach taken by Ku and Garabedian
to optimize the NCSX equilibrium (Ku & Garabedian 2006) (also see description in
Mynick et al. 2006).

Instead of optimizing with Monte Carlo techniques, we employ an analytical
metric for energetic particle confinement and then use particle following to evaluate
the resulting optimized configuration. Optimizing with fast-particle metrics rather
than with Monte Carlo has two advantages. The first is that the computational cost is
significantly lower, allowing for many separate optimizations with different targets and
weights. The second advantage is that the metrics include physics insights directly,
rather than requiring analysis of the resulting configurations to determine why one
configuration performs better than another.

A question to address is whether improved energetic particle confinement is
correlated to improvements in neoclassical transport (εeff) and/or quasisymmetry.
The εeff metric by virtue of providing better neoclassical transport of thermal
particles, might also provide improved confinement of energetic particles. Similarly, a
perfectly quasisymmetric configuration will confine all particles, so the quasisymmetry
metric can also be used as an energetic particle method. As will be shown in § 4,
improvements to energetic particle confinement do not always imply lowered values
of εeff. On the other hand, improving quasisymmetry does improve energetic particle
behaviour. Nevertheless, we find that the best performance is obtained by considering
the Γc metric, which will be described presently.

Instead of optimizing for quasisymmetry or εeff, Nemov proposed creating poloidally
closed contours of the second adiabatic invariant, J‖ =

∮
v‖ds by examining both the

radial and poloidal drifts (Nemov et al. 2005, 2008). Differentiation of J at constant
energy provides the bounce-averaged radial and poloidal drifts (Helander et al. 2012).
That is, 〈

dψ
dt

〉
=

1
Zeτb

∂J
∂α
;

〈
dα
dt

〉
=

1
Zeτb

∂J
∂ψ

, (3.1a,b)
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where the magnetic field, B = ∇ψ × ∇α, Ze is the particle charge and τb is the
bounce time. Therefore, if J = J(ψ) the radial drift is eliminated and the particle
is confined. The specific innovation by Nemov is an analytic method of calculating
both the radial drift of the particles, which is a quantity to minimize, and the poloidal
drift of the particles, a quantity to maximize. By maximizing the poloidal drift in non-
axisymmetric equilibria, it is possible to align the J‖ contours with the flux surfaces
(Mikhailov et al. 2002) in a more direct manner than possible by previously explored
proxies such as J∗ (Cary, Hedrick & Tolliver 1988; Spong et al. 1998). In the limit
of ι/N � 1, J∗ ≈ J. Here, N is the number of field periods. This proxy is well
suited for higher field period, moderate transform devices, but less well suited for
quasihelically symmetric devices, such as the ones considered in this paper where
ι/N ≈ 1/4.

The metric we optimize is given in (61) in Nemov et al. (2008). The Γc metric is
given as

Γc =
π
√

8
lim

Ls→∞

(∫ Ls

0

ds
B

)−1
∫ Bmax/Bmin

1
db′
∑
wellj

γ 2
cj

vτb,j

4Bminb′2

 , (3.2)

where γc is

γc =
2
π

arctan
(
vr

vθ

)
. (3.3)

Here, vr is the bounce-averaged radial drift, vθ is the bounce averaged poloidal drift.
The ratio vr/vθ is calculated from geometrical quantities of the magnetic field line and
is described in (51) in Nemov et al. (2008) (we ignore the electric field contribution
and set the arbitrary reference field B0 = Bmin). The sum is taken over all the wells
on a suitably long field line. For this calculation 60 toroidal transits were used. The
calculation considers trapping wells encountered by all possible trapped particle pitch
angles, with b′ representing a normalized value of the reflecting field. The bounce
time for a particle in a specific magnetic well is given by τb,j. The parameters Bmax
and Bmin are the maximum and minimum magnetic field strength on the flux surface.
Succinctly, the key quantity to minimize is the ratio of the drifts, vr/vθ .

