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1. Introduction

Let Δ and N be abelian groups and let / be a mapping of Δ x Δ into N

that is bilinear, skew symmetric and satisfies f(a, a) = 0 for all a^Δ. Such

a mapping/ is called a (*)-mapping. By the Schreier extension theory J, N

and / determine a nilpotent group G( Δ, Nf f) of class two that consists of the

set Δ x N with composition

(a, a) + (β, ί) = (α + ft/(α, 0)+

This paper is concerned with the class ώ^ of all nilpotent groups of class two

that have a representation of the form G(Δy Nf / ) , where / is a (*)-mapping

and {/(#, β) * or, j9 e Δ) generates N. This class έ/ is quite large. For example,

in Theorem 5.2 we prove that if G is a central extension of iV by Δ, and if J

is torsion free or if N contains no elements of order 2, then G is a subgroup

of a group in έf\ Also every complete ( = divisible) nilpotent group of cίass

two belongs to <</ (Theorem 3.1).

Consider G{Δ, N, /) in έf and let Δ<g>fΔ be the tensor product of Δ with

itself. Let D be the subgroup of Δ®'Δ that is generated by the diagonal

elements a ® fa e J ®'̂ ί. The group J 0 J = (J 0 'J)/D is called the skew tensor

product of Δ with itself, and the mapping

e(<x, β)=a®β = a®fβ + D

is a (*)-mapping of Δx Δ into Δ®Δ that generates J 0 J . Thus we have a

group G(J, Δ®Δ} e) and a unique homomorphism ψ oί Δ®Δ onto JV such that

f{a, β) = ̂ (α, i?)0. In Theorem 5.1 we show that the mapping (a, a) -> (α:, βf̂ )

is a homomorphism of G(J, Δ®Δy e) onto G(J, N,f). Thus every group in

cJ/ has a representation as a homomorphic image of a group of the form
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16 PAUL CONRAD

G(Δ, Δ®Δt e). We use this representation to determine the structure of the

groups in έ/. For example, Theorem 5.3 and its corollaries determine condi-

tions that are necessary and sufficient for two groups in y to be isomorphic.

In Section 6 a study is made of the groups in y for which Δ is a rational

vector space.

The author would like to thank Professors A. H. Clifford and L. Fuchs for

their many useful suggestions. In particular Proposition 4.10 and Theorem

4.2 and their proofs are due to L. Fuchs.

2. Representations and Homomorphisms of Nilpotent Groups of Class 2.

Throughout this section let G be a nilpotent group of class 2 with center

Z and commutator subgroup C, and let N be a subgroup of G between Z and

C, G^Z^N^C. Thus G is a central extension of N by the abelian group

Δ = GjN. We shall denote the elements of Δ by θ, a, ft . . . and those of ΛΓ

by O, a, b, . . . Let π be the natural homomorphism of G onto Δ and let r be

a mapping of A into G such that r(θ) = 0 and r{a)π = α: for all a: in A Let

(1) /(α, β)=

for α:, β e i , and for all (as α) and (ft b) in JxiV define that

(2) (a, *) + <& *) =

Then by the extension theory of Schreier, Δ x N is a group and the mapping

of r(a)+a upon (<*, α) is an isomorphism of G onto ΔxN. We shall denote

this representation of G by G(i, N, /) . It is easy to show that / is a mapping

of Δ x Δ into N that satisfies

(3) /(<*, 0)=/(0, 0) =0, and

(4) /(or,

Conversely if / is such a mapping and if we use (2) to define addition in Δx N,

then the result is a group. If N is generated by the set {/(#, j9) α:, β e J } ,

then we say that / generates Λr.

Two central extensions of N by J, G(J, iV,/) and G(J, JV, g) are equivalent

if there exists an isomorphism <; of the first onto the second such that for all

(ocy a) in G(Δ, N, / ) , (a, ά)a- (αr, t(ac) +a)9 where Ms a mapping of A into N.

Thus the two groups are equivalent if and only if there exists a mapping t of*
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GROUPS OF CLASS TWO 17

Δ into N such that for all a and j9 in Δ

(5) g(cct β) -Ace, β) = - t{oc + β) + t(cc) + t(β).

The concept of equivalence frees the representation of G from the particular

choice of the representation mapping r.

A mapping /of ΔxΔ into N is a (*)-mapping if for all a, βf γ^ Δ

/(<*, β + r) =/(α, ί
t (bilinear)

3, r ) = / ( a , r) ' " "
/(#, j9) = —/(j9, α:) (skew-symmetric)

/(α, α:)=0.

It is easy to verify that any (*)-mapping satisfies (3) and (4), and hence

determines a central extension of N by Δ.

Given GΏZΏNΏC and G'ΏZ'ΏN'ΏC' let Δ = G/N and Δ' = G'/N'. Then

G and G' have representations G(J, iV,/) and Gf(Jf, Nf> / ' ) . Suppose that 7r

is a homomorphism of G onto G', and that (θ x N)π = θf x Nf. Then for (α:, a)

in G we have

(at a)π = (αr, O)7Γ -f (θ, ά)π = (α:7Γi, 0:^2) + (θy aπz)

= (α7Γi, 0:712 •+• ^ ^ 3 )

where 7τ3 is a homomorphism of N onto JV'.

(αr,

βπu/'(am,

Therefore κ\ is a homomorphism of Δ onto J', and for all a and β in

(6) (or + ^)τr2 - ατr2 - βπ2 =f{aπu βπi) -/(or, /9)ττ3.

It is easy to show that π is an isomorphism if and only if m and 7r3 are iso-

morphisms. Conversely suppose that πi is a homomorphism of J onto Δ\ πz is

a homomorphism of N onto iV', and π2 is a mapping of Δ into 2V' that satisfies

(6). If for (or, a) in G we define that (α, Λ)7Γ= (α:7Γi, Λ7τ2 4- tf/τ3), then 7τ is a

homomorphism of G onto G' and (0 x N)π-Qf xNf.
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18 PAUL CONRAD

Note that (6) means that ff(aπh βπi) and f(a, β)π5 are equivalent factor

mappings of A x A into Nf. Thus for an appropriate choice of /', π-ι = 0 will be

achieved. However, no factor mapping that is equivalent to a (*)-mapping is

again a (*)-mapping provided that 2 A = A or that N contains no element of

order 2 (Cf. Theorem 3.1). Now suppose that / and /' are (*)-mappings.

Then the left hand side of equation (β) is symmetric and the right hand side

is skew-symmetric. Thus for all a and β in A

i, βπi) ~fU, 0)τr8] =/'(ατri, 2 βπi) -f(a, 2 j9)τr3.

Therefore, if 2 A = A or if Nf contains no elements of order 2, then for all a and

β in A

(7) /(or, β)πs=f(aπh βπi),

and 7r2 is a homomorphism of A into A7'. We summarize these results:

THEOREM 2.1. If π is a homomorphism of G(A, N, f) onto Gf(Af

y Nf, /')

such that (θxN)π = 0f xN', then for each {a, a) in G

{cc> a)π = (aπi, aπ^Λ aπz)

where π\ is a homomorphism of A onto A1, m is a homomorphism of N onto N',

and 7Γ2 15 a mapping of A into N' that satisfies (6), and conversely. Moreover,

π is an isomorphism if and only if πi and π2 are isomorphisms. If 2 A = A or

if N1 contains no elements of order 2, and if f and f are (*)-mappingst then

7Γ2 is a homomorphism and (6) is equivalent to (7).

We next prove a few basic propositions about nilpotent groups of class 2

that are determined by O)-mappings. Let G = G(A, N, / ) , where / is a (*)-

mapping.

PROPOSITION 2.1. n(a, a) = {na, na) for all (a, a) in G and all integers n.

In particular G is a complete group if and only if both A and N are complete,

and G is torsion free if and only if both A and N are torsion free.

Proof. Since - (αr, a) = ( — a, —a) it suffices to consider only .positive

integers. Using induction we have

(nΛ l)(a, a) = n(a, a) -f (a, a) = {na, na) -h (a, a)
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GROUPS OF CLASS TWO 19

r, nf{a, a) + (n

PROPOSITION 2.2. If f generates N and n is a positive integer, then the

following are equivalent:

(a) nA = A.

(b) nA = AandnN=N.

(c) nG = G.

In particular, G is complete if and only if A is complete.

Proof. It follows from Proposition 2.1 that (b) and (c) are equivalent,

and clearly (b) implies (a). Assume that nά = A and consider

x = Σ/(α, , βi) = Σ / ( Λ « , , βi) = n Σ / ( α , , βi)

where α, is an element in J such that wα, = α, . Therefore wiV = Λτ.

PROPOSITION 2.3. nG is a fully invariant subgroup of G for every positive

integer n.

Proof, nice, a) - n(β, b) = (na, no) + ( - nβf — nb)

= (n(a-β)9f(na, -nβ) + n{a-b))

= n(a- β, f(a, - nβ) +a-b) (ΞnG.

PROPOSITION 2.4. The following are equivalent:

(a) G is complete.

(b) Every non-zero homomorphic image of G is infinite.

(c) G contains no maximal normal subgroups.

Proof. Clearly (a) implies (b) since every homomorphic image of a

complete group is complete. Suppose that G satisfies (b) and that M is a

maximal normal subgroup of G. Then H=G/M is infinite and simple, and

hence H is non-abelian. But H must be abelian because either H = Z(H) or

0 = Z(H)ΏC(H). Therefore (b) implies (c). Finally suppose that G satisfies

(c), but that G is not complete. Then there exists a positive prime p such

that pG # G. By Proposition 2.3, H = G/pG is a group, and every element in

H has order p. If H is abelian, then it is a vector space over the integers

modulo p, and hence it has a maximal subgroup. If H is non-abelian, then
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20 PAUL CONRAD

H/C(H) is a (non-trivial) vector space over the integers modulo p and hence

has a maximal subgroup. In either case we get a maximal normal subgroup

of G, but this contradicts property (c).

