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1. Introduction

Let 4 and N be abelian groups and let f be a mapping of 4% 4 into N
that is bilinear, skew symmetric and satisfies f(a, «) =0 for all a € 4. Such
a mapping f is called a (*)-mapping. By the Schreier extension theory 4, N
and f determine a nilpotent group G(4, N, f) of class two that consists of the

set 4x N with composition
(a, @) +(B, b) = (a + B, fla, B) +a+b).

This paper is concerned with the class .& of all nilpotent groups of class two
that have a representation of the form G(4, N, f), where f is a (*)-mapping
and {f(a, B) : a, B = 4} generates N. This class .&# is quite large. For example,
in Theorem 5.2 we prove that if G is a central extension of N by 4, and if 4
is torsion free or if IV contains no elements of order 2, then G is a subgroup
of a group in .&*. Also every complete (= divisible) nilpotent group of class
two belongs to . (Theorem 3.1).

Consider G(4, N, f) in . and let 4®'4 be the tensor product of 4 with
itself. Let D be the subgroup of 4®'4 that is generated by the diagonal
elements a @'a € 4®'4. The group 4Q 4= (4Q®'4)/D is called the skew tensor
Droduct of 4 with itself, and the mapping

ela, B)=a@PB=a®'B+D

is a (*)-mapping of 4x 4 into 4Q® 4 that generates 4@ 4. Thus we have a
group G(4, 4® 4, e) and a unique homomorphism ¢ of 4® 4 onto N such that
fla, B) =ela, B)¢. In Theorem 5.1 we show that the mapping (a, @) - («, a¢)
is a homomorphism of G(4, 4® 4, e) onto G(4, N, f). Thus every group in

< has a representation as a homomorphic image of a group of the form
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16 PAUL CONRAD

G(4, 4® 4, ). We use this representation to determine the structure of the
groups in . For example, Theorem 5.3 and its corollaries determine condi-
tions that are necessary and sufficient for two groups in & to be isomorphic.
In Section 6 a study is made of the groups in & for which 4 is a rational
vector space.

The author would like to thank Professors A. H. Clifford and L. Fuchs for
their many useful suggestions. In particular Proposition 4.10 and Theorem

4.2 and their proofs are due to L. Fuchs.

2. Representations and Homomorphisms of Nilpotent Groups of Class 2.

Throughout this section let G be a nilpotent group of class 2 with center
Z and commutator subgroup C, and let N be a subgroup of G between Z and
C,G2Z2N2C. Thus G is a central extension of N by the abelian group
4=G/N. We shall denote the elements of 4 by 0, «, B, . .. and those of N
by O, a, b, . .. Let n be the natural homomorphism of G onto 4 and let » be

a mapping of 4 into G such that #(6) =0 and 7(a)r =a for all « in 4. Let

(1) fla, B = —r(a+B) +r(a)+7(R)

for «, B € 4, and for all (a, @) and (B, b) in 4x N define that
(2) (a, @)+ (B, &) =a+p, fla, B) +a+d).

Then by the extension theory of Schreier, 4 X N is a group and the mapping
of r(«) +a upon (a, a) is an isomorphism of G onto 4x N. We shall denote
this representation of G by G(4, N, f). It is easy to show that f is a mapping
of 4x 4 into N that satisfies

(3) fa, 0) =508, B) =0, and
(4) fla, B+1)+1B, ) =fla+ B, v)+Sfla, B).

Conversely if f is such a mapping and if we use (2) to define addition in 4 X NN,
then the result is a group. If IV is generated by the set {f(a, B): a, B < 4},
then we say that f generates N.

Two central extensions of N by 4, G(4, N, f) and G(4, N, g) are equivalent
if there exists an isomorphism ¢ of the first onto the second such that for all
(a, @) in G(4, N, ), («, a)o = (a, t(a) +a), where ¢ is a mapping of 4 into N.
Thus the two groups are equivalent if and only if there exists a mapping ¢ of
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GROUPS OF CLASS TWO 17

4 into N such that for all « and B in 4
() gla, B) —f(a, B) = —tla+B)+ ta) +H(B).

The concept of equivalence frees the representation of G from the particular
choice of the representation mapping 7.
A mapping f of 4X 4 into N is a (*)-mapping if for all a, B, r= 4

fla, B+71) =fla, B)+fla, 1)
fla+B, v)=[(a, v)+ f(B, 1)
fla, B) = —f(B, a) (skew-symmetric)
fa, a) =0.

} (bilinear)

It is easy to verify that any (*)-mapping satisfies (3) and (4), and hence
determines a central extension of NV by 4.

Given G2Z2ON2C and G'2Z'2N'2C' let 4=G/N and 4'=G'/N'. Then
G and G' have representations G(4, N, f) and G'(4', N', f'). Suppose that =
is a homomorphism of G onto G', and that (6§ X N)r =6'x N'. Then for («, a)

in G we have

(a, @)= (a, O+ (0, @) = (am;, am) + (0, ars)

= (am, ans+ ans)
where 73 is a homomorphism of N onto N'.

[(a, @)+ (B, B)Ir =(a+ B, f(a, B) +a+b)r
= ((a+ B)m1, (@+B)me+
fla, B)ms+ ans+ brs)
(a, @)+ (B, b)n = (ami, ans+ ans) + (Bry, Brs + brs)
= (am+ Bry, f'(am, Bri)
+ ams+ B+ ams+ brs).