It is important to highlight the difference between εeff and Γc; both of which
were introduced by Nemov. The effective ripple, εeff, targets deeply trapped particles
that dominate transport in the 1/ν regime and is weighted by the collision operator.
However, energetic particle confinement is influenced over a wider range of pitch
angles, especially at angles near the trapped/passing boundary. Γc, as mentioned above,
represents the angle between the J contours and magnetic flux surfaces. Unlike εeff,
Γc is collisionless. An objective of this study is to use the Γc metric to see how far
one can improve the confinement of energetic particles, while still providing a ceiling
for εeff, but not deliberately optimizing εeff to get as small a value as possible. Details
of the optimization process will be described at the beginning of § 4.

3.1. Evaluation of energetic particle losses
To evaluate a given configuration we use a Monte Carlo scheme using the ANTS code
(Drevlak et al. 2014). ANTS integrates the drift orbit of particles on a user defined
magnetic grid and can include collisions. In these calculations collisions are turned
off, and the magnetic grid extends only to the VMEC boundary after which particles
are presumed lost. In order to ensure the launched particles match an experimentally
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relevant distribution of particles some precautions are necessary in the launch profiles.
It is assumed that density and temperature are flux functions. For a given surface s0,
particles are launched from random surface coordinates (θ, ζ ) so that the probability
of finding a particle in any given volume element, dV0 centred at (s0, θ0, ζ0) is
proportional to J (s0, θ0, ζ0), where J is the three-dimensional Jacobian. This leads
to a launch population that, for a given flux surface, is equivalent to the alpha particle
production in a burning plasma.

Similarly it is necessary to ensure an isotropic distribution in velocity space. This is
easily done by choosing the parallel velocity, v‖= v sin(α), for each particle randomly
from a uniform distribution between −v and v. Here α is the pitch angle of the
particle velocity vector with magnitude v.

For all calculations in this paper we consider 5000 particles per flux surface. For
each particle, the particle location and velocity vectors are determined randomly as
described above. Because of the isotropic distribution, a significant number of particles
are passing particles.

In ANTS, a magnetic grid in cylindrical coordinates is computed. Particle following
is accomplished by integrating guiding-centre orbit equations in these cylindrical
coordinates. The integration method is a fourth-order Adams–Bashforth scheme. For
this calculation we do not consider particle collisions. If the particle trajectory passes
beyond the boundary of the penultimate flux surface, it is considered lost. For the
results in this paper, particles are followed for 200 ms, and any particle that does
not pass beyond the penultimate flux surface in 200 ms is considered confined. For
reference, the bounce time for an alpha particle near the trapped passing boundary
for these configurations is approximately 0.1 ms.

Basic analysis was performed to ensure Monte Carlo scaling and error estimates
by repeating 10 simulations with different randomized launch profiles. It was verified
that the standard deviation scales with

√
N where N is the number of particles. For

a configuration with approximately 10 % alpha particle losses, the standard deviation
is 0.32 %. This produces a roughly 3 % error in the lost particle subpopulation due to
Monte Carlo noise.

4. Results and discussion
The starting configuration for analysis is a quasihelically symmetric configuration

with aspect ratio 6.7. After optimization, we scale the configurations to ARIES-CS
parameters with plasma volume of 450 m3 and magnetic field of 5.7 T on axis. For
these optimizations, we specify the major radius and aspect ratio and do not allow
either to vary. We also constrain εeff to lie below some nominal value (here 0.01).
We optimize for three cases, the first is an optimization only attempting to improve
the quasisymmetry at normalized toroidal flux, s= 0.6. The second attempt optimizes
for Γc at three surfaces, s = 0.2, 0.4 and 0.6. The third attempt optimizes both
the quasisymmetry metric (at s = 0.6) and the Γc metric (at s = 0.2, 0.4 and 0.6)
simultaneously.