For (a, a) and (ft &) in G we have

[(or, a), (ft ft)] = - (a, a) - (ft ft) + (or, Λ) + (ft ft)

= -(( f t ft) + U, β)) + (α +

α, O) + (0,/(ft α)

= (0, 2/(α, 0))

and - ( α , β) + (ft &) + («, β) = [(*, β), - (ft 6)]+(ft ft)

= (0, 2/(α, -19)) +(A ft)

= (/9, 2/(ft or)+6).

Thus (α, β) and (ft ft) commute if and only if 2/(α, j9)=0; and Cc2iV',

where W = θxN.

PROPOSITION 2.5. If A or N consists of elements of order 2, f/zew G is

abelian. If a e J z's o/ o r ^ r 2, ί/̂ ŵ (αr, β) belongs to the center Z of G for all

a<= N. Thus if G/Z contains an element of order 2 and if G{G/Z, Z, g) is a

representation of G, then g is not a (*)-mapping.

PROPOSITION 2.6. Suppose that f generates N.

(i) If N=2N, then Nf = C.

(ii) // A = 2 J, ffteΛ N=2 N, G = 2G and Nf =- C.

Proof If # e iV' = 2 iV, then Λ; = 2 jv, where ,y e iV', and hence Λ; = 2 ̂  =

2(0, Σ / U i , ft)) = (0, Σ 2 / ( α , , ft)) ε C . Thus (i) is true and (ii) is an im-

mediate consequence of Proposition 2.2.

Note that if N is torsion and contains no elements of order 2, then JV = 2 N.

In fact in this case, a-*2 a is an automorphism of N.

THEOREM 2.2. Suppose that G = G(A, N, / ) , where f is a (*)-mapping that

generates N, and suppose that A = 2 A or that a -»2 a is an automorphism of N.

Then θ x N is the commutator subgroup of G, and π is an automorphism of G

if and only if for (a, a) in G, (or, a)π= (aπi, aπ2 + aπs)f where πi is an auto-

morphism of At 7Γ3 is an automorphism of N, π2 is a homomorphism of A into

N, and for all oc and β in A, f(a, β)πs=f((χπh
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GROUPS OF CLASS TWO 21

Proof. If a->2 a is an automorphism of N, then N=2Nt and hence by-

Proposition 2.6, Nf = C. Also in this case Nf contains no elements of order 2.

Thus this theorem is an immediate consequence of Theorem 2.1.

Every nilpotent group of class 2 determines a (*)-mapping. For let H be

such a group, and let C be the commutator subgroup of H for C + a and C + b

in J = #/C define that

HC + a, C + δ) = [β, bl

Then M s a (*)-mapping of J x Δ into C that generates C, and hence ft deter-

mines a central extension H of C by J. H = H(A> C, ft). We shall now consider

the mapping H-+H. The next proposition asserts that it is single valued but

not one-one, and 2. 8. says that there are many fixed points.

PROPOSITION 2. 7. If two nilpotent groups H and Hf of class 2 are isomorphic,

then so are H and R', but the converse is false.

Proof. Let a be an isomorphism of H onto W and define that

( C + Λ, b)τ=(C' + aaf be)

for all (C + a, b) in H. Then τ is an isomorphism of H onto Hf. Suppose that

if? is a non-abelian group of order 8. Then Z=C is of order 2 and H/C is

the four group. It follows from proposition 2.5 that H is abelian. Thus if H

and Hf are the two non-abelian groups of order 8, then H = Hf. Note that by

proposition 2.5 there is no representation of H or of Hf where the factor

function is a (*)-mapρing.

PROPOSITION 2.8. Let G=G(J, N, / ) , where f is a skew-symmetric factor

function that generates N. If a -»2 a is an automorphism of N, then G and G

are isomorphic.

Proof. By Lemma 2.1 in [3] / is bilinear and since N contains no elements

of order 2, /(or, a) =0 for all α ε J . Thus / is a (*)-mapping. By proposition

2.6, N' = C. Let

gia9 β) =/(α, β) -/( f t a) = 2/(α, 0).

Let 7r3 be the automorphism a-+2 a of N, let 7τ2 be the zero homomorphism of

J into C} and let πι be the identity automorphism of J. Then
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22 PAUL CONRAD

giccπu βπi)-f(cc, β)π* = 2f(a, j9)-2/(arf j9) = 0,

and hence by Theorem 2.1, the mapping (a, a) -* (α, 2 β) is an isomorphism of

G onto G.

Note that the Schreier extension theory yields nothing in this case. For if

G is equivalent to G where both are considered as central extensions of

C - C(G) by Δ = G/Cy then it is easy to show that G is abelian. Also from

proposition 2. 8. and from Theorem 3.1 in the next section it follows that if H

is a complete nilpotent group of class 2, whose commutator subgroup con-

tains no elements of order 2, then H=H.

Baer ([2], p. 290) proves that the following are equivalent:

(a) There exists a group H such that Z(H)=N and H/Z(H)^Δ.

(b) There exists a (*)-mapping / of Δ x Δ into N such that, if /(or, β) = 0

for all β in Δ, then α: = θ.

TNEOREM 2.3. // N=2 N or if Δ-2 Δ> then the following are equivalent:

(i) There exists a group H such that C(H)=N and H/C(H)^Δ.

(ii) There exists a (*) mapping of Δx Δ into N that generates N.

Proof. If (i) is satisfied, then the commutator function

g(C(H)+a, C(H)+b) = ίa, b~\

and the given isomorphisms Δ^H/CiH) and C(H)^N determine a (*)-

mapping / of ΔxΔ into N that generates N. Conversely if / is such a map-

ping, then let H^H{Δ, N, f) and let N'^θxN. Then HlN'^Δ and by pro-

position 2.6, Nf = C(H).

Direct sums of central extensions with amalgamations. Let Gu > Gn

be central extensions of N by the abelian groups Δίt . . . , An. Then each Gi

has a representation G/(J/, iV, /,). Let S= JiX xΔnxN and define

(αri, . . . , an, a) + (ft, . . . , j9Λ, δ) =

&)+••• +/n(a«, βn)

Then S is a central extension of N by the direct sum of the Δu S is called

the direct sum of the central extensions Gi of N with amalgamated N. If the

fi are all (*)-mappings, then so is Σ//» and if one of the // generates N, then

so does
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GROUPS OF CLASS TWO 23

Conversely, let G be a central extension of N by an abelian group and

suppose that Gh . . . , Gn are normal subgroups of G such that

(a) each Gi is a proper extension of N>

(b) G = Gί+ +Gn, and

(c) d (Ί (Gi + + G, -i + G, +i + + Gn) = N

for i = 1, . . . , n.

Then G is isomorphic to a direct sum of the Gi with amalgamated N.

3. Complete Nilpotent Groups of Class 2

Throughout this section assume that GΏZΏC and that G is complete.

Then by Theorem 4.1 in [3], Z and C are complete, and, of course, A = G/C

is complete.

THEOREM 3.1. Let G( J, C, Λ) #£ # representation of G. Then in the set

of all factor mappings of Jx A into C that are equivalent to h there is one and

only one (*)-mapping, and this mapping generates C. The structure of an

automorphism of G is given by Theorem 2.2.

Proof. First assume that / and g are O)-mappings of A x A into C that

determine equivalent representations of G. Then there exists a mapping t of

A into C such that for all a and /5 in A

g(a, β) -Ace, j9) = - f(α + 0) + /(or) + t(β).

The left hand side of this equation is skew-symmetric and the right hand side

is symmetric. Thus 2(g(a, β) -f(a, β)) = 0, and hence g(a, 2 β) =f(a, 2 β)

for all a and β in J. Therefore since 2 A = A, f=g.

By Theorem 4.1 in [3], G = GfφS, where Z = C φ S , G'3C and G'/C is a

rational vector space. Thus A = G/C =^Gf/CφZ/C. Let r be a representation

mapping of G'/C into G and extend r to J as follows: r(C + s) = s for all s in

Sand r(αr)=r(α:')+r(α:"), where α e j , O ' G G ' / C , α"GZ/Cand α: = α:'4-α:".

Let & be the factor function determined by r. Then

AKα' + α", /9' + 0")=*(α', £')= ~ Kα'+ 0') +r(αr') + riβf).

By Lemma 3.4 in [3] there exists a O)-mapping /' of G'/Cx G'/C into C that

is equivalent to k on G'/Cx G'/C For α and 0 in J define that
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/(or, β) =/(«' + α",

Then / is a (*)-mapping that generates C, / is equivalent to k and & is

equivalent to h.

Since C is complete, it is a direct summand of Z, Z=CφQ. Let Gf be a

maximal subgroup of G with center C. Then by Theorem 4.1 in [3], G = G1 φ ©.

Thus G' is uniquely determined (to within an isomorphism) by G. Q-T(BF,

where T is the torsion subgroup of Q and F is a torsion free subgroup of Q.

Let G" = G' φ F. Then G" is complete, C is the commutator subgroup of G"

and G"/C = Gf/C®F which is a rational vector space. Note that it follows

that if G is torsion, then G is abelian.

LEMMA 3.1. Gff is a maximal subgroup of G such that G"ΏC and Gff/C is

torsion free, and every other such subgroup of G is isomorphic to G".