Therefore m; is a homomorphism of 4 onto 4/, and for all « and B in 4
(6) (“+B)7Tz“a'ﬂ2—‘ﬁn'z=f'(d7l‘1, Bm) “f(d, 5)71'3-

It is easy to show that n is an isomorphism if and only if z; and =; are iso-
morphisms. Conversely suppose that z; is a homomorphism of 4 onto A’,.na is
a homomorphism of N onto N/, and 7. is a mapping of 4 into N' that satisfies
(6). If for (a, @) in G we define that (a, @)z = (am;, am:+ an;), then 7 is a
homomorphism of G onto G’ and (6 X N)r =6'x N,
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Note that (6) means that f/(am;, fm) and f(a, §)ns are equivalent factor
mappings of 4x 4 into N'. Thus for an appropriate choice of f/, =, =0 will be
achieved. However, no factor mapping that is equivalent to a (*)-mapping is
again a (*)-mapping provided that 2 4=4 or that N contains no element of
order 2 (Cf. Theorem 3.1). Now suppose that f and f’ are (*)-mappings.
Then the left hand side of equation (6) is symmetric and the right hand side

is skew-symmetric. Thus for all « and 3 in 4

0=2[f"(amy, Bm) —fla, Bnsl=f"(am, 2 Br1) —fla, 2 B)ma.
Therefore, if 24=4 of if N' contains no elements of order 2, then for all &« and
Bin 4
(7) S, Bms=f"any, Br1),

and 7, is 2 homomorphism of 4 into N'. We summarize these results:

TueoreM 2.1. If m is a homomorphism of G(4, N, f) onto G'(4', N', f')
such that (§x N)x=0'x N', then for each («, a) in G

(a, @) = (any, am+ ans)

where m 1S a homomorphism of 4 onto 4', n3 is a homomorphism of N onto N',
and m, is a mapping of 4 into N' that satisfies (6), and conversely. Moreover,
7 is an isomorphism if and only if m and s are isomorphisms. If 24=4 or
if N' contains no elements of order 2, and if f and f' are (*)-mappings, then

72 1S @ homomorphism and (6) is equivalent to (7).

We next prove a few basic propositions about nilpotent groups of class 2
that are determined by (*)-mappings. Let G=G(4, N, f), where f is a (*)-

mapping.

Prorosition 2.1. #n(a, @) = (na, na) for all (a, a) in G and all integers n.
In particular G is a complete groud if and only if both 4 and N are complete,
and G is torsion free if and only if both 4 and N are torsion free.

Proof. Since — (a, @) = (—a, —a) it suffices to consider only _positive
integers. Using induction we have

(n+1)a, a) =n(a, a) + (a, a) = (na, na) + (a, @)
=((n+Da, f(na, «) + (n+1)a)

https://doi.org/10.1017/5S002776300001117X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300001117X

GROUPS OF CLASS TWO 19

=((n+1Da, nfla, a)+(n+1)a)
=((n+1a, (n+1)a).

ProrosiTiON 2.2. If f generates N and n is a positive integer, then the

following are equivalent :

(a) nd= 4.
(b) nd= 4 and nN = N.
(c) nG=G.

In particular, G is complete if and only if 4 is complete.

Proof. It follows from Proposition 2.1 that (b) and (c) are equivalent,
and clearly (b) implies (a@). Assume that #4 = 4 and consider x< N.

x =2/ (ai, Bi) = 2 f (n@i, Bi) =n2f (ai, Bi) EnN,
where @; is an element in 4 such that na@; = «;. Therefore nN = N.

ProrosiTiON 2.3. 271G is a fully invariant subgroup of G for every positive
integer n.

Proof. nla, a)—n(B, b) = (na, na)+ ( —np, —nb)
= (n(a - B), f(na, —npB)+n(a—>))
=n(a—RB, fla, —nB)+a—->b) €nG.

ProrosiTioN 2.4. The following are equivalent:

(a) G is complete.
(b) Every mon-zero homomorphic image of G is infinite.

(¢) G contains no maximal normal subgroups.

Proof. Clearly (a) implies (b) since every homomorphic image of a
complete group is complete. Suppose that G satisfies (b) and that M is a
maximal normal subgroup of G. Then H=G/M is infinite and simple, and
hence H is non-abelian. But H must be abelian because either H = Z(H) or
0=Z(H)2C(H). Therefore (b) implies (c). Finally suppose that G satisfies
(c), but that G is not complete. Then there exists a positive prime p such
that pGxG. By Proposition 2.3, H=G/pG is a group, and every element in
H has order p. If H is abelian, then it is a vector space over the integers

modulo p, and hence it has a maximal subgroup. If H is non-abelian, then
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H/C(H) is a (non-trivial) vector space over the integers modulo » and hence
has a maximal subgroup. In either case we get a maximal normal subgroup
of G, but this contradicts property (c).

For (a, @) and (B, b) in G we have

[(a, @), (B, 8)1= — (a, a) — (B, b) + (a, a) + (B, b)
- (8, B) +(a, @)+ (a+B, fla, B)+a+b)
- ((B+a, 00+, /(B, @) +b+a)
+(a+p 0)+ (0, fla, B)+a+d)
=(6, 2 f(a, B))

and —(a, a)+ (B, b) + (a, a) =[(a, @), — (B, b)1+ (B, b)

=(6, 2f(a, —B))+(B, b)

=B, 2 (B, a)+b).

il

Il

Thus (a, @) and (B8, b) commute if and only if 2 f(a, 8)=0; and CS2 N,
where N/ =6 x N.

ProrosiTioN 2.5. If 4 or N consists of elements of order 2, then G is
abelian. If a € 4 is of order 2, then («, a) belongs to the center Z of G for all
acs N. Thus if G/Z contains an element of order 2 and if G(G/Z, Z, g) is a
representation of G, then g is not a (*)-mapping.

ProrosiTioN 2.6. Suppose that j generates N.
(i) If N=2N, then N'=C.
(ii) If 4=24, then N=2 N, G=2G and N'=C.

Proof. If xeN' =2 N', then x =2y, where y N/, and hence x=2y=
200, 23 f(ai, Bi)) = (6, 222 f(ai, Bi)) €C. Thus (i) is true and (ii) is an im-
mediate consequence of Proposition 2.2.

Note that if NV is torsion and contains no elements of order 2, then N =2 N.

In fact in this case, a2 ¢ is an automorphism of N.

THEOREM 2.2. Suppose that G = G(4, N, f), where f is a (*)-mapping that
generates N, and suppose that 4=2 4 or that a-2 a is an automorphism of N.
Then 0 X N is the commutator subgroup of G, and n is an automorphism of G
if and only if for (a, @) in G, («, a)r = (an;, arns+ am), where n, is an auto-
morphism of 4, ns is an automorphism of N, n: is a homomorphism of 4 into
N, and for all « and B in 4, f(a, Ars=f(ars, Bm).
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Proof. If a-»2 a is an automorphism of NN, then N=2 N, and hence by
Proposition 2.6, N'=C. Also in this case N' contains no elements of order 2.
Thus this theorem is an immediate consequence of Theorem 2.1.