Figure 1(a) shows the values for the quasisymmetric metric computed for each of
the four optimization cases and plotted as a function of s. For these results and all
similar plots, even though the values may have been optimized on only one surface
(for QHS) or three surfaces (for Γc) we show the values of the metric at surfaces
between s= 0.1 and s= 0.7. The two optimizations that include quasisymmetry as a
penalty, (orange and red) show lower values of quasisymmetry over the entirety of the
minor radius, except possibly in the very core. Note the broad reduction despite that
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(a)

(b)

FIGURE 1. The quasisymmetric metric (a) from (2.7) and Γc (b) metric from (3.2) as a
function of normalized toroidal flux for four different optimization targets.

the optimization only targeted quasisymmetry at s= 0.6. This behaviour is typical for
optimization for quasisymmetry.

Figure 1(b) shows a similar plot, but this time the Γc metric is plotted as a
function of s. Again the two cases that included the Γc metric in the optimization
(green and red) show lower values of Γc across most of the plasma. It appears
from this result that the quasisymmetric metric and Γc can be optimized separately.
Indeed, the following four configurations provide a good test case for comparing the
behaviour of these two metrics on energetic particle confinement. The flux surfaces
for the four configurations are shown in figure 2(a). The rotational transforms
for the four configurations are shown in figure 2(b). The results show that even
though the rotational transform was not explicitly targeted in the optimization, the
configurations have rotational transforms between the low-order rational surfaces
of ι= 1 and ι= 1.25.
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(a)

(b)

FIGURE 2. Flux surfaces are shown at toroidal cuts at φ = 0, π/8 and π/4 (a). The
magnetic axis is shown for the unoptimized case as a blue ‘+’. The colours in this plot
use the same legend as in the bottom plot. Panel (b) shows the rotational transform as a
function of normalized toroidal flux for four different optimization targets.

The evaluation for energetic particles is shown for particles beginning on the s=0.1,
0.3 and 0.4 flux surfaces in figure 3. In the core, at s= 0.1 (figure 3a) corresponding
to normalized minor radius, r/a∼ 0.32, all configurations show losses below 4 % after
200 ms. The best performing case (red dashed) completely eliminates all alpha particle
losses on this flux surface. For all configurations after about 10 ms the particle loss
fraction is saturated.

Further out, at s = 0.3 (figure 3b), corresponding to r/a ∼ 0.54, some differences
can be seen between the four cases. The best performing case (red dashed) again
shows low losses. No particles are lost before about 20 ms, and less than 1 % loss
exists after 200 ms. The other configurations perform worse both with regard to
prompt losses and after long time scales. All three other cases show approximately
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(a)

(b)

(c)

FIGURE 3. Alpha particle loss fractions for alpha particles born on the s = 0.1 (a),
s= 0.3 (b) and s= 0.4 (c) surfaces as a function of time for four different optimization
cases.

7 % loss after 200 ms. Interestingly a clear difference appears in the time behaviour
between the configuration optimized for Γc (green) and the unoptimized case (blue)
and the case optimized for quasisymmetry (orange). After 10 ms, the optimization for
Γc (green) performs significantly better than the other two, indicating an improvement
in confining prompt losses of particles. However after 200 ms it performs slightly
worse.

The trends continue further out at s = 0.4 (figure 3c), corresponding to r/a ∼
0.63. At s = 0.4, the losses from the configuration with optimization for Γc and
quasisymmetry is about 1 % after 10 ms and 3 % after 200 ms. Similar behaviour is
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FIGURE 4. The εeff metric as a function of normalized toroidal flux for four different
optimization targets.

seen with the case optimized for Γc where it reduces prompt losses, but after 200 ms
performs equivalently to the other two cases with approximately 8 % losses.

It is clear from these results that quasihelically symmetric configurations exist
that have VMEC equilibria that eliminate all alpha particle losses within s = 0.1 on
an ARIES-CS scale device. The configuration was obtained with a basic set of
optimization targets, using only the quasisymmetry metric and the Γc metric.

We now turn towards some of the features of the optimized equilibria. One of the
basic results is that improvements to energetic particle confinement are not correlated
to improvements in neoclassical transport given by εeff. In figure 4 we show the
computed values of εeff for the four optimization configurations, which demonstrates
that the optimization which produced the best energetic particle confinement actually
has the worst predicted neoclassical transport over the inner half of the plasma. It
should be noted, that more accurate neoclassical calculations are available, such as
with SFINCS (Landreman et al. 2014). These calculations have not been undertaken
for these configurations. Rather the conclusion here is with regard to the limitation
of εeff as a useful metric for energetic particles.