Proof. G = G'®Q = G'®F®T. Thus it is clear that G" is a maximal

subgroup of G such that GnΏC and G"IC is torsion free. Now let H be a

maximal subgroup of G such that HΏC and Hi C is torsion free. Let

C={g(=G: ng^C for some n>0).

Then C is a complete subgroup of Z that contains C (Lemma 3.2 in [3]).

Thus C=CΘJ9, and it suffices to show that G = HΘD. H/CΠC/C = 0 and

since C/C is complete, there exists a subgroup K of G such that KΏH and

G/C=*K/C®C/C. D is normal in G because P c Z and K is normal in G

because KΏC. KΠD^=Df)CΓiD = CP\D = O. K+ D=zK+C + D = K+C = G.

Thus G = KΘD. If C + k^K/C and C = ?*(C + β) for some τa>0, then nk^C

and hence & e C Π ϋf = C. Therefore K/C is torsion free and by the maximality

of H, H = K.

Thus while investigating the structure of complete nilpotent groups of class

2, we may restrict our attention to the following two classes:

%': All complete nilpotent groups of class 2 such that Z(H) = C(H).

3 : All complete nilpotent groups of class 2 such that HjC(H) is torsion

free.

If G e ^ , then by Theorem 4.1 in [3] G/C is torsion free. Therefore <€<^3.

If G E J , then by Theorem 3.1, G has a representation GU, C, / ) , where
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GROUPS OF CLASS TWO 25

A-G/C is a rational vector space and / is a (*)-mapping that generates C.

Moreover,

Z = { U , « ) G G : f(a, β)=0 for all β in Δ).

Therefore G G # if and only if f(a, j9) =0 for all j9 in A implies that a = 0.

If G is a complete torsion free nilpotent group of class 2, then G e j ^ .

For C is complete and by Lemma 3.2 in [3]

for some }

It follows that C = C and hence G/C is torsion free. Moreover, G/Z is a

rational vector space and Z is complete. Thus there exists a representation

G{G/Z, Z, f) of G, where / is a (*)-mapping. Let AT be the subgroup of Z

that is generated by /. Then N is complete, and in fact, N= C. It follows

that G(G/Zy C, /) is a maximal subgroup of G with center θxC.

4. Skew Tensor Products

In this section we derive some properties of skew tensor products that

will be used in the following sections. Many of the proofs will be omitted,

since they can be proven by slight modifications of the proofs of the cor-

responding propositions for ordinary tensor products (see for example [4],

Chapter XI).

Let U and V be abelian groups, and let X be a free abelian group with

Ux V as a free set of generators. Let Y be the subgroup of X that is generated

by all elements in X of the following forms:

(a, a) all

(a, b) + {b, a) all a, btΞUFi V,

(a, b + c) - (a, b) — (a, c) all a^U and ^ c e F , and

{a + b, c) - (β, c)-{b, c) all a, b e U and c e V.

Let G = X/Y and denote the coset that contains (a, b) by a®b. Then G con-

sists of all finite sums Σfe(«/®^i) subject to the relations

= 0 all atΞUΠ V,

a®b= -(b®a) all a, beiUPi V,

all a<=U and /?, c e F,
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and (a + b)®c = a®c-\-b®c all ay b^U and c e V. G is said to be the

tensor product of £/ and F, and we shall denote it by U® V.

PROPOSITION 4.1. Let U®fV be the ordinary tensor product of U and V,

and let T be the subgroup of U®' V that is generated by

{a®fa, a®'b + b®fa: a,

Then the mapping of *Σjki(ai®'bi) upon *Σlki(ai®bi) is a homomorphism of

U®fV onto U® V ivith kernel T. In particular, if £/Π F = 0 or if UΠV is the

null set, then U®V=U®'V.

Note that if Z7Π V is a subsemigroup of both U and V, then we can drop

the condition that {a, b) + (b, a) e Y for all a, bεΞUΓi V, for then 0 = (a + b,

a + b) = (a + b, a) + (a + b, b) = (a, a) + (bt a)+(ay b) + (6, b) = (£. tf) + U £).

Thus we have merely the ordinary tensor product with a suppressed diagonal.

It follows immediately from Proposition 4.1 that U® F = V® U, and for all

u^Uf v^V and all integers n,

nu® v = n(u® v) = u®nυ.

In particular, U® V consists of all finite sums Σ w ® Vi with ui e C/ and v, e F.

PROPOSITION 4.2. // U is complete, then so is U® F, and if U is complete and

V is a torsion group, then U® V = 0.

A mapping / of Ux V into a group H is a {^-mapping if

f(a,b + c)=f(a,b)+f(a,c) a^U, b, c ε F

Aa + b, c)=f(at c)+f(b, c) atb^U, c^V

f(a, b)= -f(b, a) a, b^UΠV

f(a, β ) = 0 a e £ 7 n F .

As before, we say that / generates H if {f(u, v): U<ΞU and z e F} is a set

of generators for H. For (u, rfeί/xF define that

e(u, v) =

PROPOSITION 4.3. The mapping e is a (*)-mapping of UxV into U®V

that generates U® F. If f is a (*)-mapping of Ux V into an abelian group H,

then there exists a unique homomorphism ψ of U® V into H such that f(u, v)

= e(u, v)ψ. If f generates H, then ψ is a homomorphism of U® V onto H.
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PROPOSITION 4.4. Let J# be the set of all (*)-mappings of Ux V into an

abelian group N. For /, g^ cβ\ u^U and υ&V define (f+g)(uy v) = f{u, v)

+ g(u, v). Then

cST = H o m ( U ® V , N).

Proof. Consider ^ e # = H o m (U® V, N), and define /(«, v) = (u®v)ψ for

all w e £7 and v e V. It follows by a straight forward computation that / e ^

and that the mapping a oί ψ upon / is an isomorphism of H into c#\ If

/ e c^", then by Proposition 4.3 there exists ψ ̂ H such that /(&, #) = (u®v)ψ.

Therefore ψ is an isomorphism of H onto J^.

Let ^ be the group of all non-equivalent central extensions of an abelian

group N by an abelian group Δ. By Theorem 2.1 in [3] and the remarks

after it we obtain the following theorem:

THEOREM 4.1. If a-*2 a is an automorphism of Nf and if N is a direct

summand of every abelian extension of N by Δ> then

^ = cf = Hom (J® J-»Aθ.

In particular, if N is divisible and contains no elements 2, or if A is free and

a-*2 a is an automorphism of N, then our conclusion follows.

If U = [_uj is a cyclic group with generater uf then

Σ m (m>\ u ® Vi) = Σ w ® m mi Vi = u®^Σ m WH Vi.

Therefore ίul® V={u®v : v^V}.

PROPOSITION 4.5. Suppose that U = M is cyclic and that M Π V is a

subgroup of both M and V. Let k be the order of ίu] if this order is finite

and 0 otherwise. Then there exists a least non-negative integer n such that

[«]Π V-Znul, and the mapping of u®v upon v + {kV-\-\_n2u]) is an isomor-

phism of ίul® V upon V/(kV+ln2u]).

Proof. Every element in ZulxV has a unique representation (mu, v)

where 0<m<k if &=̂ 0 and m is unrestricted otherwise, Thus (raw, v)~*mv

is a (single valued) mapping of ίu2 x V onto V. Since [_u] x V is a free set

of generators for Xy this mapping is induced by a unique homomorphism a of

X onto V. Let 5 be the natural homomorphism of X onto X/Y= ίu} ® V, and

let β be the natural homomorphism of V onto V/{kVΛ-\_n2u}). It follows by
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the usual induced homomorphism arguments that there exists an isomorphism

ψ of M ® F onto V/{kV+ίn2u}) such that δψ = aβ. Thus (u®v)ψ= (u, v)δψ

= (u, υ)ccβ ^vβ = v-\- (kV+ Ln2u]).

COROLLARY I. If U is a cyclic group, then U®U=0.

COROLLARY II. Suppose that [«] is an infinite cyclic group, and that ίul Π V

is a subgroup of both ίul and V. Then ίul® F= V/ίn2ulf and if ίul Π F = 0,

then ίul ® V^ V, and if [«]c F, then M ® F ^ V/ίul.

COROLLARY III. If ίul and ίvl are finite cyclic groups of orders k and &

respectively, and if M ί i W = 0, then M ® M = M/(AM) which is a cyclic

group of order (k, £).

In order to avoid ambiguities, we shall adapt the following notation:

(1) F = Σ SVr internal direct sum

(2) F = Σ θ ^ τ external direct sum.
TGΓ

Thus in (1) the Vr are subgroups of V, while in (2) V is the restricted

Cartesian product of the groups Vr.

PROPOSITION 4.6. Suppose that V = Σ HB Vr, where the γ belong to a linearly

ordered set Γ, and let Ga? be the subgroup of F® V that is generated by the

set {vΛ®Vfi : υa e Va and v? e Fβ}. Then Ga?=Va® Fp and

F ® F = Σ fflGW^ Σ Θ ( F α ® F p ) .

Proof. The natural (*)-mapping £ of Fx F into F® F induces a (*)-

mapping of Fx V into Gα!* for each pair a, β in Γ. Thus by Proposition 4. 3

there exists a unique homomorphism ψ^ of Fα® Fp into Gαβ such that (̂ α

ψ*fi = e(v*, vP). For (. . . , x^, . . .) in T 7 = Σ θ ( F α ® F p ) define that

( . . , #αP, . . . )ψ= Σ^αp^β Then ψ is a homomorphism

of Pf into F® F.