Every nilpotent group of class 2 determines a (*)-mapping. For let H be
such a group, and let C be the commutator subgroup of H; for C+aeand C+b
in 4= H/C define that

w(C+a, C+b)=1[a, bl

Then & is a (*)-mapping of 4x 4 into C that generates C, and hence & deter-
mines a central extension H of C by 4. H = H(4, C, k). We shall now consider
the mapping H-H. The next proposition asserts that it is single valued but

not one-one, and 2. 8. says that there are many fixed points.

ProrosiTiON 2.7. If two nilpotent groups H and H' of class 2 are isomorphic,
then so are H and H', but the converse is false.

Proof. Let ¢ be an isomorphism of H onto H’' and define that
(C+a, b)r=(C'+ as, bs)

for all (C+a, b) in H. Then ¢ is an isomorphism of A onto H’'. Suppose that
H is a non-abelian group of order 8. Then Z=C is of order 2 and H/C is
the four group. It follows from proposition 2.5 that A is abelian. Thus if H
and H' are the two non-abelian groups of order 8, then 7= H'. Note that by
proposition 2.5 there is no representation of H or of H' where the factor

function is a (*)-mapping.

ProrosiTioN 2.8. Let G=G(4, N, f), where f is a skew-symmetric factor
function that generates N. If a—2a is an automorphism of N, then G and G

are isomorphic.

Proof. By Lemma 2.1 in [3] f is bilinear and since N contains no elements
of order 2, f(a, «) =0 for all « € 4. Thus f is a (*)-mapping. By proposition
2.6, N'=C. Let

&a, B)=fla, B)—f(B, a) =2 f(a, B).

Let w3 be the automorphism a—2 a of N, let n; be the zero homomorphism of
4 into C, and let m; be the identity automorphism of 4. Then
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glamny, pm) —fla, B)ms=2 fla, B) —2 fla, B) =0,

and hence by Theorem 2.1, the mapping (a, a) - (a, 2 @) is an isomorphism of
G onto G.

Note that the Schreier extension theory yields nothing in this case. For if
G is equivalent to G where both are considered as central extensions of
C=C(G) by 4=G/C, then it is easy to show that G is abelian. Also from
proposition 2. 8. and from Theorem 3.1 in the next section it follows that if H
is a complete nilpotent group of class 2, whose commutator subgroup con-
tains no elements of order 2, then H=H.

Baer ([2], p. 290) proves that the following are equivalent :
(a) There exists a group H such that Z(H) =N and H/Z(H)= 4.

(b) There exists a (*)-mapping f of 4% 4 into N such that if f(a, B) =0
for all B in 4, then « =4.

TNEOREM 2.3. If N=2 N or if 4=2 4, then the following are equivalent:
(i) There exists a group H such that C(H)=N and H/C(H) = .
(ii) There exists a (*)-mapping of 4% 4 into N that generates N.

Proof. If (i) is satisfied, then the commutator function
g(C(H)+a, C(H)+b)=L[a, b]

and the given isomorphisms A~H/C(H) and C(H)=N determine a (*)-
mapping f of 4X 4 into IV that generates N. Conversely if f is such a map-
ping, then let H=H(4, N, f) and let NN=6xN. Then H/N'=4 and by pro-
position 2.6, N' = C(H).

Direct sums of central extensions with amalgamations. Let Gy, ..., Gp
be central extensions of IV by the abelian groups 4y, ..., 44,. Then each G;
has a representation Gi(4i, N, f;). Let S=4;X +++ X4, X N and define

((Xl, e ey An, a)+(Bj, « o e ,ﬁn, b)=
(a1 4By« ooy @n+Bn filar, B+ * + « + fulan, Bn) +a+b).

Then S is a central extension of N by the direct sum of the 4;. S is called
the direct sum of the central extensions G; of N with amalgamated N. If the
fi are all (*)-mappings, then so is > f;, and if one of the f; generates NN, then
so does >\f.
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Conversely, let G be a central extension of N by an abelian group and

suppose that G;, . . ., G, are normal subgroups of G such that

(a) each G; is a proper extension of N,
(b) G=G+ -+ +Gp and
(c) Gin(Gi+ *+ + +Gi-1+Giri+ ++ - +Gn) =N

fori=1...,n

Then G is isomorphic to a direct sum of the G; with amalgamated N.

3. Complete Nilpotent Groups of Class 2

Throughout this section assume that G2 Z2C and that G is complete.
Then by Theorem 4.1 in [3], Z and C are complete, and, of course, 4=G/C

is complete.

TueoreMm 3.1. Let G(4, C, k) be a representation of G. Then in the set
of all factor mappings of 4% 4 into C that are equivalent to h there is one and
only one (*)-mapping, and ithis mapping generates C. The structure of an

automorphism of G is given by Theorem 2.2.

Proof. First assume that f and g are (#)-mappings of 4x 4 into C that
determine equivalent representations of G. Then there exists a mapping # of
4 into C such that for all « and B in 4

gla, B) —fla, B) = —tla+B) +ta) +tB).

The left hand side of this equation is skew-symmetric and the right hand side
is symmetric. Thus 2(g(a, B) —f(a, B)) =0, and hence g(a, 2 B) =f(a, 2 B)
for all « and B in 4. Therefore since 2 4= 4, f=g.

By Theorem 4.1 in [3], G=G'® S, where Z=C®S, G'2C and G'/C is a
rational vector space. Thus 4=G/C=G'/CHZ/C. Let r be a representation
mapping of G'/C into G and extend 7 to 4 as follows: 7(C+s) =s for all s in
S and 7(a) =7(a') +7(a"), where a4, ' €G'/C, a""€Z/C and a=a' +a'.

Let % be the factor function determined by . Then
Ela'+a", B/ +8") =k(a!, B') = —7(a’+ p') +7r(a’) + 7).

By Lemma 3.4 in [3] there exists a (*)-mapping f' of G'/C X G'/C into C that
is equivalent to £ on G'/CxG'/C. For a and B in 4 define that
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fla, B =fla'+a", B'+p") =f"(a!, B).

Then £ is a (*)-mapping that generates C, f is equivalent to £ and % is
equivalent to h.