It is also useful to look at the loss as a function of the value of field that the
alpha particle will reflect at, E/µ, which is directly related to the particle’s pitch
angle. The results for s = 0.3 and s = 0.4 are shown in figure 5. For both cases
only trapped particles are lost, which is expected. Two more interesting features are
apparent from the results presented here. The first is that for all configurations the
losses are predominately from particles near the trapped–passing boundary. These
losses are significantly reduced when Γc and quasisymmetry are both optimized for
(red). However, in this best performing case there are some losses of deeply trapped
particles at s= 0.4. This may be expected due to the degradation of εeff in this case.
In other words, the optimizer sacrificed some confinement of deeply trapped particles
to improve confinement of energetic particles near the trapped–passing boundary.
This is a good trade-off for particles born uniformly on flux surfaces, like alphas.
Deeply trapped particles can only be born in areas of low magnetic field, while barely
trapped particles can be born at all locations on the flux surface.

Comparing this optimization attempt with previous attempts by Ku & Garabedian
(2006) and Nemov et al. (2014) yield some insights. In this optimization, the original
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(a)

(b)

FIGURE 5. Loss counts as a function of reflecting field (E/µ) for alpha particles for
four different optimizations. Values are calculated for particles launched at flux surfaces
s = 0.3 (a) and s = 0.4 (b). The black vertical dashed line in each plot represents the
trapped–passing boundary.

equilibrium is a scaled version of NCSX and suffered from energetic particle losses
at all pitch values. A salient feature of the optimized equilibrium was the removal
of magnetic wells at intermediate pitch values, thus producing a class of confined
energetic particles. However, this process degraded quasisymmetry and introduced
mirror modes, that is modes in the magnetic spectrum with poloidal number, m = 0
and toroidal number n 6= 0. For the quasihelically symmetric configurations in
this paper, there are very few losses at intermediate field values (see figure 5,
5.2 < E/µ < 6.0). Therefore, there are no improvements to be had by improving
confinement in these regions of phase space since the particles are already well
confined.

A different optimization by Nemov et al. (2014) attempted to remove losses due
to coil-ripple effects. They showed that in HSX, the transition from an idealized
quasisymmetric equilibrium to one produced from realistic coils significantly reduced
energetic particle confinement. However, by doubling the number of coils from 48 to
96 using a simple interpolation scheme, the original good confinement was recovered.
This occurred even though the new coils were not optimized and quasisymmetry was
degraded in the 96 coil configuration.
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FIGURE 6. Boundary flux surfaces for the bean (φ = 0) and triangle (φ = π/4) surfaces
for three optimized configurations with different aspect ratios.

4.1. Optimization at higher aspect ratios
The configurations presented above were all at aspect ratio 6.7. While larger than
ARIES-CS, the aspect ratio is significantly smaller than that of the HELIAS reactor
concept (Warmer et al. 2016) which has aspect ratio 12.2 and plasma volume of
∼1800 m3.

We attempted to optimize the equilibrium at higher aspect ratios, but keeping the
plasma volume equivalent to the ARIES-CS value of 450 m3. The methodology was
to begin with an internal surface of an optimized case at aspect ratio 6.7 and then
scale the boundary coefficients such that the volume was equivalent. The boundary
surfaces for these equilibria are shown in figure 6 and the alpha particle losses are
shown in figure 7 for 0.1< s< 0.5. Despite the decrease in minor radius, the higher
aspect ratio configurations display better confinement. At low aspect ratios, it is more
difficult to meet quasihelically symmetric targets.

5. Conclusion
Results presented in this paper demonstrate that stellarator equilibria exist which

have very low energetic particle losses within the half-radius with losses eliminated
entirely within the s = 0.1 surface. Therefore, in the core, stellarator equilibria can
confine energetic particles equally well to idealized axisymmetric configurations,
such as tokamaks without coil ripple. This potentially eliminates one of the major
concerns with stellarator reactors, namely large wall loading from prompt losses of
alpha particles.