Consider u - Σw* and υ = Σ^oc in F, and define that f(u, v) = ( . . . , wα®

ĉϊ, . . . : . . . , (ua®Vp- va®Up), . . . ) ) a: < β. By a straightforward argu-

ment it follows that / is a (*) mapping of VxV into W. Thus by Pro-

position 4.3 there exists a homomorphism φ1 of F ® F into FF such that /(«, #)

= e(u, υ)ψf. It is easy to verify that f(u, v) =f(u, v)φψf and that e{ut v) = -

https://doi.org/10.1017/S002776300001117X Published online by Cambridge University Press

https://doi.org/10.1017/S002776300001117X


CROUPS OF CLASS TWO 29

e(u, v)ψfψ for all u and υ in V. Thus since e generates V® V and / generates

W, it follows that ψ and ψf are reciprocal isomorphisms.

Note that e(u, v) = Σe(w*, vα) + Σ e(uαt v$) — e(vα, u?). We next consider

some special cases of the above proposition.

Case I. V is a free abelian group. Let {vr r^Γ) be a free set of

generators for F. By Proposition 4.5, O<J ® Op] is an infinite cyclic group if

α: ̂  β and [z;Λ] ® lval = 0. Thus by Proposition 4.6

For elements w = *ΣxτVτ and «; = ΣjVr^r in V

e(u, v) = Σ U « Λ - ^ β ) (

//. F is a finitely generated abelian group. Then

where Ti are finite cyclic groups of order U, U divides U+ι, and the // are

infinite cyclic groups. It follows from Propositions 4. 5 and 4.6 that

V® F=free group of rank U 2 - £)/2

33 a direct sum of £ copies of Ti for f = 1, . . . , k

51 a direct sum of copies of Ti®Tj for l<,i<j<,£.

Note that Ti®Tj ii<j) is a cyclic group of order ft.

By using Propositions 4.5 and 4.6 we can also compute V®V when V is

a direct sum of cyclic groups.

Fuchs [4] has shown that if V is torsion, then the ordinary tensor product

V®fV is a direct sum of cyclic groups. It follows from this result and from

Proposition 4.1 that the skew tensor product F® V is also a direct sum of

cyclic groups.

Case III. V is a complete abelian group. Then V- T{±\F, where T is the

torsion subgroup of V and F is a torsion free subgroup of F. By Proposition

4.6

V® V^{T® T) Θ (Γ® F) Θ (F® F),

and by Proposition 4.2, Γ® T= (Γ®F) =0. Therefore V®V^F®F, and
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without loss of generality we may assume that V is a rational vector space.

Let {vτ: r ^ ^ b e a basis for F. Then F=Σffi#*>r, where R is the field of

rational numbers and by Proposition 4.6

^ Σ Θ(£
α<β

6

If m and n > 0 are integers, a, β<^Γ and #, jy e #, then

Since by Proposition 4.8, F® F is torsion free, it follows that

(m/n) (xoΛ®yv^) = (m/n)xvΛ®yv?-xvΛ®(m/n)yv^.

If x^Rv*®Rv*, then ΛΓ= Σ#IΪ><*®J)W* = (Σ#ϊ.yι)(fl«®w*) = 0, where the xι and

the yι belong to R. Therefore Rva ® RvΛ = 0.

Next we show that if a # β, then i?^α ® i?e;β = i?. For Λ; and ^ in R define

that

f(xva>

Then since Rv* C\ Rυ? = 0, it follows that / is a (*) -mapping of Rv* x Rvp into

R. Therefore by Proposition 4.3 there exists a homomorphism ψ of i?t'α ® i?^P

onto R such that ^ =f{χυ*y yv?) = U^Θ.yf p)^. If x e i?t;α® /?z;β and 0 = ^ ,

then

Thus 0 = #<p = Σ tfOV, and hence Λ: = 0. Therefore ψ is an isomorphism, and

^ Σ

where each Rva®Rv? is a one dimensional rational vector space. Note that if

M = Σ ^ f « and t> = Σjy<*ι>tt are elements in V, then

e(u, υ)= *Σ(x*yβ-Xpy*)(va®Vβ).
α<p

In particular, {va®v^\a<β} is a basis for V® V.

Once again let U and F be abelian groups and let UΊ and VΊ be subgroups

of U and F respectively. It is easy to show that the mapping of Σ # ; ®yt e C7Ί

® Fi upon Σ^i®^/ ̂  ί/® F is a homomorphism-ί^ natural homomorphism of

£70 F
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PROPOSITION 4.7. Let VΊ be a subgroup of V. If VΊ is pure in V or if V

is torsion free, then the natural homomorphism of Vι®Vχ into V® V is an

isomorphism.

PROPOSITION 4.8. If V is torsion free, then so is V®V.

Proof. Suppose that 2 = ΣΛΓIΘJV^ V® V and that nz = 0 for some n>0.

Let Vi be the subgroup of V generated by the Xi and the yi. Then VΊ is a

free abelian group, and hence by Proposition 4.6 VΊ ® VΊ is torsion free. But

by Proposition 4.7 the natural homomorphism of VίφVi into V®V is an

isomorphism. Thus it follows that 2 = 0, and hence V® V is torsion free.

PROPOSITION 4.9. If π is an endomorphism of V, then the mapping πf of

*Σxi®yi upon *Σxiπ®yiπ is an endomorphism of V® V. If π is an automorphism,

then so is πf. We say that πf is induced by π. The mapping π~*π' is a homo-

morphism with respect to multiplication. In particular, the induced automorphisms

of V®V form a group.

PROPOSITION 4.10. If V-2 V, then the mapping x-*2 x is an automorphism

of V® V.

Proof. Let A be the set of all elements in V whose order is a power of 2.

Then A is a complete subgroup of V, and hence V^AΘB where B contains

no elements of order 2 and 2 B = B. Thus x -* 2 x is an automorphism of B and

it follows from Proposition 4.9 that y -+ 2 y is an automorphism of B®B.

V®V=(A®A)®(A®B)®(B®B).

Since A is divisible and torsion, A®A = 0 (Proposition 4.2). Consider a ε A

and b£ΞB. If 2n is the order of a, then since 2nB = B, a ® b = a ® 2nc = 2na ® c

= Q®c = Q for some c e B. Thus A® B = 0 and hence x-• 2x is an automorphism

of V®V~B®B.

COROLLARY // F = 2 V and V is a torsion group, and if N is a subgroup of

V® V, then x-*2x is an automorphism of (V® V)/N.

Suppose that V = 2 V and let V®fV be the ordinary tensor product of V

by itself. Then by the analogue of Proposition 4.10, the mapping x-+2 x is an

automorphism of V®fV and for all a, b in V,
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As in the theory of linear transformations, this is the unique splitting of ef{a, b)

= a®'b into its skew symmetric and symmetric parts.

Let S = \

THEOREM 4.2. // F = 2 F, then V®fV=SΘTand S is isomorphic to V® V.

Moreover, both S and T are characteristic subgroups of V®' V with respect to

the induced automorphisms of V®'V.

Proof. Clearly V®'V = SΘT. For a, bεΞ V, let

A a, b)=l/2(a®'b-b®'a).

Then / is a (*)-mapping oί VxV into S that generates S. Thus by Proposition

4.3 there exists a unique homomorphism ψ of V® V onto S such that (a®b)ψ

= /(β, b). If 0= (Σβ/®fc)0 = Σ l / 2 U ®'&-bi®'ai), then

®'fc + fe® 'β, ) )τr = 0,

where π is the natural homomorphism of V®'V onto V® V (see Proposition

4.1). Therefore ψ is an isomorphism of V® V onto S.

We close this section by determining the structure of the induced automor-

phism group for V® V, where V is a rational vector space.

Let π be an automorphism of V, let πf be the induced automorphism of

V® Vy and let vu V2f . . . be a basis for V. Then since π is a linear trans-

formation, for each i = 1, 2, . . . ,

where all but a finite number of the rational numbers an are zero. Since

{vi®Vj i<j) is a basis for F® F, for i<j

) 4- )

% •

r<.s

L ai 2

air c
ajr C

(Vχ®Vt) +

r s

(Vχ®Vz)

In particular if dim(F) = n is finite, then dim(F® F) = (n2 - n)/2, π is deter-

mined by the non-singular rational matrix
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Γ #11 #12 * ' * #1 n\

l # n l #w2 ' ' * Ctnn)

and πf is determined by the non-singular rational matrix

#11 #12

#21 #22

#11 #13

#21 C

#«-l, l #«-l,2

#«, I an,2

in

. i#i,n-l #l,«

#2, n- l #2, n

βn-i,Λ-i #«-!,«

#n, «-i #«,«

and the mapping A-> Af is a homomorphism.

PROPOSITION 4.11. \A'\ = \A\n~\

Proof. A - h' h ' * ' h, where the /,• are elementary matrices that are

obtained from the nxn identity matrix / by multiplying a row or column by

0 =*F d or by adding a row or column of / to another row or column of /. Since

the mapping A-+Af is a homomorphism, Λ' = /ί 7j •/&. If /,- is obtained by

multiplying a row (or column) of I by 0#d, then \h\ = d and |/J|=rfn'"1

because I\ is the matrix obtained from the (w2 — n)/2 x (n2 - n)/2 identity matrix

/ by multiplying n — 1 of the rows (or columns) of / by d. If h is obtained

from 7 by adding one row (or column) to another, then |/, | = |/ | = 1. Therefore

LEMMA 4.4. Let A = (au) be an nxn non-singular rational matrix, let I

be the nxn identity matrix, let J be the (n2 — n)/2x (n2 — n)/2 identity matrix

and let A1 be as above. If n>3 and A' =/, then A = ± I.