Since C is complete, it is a direct summand of Z, Z=C®Q. Let G' be a
maximal subgroup of G with center C. Then by Theorem 4.1in[3],G=G'® Q.
Thus G’ is uniquely determined (to within an isomorphism) by G. Q=TOF,
where T is the torsion subgroup of @ and F is a torsicn free subgroup of Q.
Let G"=G'@F. Then G" is complete, C is the commutator subgroup of G"
and G"/C=G'/C®F which is a rational vector space. Note that it follows
that if G is torsion, then G is abelian.

LemMa 3.1. G is @ maximal subgroup of G such that G"2C and G"/C is

torsion free, and every other such subgroup of G is isomorphic to G'".

Proof. G=G'®Q=GDODFPT. Thus it is clear that G is a maximal
subgroup of G such that G"2C and G'"/C is torsion free. Now let H be a
maximal subgroup of G such that H2C and H/C is torsion free. Let

C={geG: ngeC for some n>0)}.

Then C is a complete subgroup of Z that contains C (Lemma 3.2 in [3]).
Thus C=C® D, and it suffices to show that G=H®D. H/CNC/C=0 and
since C/C is complete, there exists a subgroup K of G such that K2H and
G/C=K/C®C/C. D is normal in G because DS Z and K is normal in G
because K2C. KND=DNCND=CND=0. K+D=K+C+D=K+C=G.
Thus G=K®D. If C+k<K/C and C=n(C+Fk) for some n>0, then nksC
and hence k€ CN K =C. Therefore K/C is torsion free and by the maximality
of H, H=K.

Thus while investigating the structure of complete nilpotent groups of class

2, we may restrict our attention to the following two classes:

% : All complete nilpotent groups of class 2 such that Z(H) = C(H).

2 All complete nilpotent groups of class 2 such that H/C(H) is torsion
free.

If Ge %, then by Theorem 4.1 in [3] G/C is torsion free. Therefore ¥ <.Z.
If Ge 2, then by Theorem 3.1, G has a representation G(4, C, f), wheie
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4=G/C is a rational vector space and f is a (*)-mapping that generates C.

Moreover,
Z={(a, a)=G: f(a, B) =0 for all B in 4}.

Therefore G % if and only if f(a, B) =0 for all B in 4 implies that a = 6.
If G is a complete torsion free nilpotent group of class 2, then G <.

For C is complete and by Lemma 3.2 in [3]
C={geG: ngeC for some n>0}CZ.

It follows that C=C and hence G/C is torsion free. Moreover, G/Z is a
rational vector space and Z is complete. Thus there exists a representation
G(G/Z, Z, f) of G, where f is a (*)-mapping. Let NN be the subgroup of Z
that is generated by f. Then N is complete, and in fact, N=C. It follows
that G(G/Z, C, f) is a maximal subgroup of G with center 6 x C.

4. Skew Tensor Products

In this section we derive some properties of skew tensor products that
will be used in the following sections. Many of the proofs will be omitted,
since they can be proven by slight modifications of the proofs of the cor-
responding propositions for ordinary tensor products (see for example [4],
Chapter XI).

Let U and V be abelian groups, and let X be a free abelian group with
UxV as a free set of generators. Let Y be the subgroup of X that is generated

by all elements in X of the following forms:

(a, @) all ac UNV,

(a, &)+ (b, @) all @, b UNV,

(a, b+¢c)—(a, b)~(a, c) all ac U and b, c= V, and
(a+b,¢c)—(a, ¢)—(bc) all g, b U and c= V.

Let G=X/Y and denote the coset that contains (g, #) by a®b. Then G con-
sists of all finite sums > ki(a; @ b;) subject to the relations

aRa=0allacUN YV,
a®@b=—(b®a«) all g, besUNV,
a®((b+c¢)=a®b+a®c all ac U and b, ce V,
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and (e+6)QRc=aQRc+bQc all @, b U and c€ V. G is said to be the skew
tensor product of U and V, and we shall denote it by U® V.

ProrosiTioN 4.1. Let UQR'V be the ordinary tensor product of U and V,
and let T be the subgroup of UQ'V that is generated by

{a®'a, aQ'b+bR'a: a, besUN V).

Then the mapping of > ki(ai@'b;) upon >\ ki(ai@bi) is a homomorphism of
UQ'V onto UR V with kernel T. In particular, if UNV =0 orif UNV is the
null set, then UQV=UQR'V.

Note that if UN V is a subsemigroup of both U and V, then we can drop
the condition that (a, &)+ (b, @) Y for all @, bs UN V, for then 0= (a+b,
a+b)=(a+b, a)+(a+b, b) =(a, a) + (b, a)+ (a, b) + (b, b) = (b, a) +(a, b).
Thus we have merely the ordinary tensor product with a suppressed diagonal.

It follows immediately from Proposition 4.1 that U® V=V Q® U, and for all
us U, ve V and all integers z,

nu@v=nu®@v) =uQnv.
In particular, U® V consists of all finite sums > ;@ v; with »; € U and v; € V.

ProrosiTiON 4.2. If U is complete, then so is UQR V, and if U is complete and
V is a torsion group, then UQ V =0.

A mapping f of Ux V into a group H is a (*)-mapping if

fla, b+¢) =f(a, b) +fla, c) ac€U, bceV
fla+b, ¢)=f(a, c)+1(b, c) a, belU, ceV
f(a, b) = —1(b, a) a, beUNV
f(a, a)=0 acsUNV.

As before, we say that f generates H if {f(u, v): u€ U and v V} is a set
of generators for H. For (#, v) € Ux V define that

e(u, v) =uQo.

PropoSITION 4.3. The mapping e is a (*)-mapping of UXV into UQV
that generates URQ V. If f is a (*)-mapping of Ux V into an abelian group H,
then there exists a unique homomorphism ¢ of UQRQ V into H such that f(u, v)
=elu, 0. If f generates H, then ¢ is a homomorphism of URQ V onto H.
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ProrosiTION 4.4. Let & be the set of all (¥)-mappings of UX V into an
abelian group N. For f, g€ %, uc U and ve V define (f+ g)(u, v) =f(u, v)
+ glu, v). Then

“Z =Hom (UR V, N).