These equilibria were created using an optimization recipe that sought to minimize
non-symmetric components of the magnetic field spectrum and used the Γc metric
proposed by Nemov to minimize collisionless energetic particle losses. The results
showed that optimization with both the Γc metric and quasihelical symmetry produced
configurations with very low energetic particle losses, including the elimination of all
losses within approximately the mid-radius. However, the best performing case loses
some deeply trapped particles at the s = 0.4 surface, where other configurations do
not.
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FIGURE 7. Alpha particle losses after 200 ms for three optimized configurations with
different aspect ratios.

The results suggest that it is possible to achieve good energetic particle confinement
despite an increase in the neoclassical metric, εeff by about a factor of 2 in the core.
While εeff tends to focus on confining deeply trapped particles, energetic particles
are often lost near the trapped–passing boundary. Indeed, it is possible to degrade
neoclassical transport, as given by εeff, significantly, yet the overall energetic particle
losses can be improved because of large reduction of losses near the trapped–passing
boundary. This optimization can be contrasted with previous results from Ku &
Garabedian (2006) and Nemov et al. (2014) who showed that it is possible to have
improved energetic particle confinement despite reduced quasisymmetry. In Ku et al.
this was accomplished by introducing m= 0, n= 3 and m= 1, n= 3 modes in order
to improve energetic particle confinement. In Nemov et al. it was accomplished by
increasing the number of modular coils to reduce the coil-ripple term.

This paper represents new progress on energetic particle confinement optimization
in stellarators. Stellarator equilibrium optimization always requires trade-offs between
different desired properties. A more comprehensive analysis is needed to determine the
compatibility of good energetic ion physics with other confinement properties. It may
be true that other desirable properties conflict with good energetic particle confinement.
A full analysis is necessary.

The calculations were performed using collisionless drift orbits which represent
optimistic estimates of particle losses. More realistic simulations would include
both the slowing down of the alpha particles and pitch angle scattering. Collisional
calculations require knowledge of the plasma temperature and density as a function
of flux surface and will be a subject of future work.

Additionally, the effect of energetic particle modes, such as those in the Alfvén
eigenmode family were not considered here. Investigating alpha particle instabilities
will be important for reactors. For an overview of current research on energetic
particle modes in stellarators, and the possibility of achieving reduced mode drive
due to operation at higher density, see § 2.5 of Gates et al. (2018).

Also, all the quasihelically symmetric equilibria presented were vacuum magnetic
configurations. A requirement for quasisymmetric equilibria is that good confinement
is needed from the starting vacuum configuration up to the full performance with both
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finite β effects and bootstrap currents. Producing such equilibria was not attempted
here.

So far, all the results presented are for idealized configurations that do not include
the effects of magnetic field coils. Just as in tokamaks, coils produce additional ripple-
trapped particles and constitute an additional loss mechanism. The coil-ripple effect is
important, but was beyond the scope of this paper. Nevertheless, we describe here two
possible methods of addressing the coil-ripple effects.

One of the more difficult aspects of stellarator coil design is maximizing the coil–
plasma distance. In a reactor, the minimum size of the device will most likely be
set by the neutronics blanket that must be between the vacuum and the plasma. A
key parameter is the minimal coil–plasma separation distance, and this is a target
to maximize (El-Guebaly et al. 2005). It is possible to identify regions where coil
position is most sensitive (Landreman & Paul 2018; Paul et al. 2018), and it may
be possible to target equilibria to relax specific regions such as those with strong
concavities (see § 7 of Paul et al. 2018). Furthermore, in regions where the coil’s
position is less sensitive, such as the low-field side on the outside of the device, it is
possible to move coils further away. This should lower the coil ripple in these regions
and the expectation is that it should lower alpha particle losses from ripple-trapped
particles.

A second approach is to use ferritic inserts for stellarators similar to the use in
tokamaks (Shinohara et al. 2012). Ferritic inserts have so far not been designed for
stellarators, and it is an open area of research. This could be a promising approach
to reduce coil-ripple losses.
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