Proof From

#21 #22

azi #32
= 0

we have

But because of

#Π#32 + #12 ( — #31) = 0

#21#32 ""H #22 ( ~" #31 / = 0.

#11 #12

#21 #22

we infer that #32= -#3i = 0. This argument shows (when n>3) that A must

be a diagonal matrix. Then from #π#22 = #π#33 = 1 etc., we get that A must be
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a sealer matrix, and since 1 = | Af\ = | A \n \ A = ± I.

THEOREM 4.3. Let V be a rational vector space with {finite or infinite)

dimension^,. Tnen the kernel of the natural homomorphism of the group of

automorphisms of V onto the group of induced automorphisms of V® V consists

of the identity automorphism and the automorphism v -* — υ for all υ in V.

Proof. Let π be an automorphism of V such that πf is the identity auto-

morphism of V® V. Consider O^yeF, and let v = vlf v2, . . . be a basis for

V. With respect to this basis, π is represented by a rational matrix A= (#/y)

and π' is represented by the rational matrix

#n
#21

an
#31

#12

#22

#12

#32

# Π

#21

#11

#31

#13

#23

#13

#23

#12

#22

#13

#23

#12

#22

#14

#24

#21 #22

#31 #32

and

- an Vi + n>3.

Consider only the rows and columns of A! that are formed by the first n rows

and the first n columns of A. This matrix is still the identity matrix. Therefore

by Lemma 4.1, #u = #22= * * =ann= ±1 and #/> = 0 for all i±?j with i, j<n.

It follows that Viπ = ± vi. But vι is an arbitrary non-zero element of F, and

hence aπ = ± a for all # G V. Therefore A is a diagonal matrix with the

diagonal elemets di = ± 1. But since A' is the identity matrix, either all the

di = 1 or all the di = - 1.

Note that if n = 2, then

Γ #ll #12

#21 #22

!#11 #12

#21 #22

is the natural homomorphism of the automorphisms of V into the automorphisms

of V® V. The kernel in this case consists of all the matrices with determinant

equal to 1.

Note also that if V is a quasi-cyclic group, then F ® F = 0 . Thus our
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theorem does not hold for arbitrary complete groups.

5. The Groups H(Δy (JxJ)/K, f) and the Class ^

L e t Δ b e a n a b e l i a n g r o u p , a n d l e t e b e t h e n a t u r a l ( * ) - m a p p i n g o f Δ x Δ

into Δ&Δ, namely e(a, β) = α ® j9. Let G = G(Δ, Δ® Δ, e), and let Q = θx (Δ®Δ).

From the propositions in Section 2 it follows that Z(G)ΏQΏ2 QΏC(Q). Also,

by the propositions in Section 4, if Δ is torsion free or divisible, then so are

ΔxΔ and G.

THEOREM 5.1. Let H be the group H(Δ, N, /) , where Δ and N are abelian

groups and f is a (*)-mapping of ΔxΔ into N that generates N. Let ψ be the

unique homomorphism of ΔxΔ onto N such that f(cc, β) = e(a, β)ψ for all a

and β in Δ. Then the mapping a of (αr, a) G G ( J , Δ® Δ, e) upon (a, aφ) is a

homomorphism of G onto H - the natural homomorphism.

Proof, [(or, a) + (βt b)lσ = (a + β, e(a, β

= (a 4- β, e(a, β)ψ + aφ + bψ)

= (or, a)a+(β, b)a.

Let d/ be the class of all nilpotent groups of class 2 that have represen-

tations H(Δ, N, / ) , where Δ and N are abelian groups and / is a (*)-mapping

of Δ x Δ into N that generates N. Then by the above theorem, each group in

έf is a homomorphic image of a group of the form G(Δ, Δ®Δ, e). In fact,

each group in έ/ has a natural representation of the form

(Δ®Δ)/K,f)

where K is a subgroup of Δ ® Δ and for all a and β in Δ

f(a, β)=K+cc®β.

We shall always choose such a representation, and H(Δ, (Δ®Δ)/K,f) will always

denote such a representation.

Let *€ be the class of all complete nilpotent groups of class 2, and let *€

and J^ be the classed defined in section 3. Then by Theorem 3.1 and the

remarks after the definitions of *€ and «J?,

https://doi.org/10.1017/S002776300001117X Published online by Cambridge University Press

https://doi.org/10.1017/S002776300001117X


36 PAUL CONRAD

Now let G be an arbitrary nilpotent group of class 2. If g is the commutator

function, g{C(G)+a9 C(G)+b) = la, b], then G(G/C, C, g) belongs to jΛ If

<g<=G: ng^C(G) for some w>0}cZ(G),

then by Theorem 3.2 in [3] there exists a completion of G. Hence G is a

subgroup of a group in c5Λ

THEOREM 5.2. Z,£f J awrf iV be abelian groups and let G be a central extension

of N by Δ. If Δ is torsion free or if N contains no elements of order 2, then

G is a subgroup of a group in j Λ

Proof. G has a representation G(Δ, N, / ) , where / is a factor mapping of

ΔxΔ into N, and G(J, N, f) is a subgroup of G(J, N*9 /) , where iV* is the

abelian completion of N. If J is torsion free, then by Lemma 3.4 in [3], / is

equivalent to a (*)-mapping h of Δ x Δ into iV*. If iV contains no elements of

order 2, then neither does N*9 and hence by Theorem 2.1 in [3], / is equivalent

to a (*)-mapping h of ΔxΔ into iV*. Thus in either case

G^H(Δ, N*, h)

where h is a (*)-mapping of Δ x Δ into iV*. Now iV* is a homomorphic image

of a rational vector space Zλ Pick a rational vector space V with dimension

rf(V® V)>rf(D). Let a be a homomorphism of F® V onto iV*, and for a and

0 in V let #(#, 0) = (a® β)σ. Then ^ is a (*)-maρping of Fx V into Λ̂ * that

generates N*. Let / be the direct sum of the extensions H(Δ, N*f h) and K{V,

iV*, g) of AT* with amalgamated N*. Then G c / e y .

If G = G(Δt N, f) and the subgroup of iV that is generated by / contains

no elements of order 2, then by an entirely similar argument it follows that G

is a subgroup of a group in <*/. If G is a nilpotent group of class 2 and if the

commutator subgroup of G contains no elements of order 2, then by the above

theorem G is a subgroup of a group in £/.

Suppose that G is a nilpotent group of class 2 that is not a subgroup of a

group in jΛ Then without loss of generality

G = G U C,f)ς:HU C*,/)

where C is the commutator subgroup of G, C* is the abelian completion of C,

C contains elements of order 2, Δ = G/C is not torsion free and / is not
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equivalent to a (*)-mapping. Thus C* = Λ Θ 5 , where A contains no elements

of order 2 and B is a direct sum of quasi-cyclic 2-groups. For a and β in Δ

we have

/(or, £ ) = / ' ( * , /?)+/"(*, 0)

where f(a, 0)eA and/"(<*, ]9)eB. By Theorem 2.1 in [3], /' is equivalent

to a O)-mapping g of J x J into A. Hence

ft(af β)=g(a, β)-t(a + β)

where £ is a mapping of Δ into A. Thus

f(a, β)=g(cc, β)+f"(ay β)-t(a, β) + t(ac) + t(β).

Hence, without loss of generality, / ' is a (*)-mapping. The trouble is caused

by groups of the form H(Δ> B, f " ) . For example, it is easy to show that the

non-abelian groups of order 8 are not subgroups of groups in JΛ

For each abelian group Δy let όf(Δ) be the class of all groups in y that

have a representation of the form

H{Δy (Δ®Δ)/K,f).

If Δί and Δ2 are abelian groups, 2 At = J, and Hι^ό^(Δi) for i= 1, 2, then without

loss of generality

ft- = HiUi, {Δi®Δi)lKiy fd (i = 1, 2).

By Proposition 2.6, C(Hi) = θx {{ΔiX Δj)/Ki). Thus if π is a homomorphism

of #i onto Ho, then C(Hι)π = C(H2) and hence π induces a homomorphism of

Δi onto J2. In particular, if Hx^Hz, then Δi = J2. Thus if we restrict our

attention to the groups G in <ϊ/ for which 2 G = Gy then if two such groups

are isomorphic, they belong to the same άf(Δ).

THEOREM 5.3. Let Δ be an abelian group such that Δ = 2Δ, let Hi = Hi(Δ,

{Δ®Δ)IKiy fi) for ι = l, 2, and let π be a homomorphism of Hi onto H*. Then

for (ocy a) in Hi

(ay a)π—(acπι9 aπ2 + aπz)

where m is an endomorphism of Δ onto Δy m is a homomorphism of Nι = (Δ® A)I

Kι onto N2 = (A®A)/K2t and π2 is a homomorphism of Δ into N2. Moreover,

Kmi1 Q K2y where m1 is the endomorphism of Δ® Δ that is induced by πh and πz
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is the homomorphism of JVi onto N2 that is induced by πΛ π is an isomorphism

if and only if π\ is an automorphism and Kim' = K2.

Proof. Let π be a homomorphism of Hi onto H2. Then since C(ίZi) = 0 x

l(Δ®Δ)lKi] for i = l , 2 (see Proposition 2.6), it follows that (θxNi)π =

and hence by Theorem 2.1

(a, a)π = (αrci, ocn i +

for all (or, #) in #1, where π\ is an endomorphism of Δ onto J, 7τ3 is a homo-

morphism of M onto iV2, and 7τ2 is a homomorphism of J into N2 such that for

all a and j9 in J

fziaπu βπ%) = /i(αr, β W

Let ^i be the natural homomorphism of Δ®Δ onto JVf (i = l, 2).