Proof. Consider ¢ =« H=Hom (U® V, N), and define f(u, v) = (#®@v)¢ for
all e U and v V. It follows by a straight forward computation that f& %
and that the mapping ¢ of ¢ upon f is an isomorphism of H into #. If
f €%, then by Proposition 4.3 there exists ¢ € H such that f(«, v) = (¥ Qv)¢.
Therefore ¢ is an isomorphism of H onto %.

Let & be the group of all non-equivalent central extensions of an abelian
group IV by an abelian group 4. By Theorem 2.1 in [3] and the remarks

after it we obtain the following theorem :

TueoreM 4.1. If a—»2a is an automorphism of N, and if N is a direct

summand of every abelian extension of N by 4, then
¢>~.%=Hom (4 4- N).

In particular, if N is divisible and contains no elements 2, or if 4 is free and
a—>2 a is an automorphism of N, then our conclusion follows.

If U=Tu] is a cyclic group with generater #, then
2ni(miu@vi) = 2 uQ@ nimivi=u@ >\ nim; vi.
Therefore [#1Q V={u®Qv : ve V}.

ProrositiON 4.5. Suppose that U =L[ul is cyclic and that [ul NV is a
subgroup of both [ul and V. Let k be the order of [ul if this order is finite
and 0 otherwise. Then there exists a least nmon-negative integer n such that
[u1N V =[nul, and the mapping of u@v upon v+ (RV+[n’ul) is an isomor-
Phism of [ul® V upon V/(EV+[n’ul).

Proof. Every element in [#]x V has a unique representation (mu, v)
where 0< m<Fk if k%0 and m is unrestricted otherwise. Thus (mu, v) > mv
is a (single valued) mapping of [#]JXx V onto V. Since [#]x V is a free set
of generators for X, this mapping is induced by a unique homomorphism « of
X onto V. Let 6 be the natural homomorphism of X onto X/Y =[#]1® V, and
let B be the natural homomorphism of V onto V/(kV +[#°x]). It follows by
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the usual induced homomorphism arguments that there exists an isomorphism
¢ of [#]® V onto V/(kV+[#n’4]) such that 69 =aB. Thus (x®@v)¢ = (u, v)o¢
= (u, v)af=v8=v+ (EV+ [n'ul).

CororrarY 1. If U is a cyclic group, then UQ U =0.

CoroLLARY II.  Suppose that [ul is an infinite cyclic group, and that [ulN'V
is a subgroup of both [u] and V. Then [ulQ® V=V/[n*ul, and if [ulN V=0,
then (4@ V=V, and if [ul<V, then [4]1Q V= V/[ul.

Cororrary I If [u] and [v] are finite cyclic groups of orders k and ¢
respectively, and if [ulN[vl=0, then [ulQ[v1=[v]/(k[v]) whick is a cyclic
group of order (k, £).

In order to avoid ambiguities, we shall adapt the following notation:

(1) V= ;‘_,P{;E Vr internal direct sum
(=3

2) v= TEFEB Ve external direct sum.
(=1

Thus in (1) the V¥ are subgroups of V, while in (2) V is the restricted

Cartesian product of the groups V.

ProrosiTION 4.6. Suppose that V = >\ Vr, where the v belong to a linearly
ordered set I', and let Gs; be the subgroup of VYV that is generated by the
set (V. Qs : v. €V, and vs€ Vi), Then G =V.Q Vs and

V® V= Zf‘s Ecaﬁg ZE’ @(Vd,@ VB)

Proof. The natural (*)-mapping e of VXV into V® V induces a (*)-
mapping of Vx V into G.; for each pair a, 8 in I Thus by Proposition 4.3
there exists a unique homomorphism ¢.; of V,® V; into Ges such that (v, ® vs)
Pup = e(va, v3). For (..., %u, ...) in W=21®(V.® V,) define that

(evvy Xapy - - .)P= ngw%ﬁ. Then ¢ is a homomorphism
of Winto VQ V.

Consider %= > u, and v = >, in V, and define that /(% v)=(. .., 4. ®
Vay oo b e, (Ue@Up—v.Qug), ...)) a<pB. By a straightforward argu-
ment it follows that f is a (*)-mapping of VXV into W. Thus by Pro-
position 4.3 there exists a homomorphism ¢’ of V® V into W such that f(z, v)
=elu, v)¢'. It is easy to verify that f(u, v) =f(u, v)¢¢' and that e(w, v) = -
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e(u, v)¢'¢ for all w and v in V. Thus since e generates V® V and f generates
W, it follows that ¢ and ¢’ are reciprocal isomorphisms.
Note that e(w, v) = Dle(so, v.) + 2 (2o, v3) — e(vs, u;). We next consider
a<3

some special cases of the above proposition.

Case 1. V is a free abelian group. Let {vr: r&TI'} be a free set of
generators for V. By Proposition 4.5, [v,1®[v,;1 is an infinite cyclic group if
a=B and [(v.]®[v.]1=0. Thus by Proposition 4.6

VeV= Eﬁ EH[M:@ 7)51
For elements u= > %yvr and v = > y:vr in V

e(u, v) = Eﬁ (%095 — %s94) (V2 @ v3).

Case II. V is a finitely generated abelian group. Then
V=TiH...T:HLH...HIy

where T; are finite cyclic groups of order t¢; #; divides ti:;, and the I; are

infinite cyclic groups. It follows from Propositions 4.5 and 4.6 that

V® V=1free group of rank (£%— £)/2
¥ a direct sum of £ copies of T; for i=1,..., k
) a direct sum of copies of T:® T for 1<i<j< £.

Note that 7:Q T; (i<j) is a cyclic group of order t.

By using Propositions 4.5 and 4.6 we can also compute V® V when V is
a direct sum of cyclic groups.

Fuchs [4] has shown that if V is torsion, then the ordinary tensor product
V®'V is a direct sum of cyclic groups. It follows from this result and from
Proposition 4.1 that the skew tensor product V® V is also a direct sum of

cyclic groups.

Case III. V is a complete abelian group. Then V= THF, where T is the
torsion subgroup of V and F is a torsion free subgroup of V. By Proposition
4.6

VRVE(TRQT)B(TRF)B(FRF),

and by Proposition 4.2, T T=(T®F)=0. Therefore VR V=FQF, and
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without loss of generality we may assume that V is a rational vector space.
Let {v+: y&TI} be a basis for V. Then V=)\HRvr, where R is the field of
rational numbers and by Proposition 4.6

Vo V= > ®(Rv.® Rup).
a<f
If m and n>0 are integers, «, =" and %, y € R, then
n((m/n)xv. QYv;s) = mxv, Q yv; = m(xv, QYv3).
Since by Proposition 4.8, V® V is torsion free, it follows that

(m/n) (20, @yv3) = (m/n) %0 R YV = %0, ® (m/n) yvs.