(α ® i5)τrίf2 = î 2 + (α ® β ) ^ = K2 + <*τn ® /9τr,

Thus since the α: ® j9 generate J ® J, it follows that

If Λr = ̂ 7rίe/iLi7rί, then xφ2=yπ[ψ2=yψ1m = Oπs = Of and hence Λ; belongs to K2.

Thus

It follows that 7r3 is the unique homomorphism of M onto N2 such that π[ψ2

-ψiπz. If 7τ is an isomorphism, then by Theorem 2.1, m is an automorphism

and 7τ3 is an automorphism. Hence if #eϋf2, then x = yπ[ for some y in J ® J,

and so 0 =xψ2 =yπ[φ2=yψiπ3. Thus 0 =yψi, and hence y^Kλ. Therefore Kxπ[

= if2. If πι is an automorphism and Kiπ[ - K2i then π[ is an automorphism

and hence π3 is an isomorphism. Thus by Theorem 2.1, π is an automorphism.

COROLLARY I. 7 / i = 2 J βwrf Hi = Hi(Δy (ΔxΔ)/Kitfi) for ί = l , 2,

2̂ Λ ^ isomorphic if and only if there exists an automorphism π of Δ such

that Kin1 - K2, where πf is the automorphism of Δ®Δ that is induced by π.

Proof. If π is an isomorphism of Hi onto H2i then by the theorem KiπJ = K2

for an automorphism πι of Δ. Conversely suppose that m is an automorphism
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of Δ for which R&[ = K2. Let πz be the isomorphism of M onto Nz such that

= π[φ2. For (α, 0) in Hi define that

u aπ%).

Then for all a and /3 in Δ

(a®β)π[

= (a® β)π[ψ2 = (α

It follows from Theorem 2.1 that π is an isomorphism of Hi onto i72.

COROLLARY II. Suppose that Δ = 2Δ, and let H = H{Δ, {Δ®Δ)/Kyf). If π

is an endomorphism of H onto H, then for (α, a) in H

( a , a)π = (ac, a ) [ ^ π 2 ) =
\ φ 7Γ3/

^ )
φ 7Γ3/

where φ is the zero homomorphism of N- (Δ®Δ)IK into Δ, π2 is a homomor-

phism of Δ into N, πi is an endomorphism of Δ onto Δ such that Kπ[ <Ξ K> and

7Γ3 is the endomorphism ψ'Wψ of N that is induced by π[. π is an automorphism

if and only if m is an automorphism and Kπ[ = K. In particular, if K-0} then

7Γ3 = π[ and π is an automorphism if and only if m is an automorphism.

The corollary is an immediate consequence of the theorem. Let m be an

automorphism of Δ such that Kπ[ = K> let π2 be a homomorphism of Δ into

Δ®Δ, and let ψ be the zero homomorphism of Δ®Δ into Δ. Then

is an automorphism of G(Δ, Δ®Δ} e) and the mapping

7Γ2\ /7Γi π2φ \

π'J \<P~1Φ Ψ^π'ίψ)

is a homomorphism into the group of all automorphisms of H(Δ, (Δ® Δ)/Kif)1

where ψ is the natural homomorphism of Δ®Δ onto (Δ®Δ)/K. This will be

a homomorphism onto the group of all automorphisms of H if and only if ψ

induces a homomorphism of Hom(zf, Δ®Δ) onto Hom(J, (Δ®Δ)IK).

Let H = H(Δ, (Δ® Δ)/K, / ) , where Δ is torsion free. Let J* be the abelian

completion of Δ. Since J* is a rational vector space, it follows that Δ*®Δ* is
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also a rational vector space. Hence by Proposition 4.7 the natural homomor-

phism of Δ® Δ into J*(g)J* is an isomorphism. Thus we may consider Δ®Δ

as a subgroup of J*(g) J*. If α ® 0 e J*® J*, then there exists a positive integer

n such that na, nβ^Δ and hence n2ia®β) = nct®nβ e J® J. It follows that

Λ*(g)J* is the abelian completion of J® J. For a: and β in Δ* define that

/*(αr, /9)=#+α®j9. Then/* is a (*)-mapping of J* X J* into 5 = (J*<g) J*)/ϋΓ

that generates B, and # is a subgroup of H*(Δ*t 5, /*) .

THEOREM 5.4. If Δ is a torsion free abelian group and H = H(Δ, (Δ®Δ)/K,

/ ) , ffcβtf #*(J*, (J*® J*)/ϋΓ, /*) is α completion of H. In particular, if ϋΓ=O,

H* is the unique torsion free completion of H.

Proof, 77* is a nilpotent group of class 2 that contains H and by Proposi-

tion 2.1, # * is complete. Thus it suffices to show that no proper complete

subgroup of H* contains H. Let Q be a complete subgroup oiH* that contains

H. If (α:, <z)eQ and n is a positive integer, then there exists an element (β, b)

in Q such that (α, β) = w(0, 6) = (wj3, wδ). Therefore {γ e J* : (r, c) e Q} is

a complete subgroup of J* that contains J, hence it must equal J*. Thus,

since (J*®J*)/Λ" is generated by/* it follows that Q = H*. If ΛΓ=O, then

since J* and, J*®.J* are torsion free it follows that H* is torsion free. Thus

by a theorem of Vinogradov it follows that # * is the unique torsion free

completion of H (see the corollary to Theorem 3.3 in [3]).

The last part of the above theorem may be generalized as follows: Suppose

that H = H(Δ, (Δ®4)/K,f) and that Δ and {Δ®Δ)/K are torsion free. Then

there exists a unique completion if* of K in J* 0 J*, and the mapping of ϋΓ+

a(Ξ(Δ®Δ)/K upon K* + a is an isomorphism of D= (Δ®Δ)/K into £>*= (J*(g)

Δ*)/K. Thus we may assume that D is a subgroup of D*, and that 27 is a

subgroup of iΓ (J*, D*, #), where #(αr, 0) = ϋΓ* + α: ® β for all Λ: and β in J*.

It follows that D* is the abelian completion of D, and that K is the unique

torsion free completion of H. This result and the above theorem are good

illustrations of what is going on in [31

6. The Groups H{Δt (Δ®Δ)lK,f), Where Δ is a Rational

Vector Space, and the Class J%.

Throughout this section Δ will always denote a rational vector space with
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dimension d(Δ), G will denote the group G(J, Δ®Δ, e), and R will denote the

rational numbers. By the second corollary to Theorem 5. 3, the group a(G) of

all automorphism of G is isomorphic to the group of all two by two matrices

of the form

(m 7Γ2\

\φ π'J

where ψ is the zero homomorphism of Δ® Δ into J, πι is an automorphism of

J, 7Γ2 is a homomorphism of Δ into Δ®Δ, and π[ is the automorphism of Δ® Δ

that is induced by πi. Since both Δ and Δ®Δ are rational vector spaces, it

follows that 7rι, π* and 7r{ are linear transformations, and that m and π[ are non-

singular. Suppose that d(Δ) = w is finite, then without loss of generality

G = {(Xi, . X12, . , Xint u Xij ^

and

#12, . . . , (yi, - . . . yn9y&, . . > yn-un)

X iyi + ΛΓi2 + 3

-l + Xn-Un+yn-hn)-

If 7r is an automorphism of G, then

/7Γ1 7Γ2

where

an

# 2 1

<Zw-l, l

#12

#22

Gn-1,

CLn, 2

2

βi.n-1

#2,M-1

# n - l , W -

# « , n - l

# 1

# 2

, n

»n

t-i n

φ is the (n2--n)/2 by n zero matrix, and m is an w by (n2 — n)/2 rational

matrix. Also ITΓI = ITΠI Iπj| = |TΓIΓ (Proposition 4.10). Thus the group a(G)

is a fairly decent subgroup of the full linear group of (»2-fw)/2x {n2Λ-n)l2

non-singular rational matrices. If d{ά) is infinite, then the above has a

straightforward generalization.
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LEMMA 6.1. For the elements X and Y in G\C(G) the following are

equivalent'

(a) X+Y=Y+X.

(b) mX^nY mod C(G) for some non-zero integers m and n.

Proof. X- (or, a) and F - (β, b), where cc^d^β. Clearly (a) is satisfied

if and only if 0 = e(a, β) = a<g>β, but this is true if and only if a and β are

dependent (special case III of Proposition 4.6) and this is equivalent to (b).

THEOREM 6.1. G is directly indecomposable and G is not a direct sum of

proper central extensions of C(G) with amalgamated C(G).

Proof. Suppose (by way of contradiction) that G = GiΘG2, where G;#0.

Z(G) = Z{Gι)^Z{G2). If Z(Gi) =Gh then GiQdx (J<g> J). If (a, a) is in G,

then U, a) =» (θ, x) + (α, y), where (0, # ) e d and (a,y)<=G2. Since Z{G) = C(G)

(Corollary II of Lemma 6.3), it follows that Gi is generated by elements in

G2, a contradiction. Thus there exist <zeGi\Z(G) and £ e G 2 \ Z ( G ) , and

a~\-b = b + a. Therefore, by Lemma 6.1, ma=-nb mod Z(G) for some non-zero

integers m and n. Thus ma = nb + d\ 4- d2> where di<=Z(Gi) for ι = 1, 2. Since

the Z(G, ) are complete, there exists ei^ZKGi) such that mex = dι and ne2 = d2.

Therefore m(a - eι) = n(b + e2) belongs to Gi Π G2, and hence a = ̂  e Z(Gi), a

contradiction. Therefore G is directly indecomposable.

Finally suppose that G is a direct sum of proper central extensions Gi and

G2 of C(G) with amalgamated C(G). Pick X e G i \ C ( G ) and 7 G G 2 \ C ( G ) .

Then X and Y satisfy (a) of Lemma 6.1, but not (b), a contradiction.

Recall that J& is the class of all complete nilpotent groups H of class 2

such that H/C(H) is torsion free. It is now clear that J% consists of all those

groups in y that have a representation of the form

HU (Δ®Δ)lK,f)

where Δ is a rational vector space and / is the natural (*)-mapping. Such an

H is torsion free if and only if K is a subspace of Δ®Δ. The structure of the

group of all automorphisms of H is given by the second Corollary to Theorem

5.3.

LEMMA 6.2. If τ is a homomorphism of Δ into (Δ®Δ)/K> where K is a

subspace of Δ<g>Δ, then there exists a homomorphism a of Δ into Δ ® Δ such that
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τ = σψ, where φ is the natural homomorphism of Δ® A onto (Δ® Δ)/K.

Proof. Let xly x2, . . . be a basis for Δ. In each coset #,τ of (Δ®Δ)/K

pick a representative au Xiτ — K+ai. Let a be the homomorphism of A into

Δ®Δ that is determined by the mapping Xi->aι. Then #z <;̂  = #,τ, and it follows

that <;?> = r.

COROLLARY. If K is a subspace of Δ ® ά, then there is a natural homo-

morphism of a subgroup of the automorphism group of G(A> Δ®Δy e) onto the

group of all automorphisms of H(Δ, {Δ®A)/K, / ) .

This follows at once from the Lemma and the remarks after the second

Corollary to Theorem 5.3.

THEOREM 6.2. If d(Δ) is finite, K is a subspace of Δ®Ay and π is an

endomorphism of H(Δ, {Δ®Δ)/K, f) onto itself, then π is an automorphism.

Proof. We make repeated use of the second Corollary to Theorem 5.3.

First π induces an endomorphism πi of Δ onto J, and since diΔ) is finite, πi

must be an automorphism. Thus π[ is an automorphism of Δ®Δ and KπΊ^K.

Hence, since d(K) =d(Kπ[) is finite, Kπ[ = K and it follows that π is an auto-

morphism of H.

For each 0 # α r e Δ, let Ba = {a ® β : J S E J } . Then the mapping β->a®β

is a homomorphism of A onto Ba with kernel Rcc. Thus B« is a subspace of

A ® A, and d(BΛ) = d(Δ) - 1. Let

H=H(Δ, (Δ®A)/K,f).

By the definition of the class ^ , E G ^ 7 if and only if C(H) = Z(H)

LEMMA 6.3. The following are equivalent:

(a) H belongs to <€.

(b) K+oc®β = K for all β in A implies that oc^d.

(c) Ba^K implies that oc^d.

Proof. The proof is straightforward. Note that K in (c) can be replaced

by the maximal complete subgroup K of K, because Ba is complete.

COROLLARY I. If K is the maximal complete subgroup of K and if d(E) <

d(A) - 1, then H belongs to *€.
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Proof. If θ^a^Δ, then B* is a subspace of Δ®Δy and d(Bβ) = d(Δ) - 1 .

Thus if d{K)<d(Δ) - 1, then K satisfies (c).

COROLLARY II. If d(Δ)>l, then G(Δ, Δ® Δ, e) belongs to <€.

Since d{K) = 0<d(Δ) — 1, this is an immediate consequence of Corollary I.

For each cardinal number λ let

3λ = {H^3: d(H/C(H))=λ)

and let

, Δ® Δt e)

where d(Δ) = λ. If Hi and 772 belong to 3, and if H^H*, then there exists a

cardinal number λ such that £ZΊ and H2 belong to 3χ. Let d{Δ) = λ. We have

a correspondence between the groups in 3χ and the subgroups of Δ®Δ.

Moreover, by the first Corollary to Theorem 5. 3, if Kι and K2 are subgroups

of Δ® Δ, then the corresponding groups in 3χ are isomorphic if and only if

there exists an automorphism π of Δ such that Kχπf = K2. The group in J@λ

that is determined by K is torsion free if and only if K is a subspace of Δ®Δy

and it belongs to *€ if and only if Ba^K implies that a = 0 for all α: in J,

where ϋΓ is the maximal divisible subgroup of K. Each of the following two

theorems gives a characterization of Gλ.

THEOREM 6.3. For each H in J3\ there exists a homomorphism of Gλ onto

H that induces an isomorphism on Gλ/C(G\). Moreover, if K is any other group

in J3\ that satisfies this condition, then K=Gλ. In particular, if λ is finite

and if K is a group in J0χ such that every other group in 3\ is a homomorphic

image of K, then K=Gλ.

Proof. If / ? G j λ , then H has a representation H(Δ, (Δ®Δ)/K,f) and the

natural homomorphism of Gλ onto H (Theorem 5.1) induces an isomorphism

on Gχ/C(Gχ). Conversely, suppose that K^3\ and for each H<^3\ there

exists a homomorphism of K onto H that induces an isomorphism on K/C(K).

Let 7ri be a homomorphism of Gλ onto K that induces an isomorphism on

Gχ/C(Gχ), and let m be a homomorphism of K onto Gx that induces an isomor-

phism on K/C(K). Then πiπ2 is an endomorphism of Gλ onto Gλ that induces

an isomorphism on Gχ/C(Gχ), and hence by the second Corollary to Theorem

5.3. 7Γi7r2 is an automorphism. Therefore πx is an isomorphism of Gλ onto K*%
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in general, if H and K belong to 3\ and π is a homomorphism of H onto

K, then C(H)π = C(K)t and hence π induces a homomorphism of H/C(H) onto

K/C(K). In particular, if Λ is finite, then π must induce an isomorphism of

HίC(H) onto K/C(K).

REMARK. If λ is infinite, then there exists a K in J^ λ such that every other

group in ^ λ is a homomorphic image of K, but ϋf^ Gλ. For example, K=R@G\

has this property. One can also construct a group in 3\ Π ^ with this pro-

perty.

THEOREM 6.4. A group H is isomorphic to G\ if and only if H is a com-

plete torsion free nilpotent group of class 2 that contains a well ordered set S

of elements Si, S2, . . . such that

(0 |S|=Λ,

(ii) {C(ff)+s, |s, e S } is a basis for H/C(H)t

(iii) {ίsit s/}\si, Sj<=S and i<j) is a basis for C{H).

Proof We first show that G λ=G(J, Δ®Δ, e) has these proportions. Pick

and well order a basis B = <χlt a2> . . . for Δ. Then IB \ = X and

(cci, 0)lα:, ejB}

is a basis for Gλ/C(Gλ), and since L(ca, 0), (ory, 0)D = (0, 2 αr/Θαry)

<C(αrf , 0), (αy, 0)11 au ocj^B and **</}

is a basis for C(G\).

Conversely suppose that H satisfies the conditions in the Theorem. Then,

since H is torsion free and d{H/C(H)) = λ, H belongs to ^ x and has a

representation

HU (Δ®Δ)lK,f)

where K is a subspace of Δ® Δ and f(a, β) =if-f a®β for all α and 0 in Δ,

Let Sί = (α:/, «/) be the given subset of H that satisfies (i), (ii), and (iii).

Then clearly the oci form a basis for J. If k^K, then in G\ = G(Δ, Δ®Δt e)

we have

(0, *) = (0, ΣfttfG

thus under the natural homomorphism of G\ onto H
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But since {[s/, s/II I *<./'} is a basis for C(H), it follows that all of the kij are

zero, and hence ϋΓ=O. Therefore H^G\.

THEOREM 6.5. Let G = G«, where n is finite. Then G is the unique nilpotent

group of class 2 such that G/C(G)^Δ and C{G)=Δ®Δ.

Proof. Suppose that H is a nilpotent group of class 2 and that H/C(H)^Δ

and C(H) = Δ®Δ. Then H has a representation H(J, Δ®Δ,f) where / is a

(*)-mapping ([3] Theorem 2.1.). It follows that H is complete and hence by-

Theorem 3.1 / generates Δ® Δ. Thus there exists a unique homomorphism

of Δ®Δ onto itself such that /(α:, β) = (α® j3)?> for all « J G J (Proposition

4.3). Since rf(J® Δ) = (w2 - w)/2 is finite, ψ is necessarily an automorphism.

It follows that the natural homomorphism of Gn onto H (in Theorem 5.1) is

an isomorphism.

REMARK. If d(Δ) = λ is infinite, then the above theorem is false. For let

ψ be a homomorphism of J 0 J onto itself that is not 1 — 1. Define/(α, β) =

(a®β)ψ for all α:, β e J and let

H=H(Δ, (Δ®Δ)/K{φ), f)

It follows easily that C(H) = A®Δ and # | C ( # ) ^ J , but by the first Corollary

to Theorem 5.3, HΦ^Gi.

A group cj*f of automorphisms of a group Q is transitive if for each pair

of non-zero elements a and & in Q there exists a σ e # such that aa = £.

THEOREM 6.6. Let H = H(Δ, (Δ®Δ)/K, / ) G J βwrf let & be the group of

automorphisms of Δ®Δ that are induced by the automorphisms of Δ. The

following are equivalent:

a) cί^ is transitive modulo K>

b) Every element in C(H) is a commutator.