If x € Rva® Rv,, then x= %0, ®yive = (2)%:9:) (v.®@v,) =0, where the x; and
the y; belong to R. Therefore Rv.® Rv, = 0.

Next we show that if a=f, then Rv.@ Rys=R. For x and y in R define
that

f(xve, yv5) = xy.

Then since Rv. Rv; =0, it follows that f is a (*)-mapping of Rv.x Ru; into
R. Therefore by Proposition 4.3 there exists a homomorphism ¢ of Rv.® Rug
onto R such that xy=f(xv., yv5) = (x0.Qyv)¢. If x = Rvo® Rvy and 0 = x9,

then
X = 2%t Q@ ¥ivs = (2% 9i) (0. ® v,).

Thus 0= x¢ = >, %y, and hence x =0. Therefore ¢ is an isomorphism, and

VeV > ®(Rv.® Ru;)

a<p

where each Rv,® Ry is a one dimensional rational vector space. Note that if

%= > %0, and v = >,y,9, are elements in V, then

elu, v) = 2 (Xa¥p — % ¥:) (V. Q vp).

a<f
In particular, {v.®vsla <B} is a basis for VQ V.
Once again let U and V be abelian groups and let U; and V; be subgroups
of U and V respectively. It is easy to show that the mapping of D x;Q@yie Us

® Vi upon 2 xi®@y; € U® V is a homomorphism-the natural homomorphism of
Ui® Vi into UR V.
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PrOPOSITION 4.7. Let Vi be a subgroup of V. If Viis pure in Vor if V
is torsion free, then the natural homomorphism of ViQVy into VRV is an

isomorphism.
Prorosition 4.8. If V is torsion free, then so is VQ V.

Proof. Suppose that z=>%;Qy;€ V® V and that nz=0 for some n>0.
Let Vi be the subgroup of V generated by the x; and the y;. Then V; is a
free abelian group, and hence by Proposition 4.6 V;® V; is torsion free. But
by Proposition 4.7 the natural homomorphism of Vi;® V; into VQV is an

isomorphism. Thus it follows that z=0, and hence V® V is torsion free.

ProrosiTionN 4.9. If © is an endomorphism of V, then the mapping n' of
S % Qi upon > \xin Qyin is an endomorphism of VQ V. If n is an automorphism,
then so is n'. We say that n' is induced by n. The mapping n—>rn' is a homo-
morphism with respect to multiplication. In particular, the induced automorphisms
of VRV form a group.

ProrosiTiON 4.10. If V=2V, then the mapping %x—2 x% is an automorphism
of VQV.

Proojf. Let A be the set of all elements in V whose order is a power of 2.
Then A is a complete subgroup of V, and hence V=A® B where B contains
no elements of order 2 and 2 B=B. Thus x-2 x is an automorphism of B and

it follows from Proposition 4.9 that y -2 y is an automorphism of BQ B.
VeV=(ARA)®(AQB)® (BRB).

Since A is divisible and torsion, A® A =0 (Proposition 4.2). Consider ac A
and b= B. If 2" is the order of g, then since 2"B=B, a®b=a®2"c=2"aQc
=0Qc=0 for some ce B. Thus A® B =0 and hence x > 2 x is an automorphism
of V3 V=BQ®B.

CoroLLARY If V=2V and V is a torsion group, and if N is a subgroup of
VRV, then x>2x is an automorphism of (VR V)/N.

Suppose that V=2 V and let V®'V be the ordinary tensor product of V
by itself. Then by the analogue of Proposition 4.10, the mapping x—2 x is an
automorphism of V®'V and for all @, b in V,

a®Rb=1/26@'b—bR'a) +1/2(aR b+ bR 'a).
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As in the theory of linear transformations, this is the unique splitting of e'(a, b)

=a®'b into its skew symmetric and symmetric parts.

Let S=[a®b-bQ'a: a, bs V]
T=[a®R'6+bRQ'a: a, b V]
THEOREM 4.2. If V=2V, then VQ'V=SDT and S is isomorphic to VR V.

Moreover, both S and T are characteristic subgroups of VQ'V with respect to
the induced automorphisms of VR'V.

Proof. Clearly VQ'V=S®T. For a, bV, let
fla, b) =1/2(a®@'b—bR'a).

Then f is a (*)-mapping of VX V into S that generates S. Thus by Proposition
4.3 there exists a unique homomorphism ¢ of V® V onto S such that (a®b)¢
=/(a, b). If 0=(2a:i®bi)¢ = 211/2(ai®@'b;i — b; @ 'a;), then

2ai®bi = (2ai® 'bi)n =
(X1/2(ai@'b; + b; R 'ai) )n = 0,

where 7 is the natural homomorphism of V®'V onto V® V (see Proposition
4.1). Therefore ¢ is an isomorphism of V® V onto S.

We close this section by determining the structure of the induced automor-

Dhism group for VRV, where V is a rational vector space.

Let = be an automorphism of V, let n’ be the induced automorphism of
V®V, and let v, v2, ... be a basis for V. Then since 7 is a linear trans-

formation, for each 7=1,2, ...,
ViT = Qi 101 -+ aisV2 -+ Qi3 V3 + .-

where all but a finite number of the rational numbers a;; are zero. Since
{viQuvj: i<j} is a basis for V® V, for i<j

vin@uin = (@iwi+ @i+ * + )@ (@j 101+ ajevs + + + +)

Qi1 Qi
aji QGj»

Qi1 Qi3
Gj1 Gj3

(1, @uz) + (11 Qus)+ - - -

Gir Qis
QAjr Gjs

(vr® vs)-

r<S

In particular if dim (V) = is finite, then dim(VQ® V) = (#*—n)/2, = is deter-

mined by the non-singular rational matrix
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......

air Gt axn]
Gn1 Gn2* ° *Qnn
and n' is determined by the non-singular rational matrix

an ap) L. LG n-1 GLn

Qa1 G

a1 Qi3
Q1 A3

laz n-1 Gz, n
Al = ’
an-1,1 Gn-1,2| , An-1,n-1 Gn-1,n

Qn,1  CGn,2

LY

Qn,n-1 Qn,n
and the mapping A—- A’ is a homomorphism.