Proof. Clearly (b) holds if and only if for each Z in (Δ®Δ)IK there exist

X and Y in Δ such that Z-K+ X®Y. Thus using the notation that was

developed at the beginning of this section, it follows that (b) is equivalent to

(b') for each (zlf . . .) in Δ® Δ there exist (xh . . .) and {yh . . . ) in A such.
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that (zh . - .) - (xiy2 - x2yu - - . ) e K.

On the other hand, (a) is true if and only if for each non-zero (zh . . .)

in J ® J there exists an automorphism π of Δ such that (1, 0, 0, . . . V -

(21, . . .) eϋΓ. Thus (a) is equivalent to

(a') for each (zu ...)inA®A there exist rational numbers tf/y such that

V 021 C

Clearly (a') and (bθ are equivalent.

COROLLARY. The group <s? of all automorphisms of Δ<g> Δ that are induced

by the automorphisms of Δ<g> Δ is transitive if and only if each element in the

commutator subgroup of G{Δy A<8> A, e) is a commutator.

In section 7 we show that <S? (in the Corollary) is transitive if and only if

d(Δ) =1, 2, or 3.

7. Special Cases and Examples

Let A be a rational vector space, and let G = G(Δ, Δ®A, e). If d{Δ) = 1,

then A®J=0, and hence G = A = R, the rational numbers.

Suppose that d(Δ) =2. Then d(A®A) = l9 and so without loss of generality

Δ®Δ~R. If K is a proper subgroup of A® A, then 0 is the maximal complete

subgroup of K, and d(0) = 0 < l = d(A) - 1 . Thus by the first Corollary to

Lemma 6.3, H{Δ, (Δ®A)/K,f) belongs to ^ except when K=A®A. The

mapping

ii a22

is a homomorphism of the group of automorphisms of A onto the group of

automorphisms of A® A. Thus each automorphism of A® A is induced by an

automorphism of A. In particular, if A and B are subgroups of A®At then

A = B if and only if there exists an automorphism π of A such that Aπf = B.

Let ^ 2 be the set of all equivalence classes of isomorphic groups in j ^ 2 , and

R! be the set of all equivalence classes of isomorphic subgroups of R. It

follows from the first Corollary to Theorem 5.3 that there is a 1 - 1 corre-

spondence between J3[ and R. Now by Baer's theory on the subgroups of R
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we have a complete set of invariants for Rf (see [4] pp. 145-149). Consider

Hi(Δ, (Δ®Δ)/Kiy fd (* = 1, 2) in &2. Suppose that Ki is of type (xu x2, . . .)

and that K2 is of type (j>i, y2> . . . ) . Kί = K2 if and only if (xu #2, . . ) = (jΊ,

^2, . . . ) , that is, if and only if Xi=yi for all but a finite number of i and if

Xi^yi, then both Xi and jy, are integers. Therefore Hι^H2 if and only if (xu

Xtt . . .) = (jVi, jy2, . . . ). On the other hand, (Δ®Δ)/Ki=(Δ®Δ)/K2 if and only

if for all i

xι = 00 if and only if jy, = 00.

Thus for a fixed homomorphic image TV of R there are infinitely many non-

isomorphic groups H(Δ, (Δ®Δ)/K,f) such that {Δ®Δ)/K = N.

LEMMA 7.1. Let d(Δ) = 3 and let A and B be subspaces of Δ®Δ. If d(A)

= d(B)t then there exists an automorphism π of Δ such that An1 = B.

Proof Since d(Δ® Δ) = 3, d(A) =0, 1, 2 or 3. If d(A) = d(B) - 0 or 3,

then clearly the identity automorphism of Δ will do. If d(A) = d(B) =2, then

A = /to Θ #jy, where # = (#i, ΛΓ2, #3) and >> = (yly y2, yz) are independent. It suffices

to show that there is an automorphism π of Δ such that xπf = (1, 0, 0) and

yπ' = (0,1, 0). Note that this also takes care of the case where d(A) = d(B) = 1,

and it shows that the group <& of automorphisms of Δ® Δ each of which is

induced by an automorphism of Δ is transitive.

Xπf = xA! = (xi, x2t xs)/an aί2 α 1 3V =
I a2\ a22 a2z 1

(x\Azz + X2A2Z + *3-Ai3, ^1^32 + ΛΓ2Λ22 + XzAio, XiAzi + ΛΓ2̂ 42I + XzAii)t where the A[j a re

the minors of the matr ix A. Let (<333, «23, βis) = (xi> ~ *i> XΛ), and let (032, 022,

a12) = (yh -yi, yz), and choose an, a2ί and azx so that |Λ| = 1. Then we have

xA' = (1, 0, 0) and yA1 = (0, 1, 0).

COROLLARY. // d{ Δ) = 1, 2 or 3, then every element in the commutator

subgroup of G(Δ, Δ®Δf e) is a commutator.

This is an immediate consequence of Theorem 6.6 and the fact that the

group *& of automorphisms of Δ®Δ each of which is indued by an automor-

phism of Δ is transitive.
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THEOREM 7.1. For a group H and n = 1, 2, 3 the following are equivalent:

a) H is isomorphic to Grt = G(J, Δ®Δ, e ) where d(Δ) =n>*

b) H is a torsion free group in <3tn and for a, b<^ H\C(H), a+b=b+a

if and only if na = nb mod C{H) for some non-zero integers m and n.

Proof. By Lemma 6.1, Gn satisfies (b) with no restriction on n. Conversely

suppose that H satisfies (b). Without loss of generality

H=-H(Δ, (Δ®Δ)/K,f)

and since H is torsion free, K is a subspace of Δ®Δ. Clearly if w = l o r 2 ,

then i f=0. Suppose (by way of contradiction) that w = 3 and K^O. Let ocu

cciy as be a basis for Δ. By Lemma 7.1 there exists an automorphism π of Δ

such that KπΏ.R(aι®ocz). This means that (ecu 0) and (ar2, 0) commute and

clearly mcci^ncci for any pair of non-zero integers, a contradiction.

If J ( J ) = 4 , then d(Δ®Δ) =6 and a straightforward computation shows

that the group <S? of induced automorphisms of Δ®Δ is not transitive. Thus

*& is transitive if d(Δ) < 3 and not transitive if d(Δ)>3. It follows that the

converse of the Corollary to Lemma 7.1 is valid, and that Theorem 7.1 is false

for n>3.

Each torsion free complete nilpotent group H of class 2 for which d(H\C(H))

is finite determines an ordered pair of integers (n,m), where m = d(C(H)) and

n = d(H\C(H)). We say that H is of type (n, m). Clearly the groups of type

(n, (n2 — n)/2) are unique (to within an isomorphism) because they have a

representation of the form G(Δ, Δ®Δt e) where d(Δ) = n. An immediate con-

sequence of Lemma 7.1 is that the groups of type (3,1) and (3, 2) are unique.

The group of type (3, 2) is determined by the (*)-mapping

/((#1, ΛΓ2, ΛΓ3), (yi,3>2, jys)) = (xiy2 - xzyu xiys - xsyi)-

The group of type (3, 1) is a direct sum of R and the group of type (2, 1).

If d(Δ) =4, then the group ^/ of induced automorphisms of Δ®Δ is not trans-

itive. It follows that there exist non-isomorphic groups of type (4, 5).

Groups of type (n, 1). Let G = G(Δ, R, f) where Δ is an ^-dimensional

rational vector space and / is a (*)-mapping of Δ x Δ into R that generates R.

Let δi, . . . , δn be a basis for Δ, and consider a-aιδι-h + <Xnδn and β =

βιδχ + βnδn in Δ. Then
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Let f(δu δj) =aij. Then

δj) =
i

. . , « „ ) ( a h )

, , δj).

Thus / is determined by an nxn skew-symmetric rational matrix A=(at j).

Moreover, the mapping (a, a)-*((ah . - . , o:w), tf) is an isomorphism of G(J,

R, f) onto G(Rn, R, A), where Rn = RxRx xΛ (Λ factors). Let α:->α P

be an automorphism of Rn (where P is anwxw non-singular matrix). The

mapping a of (α:, a) upon (α:P, <z) is an isomorphism of G(Rn, R, A) onto

G(Rn, R, P~ιAP~τ) and hence we may as well assume that A has the canonical

form

0
- 1

o
o

o l
- l o

If n = 2 m is even, then C(G) = Z(G) if and only if A is non-singular. Thus

there exists a unique group of type {2 m, 1) in &, namely the one determined

by the non-singular 2 m x 2 m matrix in the above form.

Let G be a group of type (n, 1) and let 2 m be the rank of the canonical

matrix A that is determined by G. Then clearly G is (isomorphic to) a direct

sum of the group of type (2 m, l) in *€ and a rational vector space of dimen-

sion n — 2m. Thus two groups of type (n, 1) are isomorphic if and only if

their canonical matrices have the same rank.

It is easy to see that the group G of type (2 m, 1) in ^ is a direct sum of

m groups of type (2, 1) with amalgamated R. The group cj*f{G) of all auto-

morphisms of G is a homomorphic image of the group of all automorphisms of

the group of type (2 tn, 2 m' — m). By using Theorem 2.2, it is easy to show

to show that cjχf(G) is isomorphic to the group of all (2 m+1) x (2

rational matrices of the form

O>\\' * ' dit2

zm,l * " * Q>ιm,2m Q_^

.0- 0 d
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where

A = \an' ' < β l ' 2 m

is a non-singular matrix that satisfies

o l
- l o

o

o

0 1
- 1 0)

= A

0 1
- 1 0

o
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