ProposiTion 4.11. |A'|=]A]"L

Proof. A=IL-+L---1I, where the I, are elementary matrices that are
obtained from the # X # identity matrix / by multiplying a row or column by
0=d or by adding a row or column of 7/ to another row or column of I. Since
the mapping A- A' is a homomorphism, A'=I;1;- - - I,. If I; is obtained by
multiplying a row (or column) of I by O0=d, then |L|=d and |I}|=d"*
because I; is the matrix obtained from the (n* — #)/2 x (#® — %)/2 identity matrix
J by multiplying # — 1 of the rows (or columns) of J by d. If I; is obtained

from I by adding one row (or column) to another, then |/;| = [Tl = 1. Therefore
[A =110 L =L R =AM

LEMMA 4.4. Let A =(aij) be an nXn non-singular rational matrix, let I
be the nx n identity matrix, let J be the (n'—n)/2x (n® — n)/2 identity matrix
and let A' be as above. If n=3 and A'=], then A= = 1I.

Proof. From
Q11 Q2| _ |Gy Q22|
131 A3 1@z A3
we have andz+an( —axy) =0

@nay + an(— an) = 0.

But because of

G11 G| _ 120
Q1 G
we infer that aw = —ay =0. This argument shows (when #n>3) that A must

be a diagonal matrix. Then from aua =anazp =1 etc.,, we get that A must be

https://doi.org/10.1017/5002776300001117X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300001117X

34 PAUL CONRAD

a scaler matrix, and since 1=]A4'|=1A|"™, A= + I

THEOREM 4.3. Let V be a rational vector space with (finite or infinite)
dimension=3. Tnen the kernel of the natural homomorphism of the group of
automorphisms of V onto the group of induced automorphisms of VQ V consists

of the identity automorphism and the automorphism v—> —v for all v in V.

Proof. Let m be an automorphism of V such that =’ is the identity auto-
morphism of VQ V. Consider 0xveV, and let v=wv;, 1, ... be a basis for
V. With respect to this basis, = is represented by a rational matrix A = (ai;)

and n’ is represented by the rational matrix

a1 a2
G211 Qs

an Qi) |
az Qe

axp Qs
Q2 Q23

Q12 Gu4 |
Qo2 G4

a1 G2 \au ass
Q31 Qx| (G311 (3

A=

......

......

and

1117T=0111)1+ s ainvn n>3.

Consider only the rows and columns of A’ that are formed by the first # rows
and the first # columns of A. This matrix is still the identity matrix. Therefore
by Lemma 4.1, ay=an=*"*"* =a@m= =1 and a;;=0 for all ixj with 7, j<mn.
It follows that v;mr= =9, But », is an arbitrary non-zero element of V, and
hence ar= xa for all a=V. Therefore A is a diagonal matrix with the
diagonal elemets d;= +=1. But since A’ is the identity matrix, either all the
di=1 or all the d;j= —1.
Note that if n =2, then

[6111 012] a1 ar
-
Q21 QG2 a1 Q22

is the natural homomorphism of the automorphisms of V into the automorphisms
of V® V. The kernel in this case consists of all the matrices with determinant
equal to 1.

Note also that if V is a quasi-cyclic group, then V@ V=0. Thus our
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theorem does not hold for arbitrary complete groups.

5. The Groups H(4, (dx 4)/K, ) and the Class .&*

Let 4 be an abelian group, and let e be the natural (*)-mapping of 4x 4
into 4® 4, namely e(a, f) =a ®p. Let G=G(4, 4Q4,¢e), andlet Q =0 x (4R 4).
From the propositions in Section 2 it follows that Z(G)2Q22 Q2C(Q). Also,
by the propositions in Section 4, if 4 is torsion free or divisible, then so are
4% 4 and G.

TureoreM 5.1. Let H be the group H(4, N, f), where 4 and N are abelian
groups and f is a (*)-mapping of 4x 4 into N that generates N. Let ¢ be the
unique homomorphism of Ax d onto N such that f(a, B) =ela, B)¢ for all «
and B in 4.  Then the mapping o of (a, a) EG(4, AR 4, e) upon (a, ag) is a

homomorphism of G onto H — the natural homomordphism.

Proof. [, a)+ (B, BYlo=(a+ B, ela, B) +a+b)s
= (a+ B, ela, B¢+ agp + bY)
= (a+ B, fa, B) + ap + by)
=(a, a)o+ (B, b)e.

Let ¥ be the class of all nilpotent groups of class 2 that have represen-
tations H(4, N, f), where 4 and N are abelian groups and f is a (*)-mapping
of 4% 4 into N that generates N. Then by the above theorem, each group in
< is a homomorphic image of a group of the form G(4, 4Q 4, e). In fact,
each group in & has a natural representation of the form

H(4, (40 /K, 1)
where K is a subgroup of 4® 4 and for all « and 8 in 4
fla, )=K+a®8§.

We shall always choose such a representation, and H(4, (4Q 4)/K, f) will always

denote such a representation.

Let & be the class of all complete nilpotent groups of class 2, and let %
and .Z be the classed defined in section 3. Then by Theorem 3.1 and the
remarks after the definitions of ¥ and 2,

b Igcbc S

https://doi.org/10.1017/5002776300001117X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300001117X

36 PAUL CONRAD

Now let G be an arbitrary nilpotent group of class 2. If g is the commutator
function, g(C(G) +a, C(G) +b) =[a, b], then G(G/C, C, g) belongs to . If

{ge G: nge C(G) for some n>0} < Z(G),

then by Theorem 3.2 in [3] there exists a completion of G. Hence G is a

subgroup of a group in .

THEOREM 5.2. Let 4 and N be abelian groups and let G be a central extension
of N by 4. If 4 is torsion free or if N contains no elements of order 2, then
G is a subgroup of a group in .

Proof. G has a representation G(4, N, f), where f is a factor mapping of
4% 4 into N, and G(4, N, f) is a subgroup of G(4, N* f), where N* is the
abelian completion of N. If 4 is torsion free, then by Lemma 3.4 in [3], f is
equivalent to a (*)-mapping k of 4x 4 into N*. If N contains no elements of
order 2, then neither does N* and hence by Theorem 2.1 in [3], f is equivalent
to a (*)-mapping % of 4x 4 into N*. Thus in either case

GSH(4, N*, h)

where & is a (*)-mapping of 4 x 4 into N*. Now N* is a homomorphic image
of a rational vector space D. Pick a rational vector space V with dimension
d(V® V)>d(D). Let ¢ be a homomorphism of V® V onto N* and for « and
Bin Vlet gla, B) =(a«®B)s. Then g is a (*)-mapping of Vx V into N* that
generates N*. Let J be the direct sum of the extensions H(4, N* k) and K(V,
N* g) of N* with amalgamated N*. Then GCJje.~.

If G=G(4, N, f) and the subgroup of N that is generated by f contains
no elements of order 2, then by an entirely similar argument it follows that G
is a subgroup of a group in .. If G is a nilpotent group of class 2 and if the
commutator subgroup of G contains no elements of order 2, then by the above
theorem G is a subgroup of a group in .&.

Suppose that G is a nilpotent group of class 2 that is not a subgroup of a

group in . Then without loss of generality
G=G(4, C, )cH(4, C* f)

where C is the commutator subgroup of G, C* is the abelian completion of C,

C contains elements of order 2, 4=G/C is not torsion free and f is not
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equivalent to a (#)-mapping. Thus C*= A® B, where A contains no elements
of order 2 and B is a direct sum of quasi-cyclic 2-groups. For « and B in 4

we have

fla, B) =1"a, B)+ /" (a, B)
where f'(«, )€A and f"(a, B)=B. By Theorem 2.1 in [3], /' is equivalent
to a (*)-mapping g of 4x 4 into A. Hence
e, B)=gla, B) ~tla+p)+tla) +1B)
where t is a mapping of 4 into A. Thus
fla, B) =gla, B)+f"(a, B) —tla, B) +t(a) +t(R).

Hence, without loss of generality, /' is a (*)-mapping. The trouble is caused
by groups of the form H(4, B, /). For example, it is easy to show that the
non-abelian groups of order 8 are not subgroups of groups in .

For each abelian group 4, let #(4) be the class of all groups in & that

have a representation of the form
H(4, (4 /K, f).

If 4, and 4, are abelian groups, 2 4; = 4; and H;=./(4;) for i=1, 2, then without

loss of generality
H;=Hi(4;, (4®4)/K;, 1) (i=1, 2).

By Proposition 2.6, C(H;) =0 x ((4ix 4;)/K;). Thus if = is a homomorphism
of H, onto H,, then C(H\)r = C(H;) and hence » induces a homomorphism of
4, onto 4. In particular, if H;=H,, then 4,=4,. Thus if we restrict our
attention to the groups G in .&¥ for which 2 G =G, then if two such groups
are isomorphic, they belong to the same .#(4).

TueorREM 5.3. Let 4 be an abelian group such that 4=2 4, let H; = H;(4,
(4 A)/ K, fi) for i=1, 2, and let » be a homomorphism of H, onto H,. Then
for («, @) in H,

(a0, @) = (am, am + ars)

where m is an endomorphism of 4 onto 4, w3 is a homomorphism of Ny = (4@ 4)/
K onto Ny =(4Q 4)/K,, and n; is a homomorphism of 4 into N..  Moreover,
Kin)! € K, where ! is the endomorphism of AQ 4 that 1s induced by m:, and n;
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is the homomorphism of Ni onto N that is induced by n.!. = is an isomorphism

if and only if mi is an automorphism and Kim\' = K.

Proof. Let = be a homomorphism of H; onto H,. Then since C(H;) =0 x
[(4® 4)/ K] for i=1, 2 (see Proposition 2.6), it follows that (6 X Ny)x =6 X N
and hence by Theorem 2.1

(a, @)7 = (am;, am+ ary)

for all («, @) in H;, where m, is an endomorphism of 4 onto 4, n3 is a homo-
morphism of N; onto N,, and = is a homomorphism of 4 into NNV; such that for
all « and B in 4

f-z(am, ﬁﬂ‘1) =f1(a', B)?z‘a.
Let ¢; be the natural homomorphism of 4® 4 onto N; (i=1, 2).

(@ B¢ =Ko+ (a @ Bt = Ko + am Q P
= folary, fry) = fila, B)ma
= (Kx +(¥®B)Trs = ((X@ B)Solﬂfa-

Thus since the a« ® B generate 4® 4, it follows that

m Do = QP1713.
If x=yri€Kini, then x¢;=yni¢, =yPms=0m =0, and hence x belongs to K.
Thus
Kn{ C K.

It follows that =3 is the unique homomorphism of N; onto N; such that nj¢,
= @3, If n is an isomorphism, then by Theorem 2.1, =, is an automorphism
and 73 is an automorphism. Hence if x=K,, then x = yr| for some y in 4Q® 4,
and so 0 =P, = yrwigs =y¢ims. Thus 0 =y¢;, and hence y=K;. Therefore K\
=K, If n;is an automorphism and Kzi= K, then =i is an automorphism

and hence 3 is an isomorphism. Thus by Theorem 2.1, n is an automorphism.

CoroLLARY L. If 4=2 4 and H;= Hi(4, (4x /K, ;) for i=1, 2, then H,
and H. are isomorphic if and only if there exists an automorphism n of 4 such

that Kin' = K, where rn' is the automorphism of 4Q 4 that is induced by .

Proof. If n is an isomorphism of H; onto H;, then by the theorem Kin,'= K,

for an automorphism =; of 4. Conversely suppose that =; is an automorphisn.I
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of 4 for which Kin{ =K. Let m3 be the isomorphism of N; onto N, such that
¢y = 9. For (a, @) in H; define that

(a, @) = (am, ams).
Then for all « and 8 in 4

Sfolamy, Bm) = Ko+ am @ fri= K+ (¢ @ B)m
= (a @ P)n1P2 = (@ ® B) P13
=(Ki+a® B)ms = fi(a, B)ms.

It follows from Theorem 2.1 that n is an isomorphism of H; onto H..

CoroLLArY II. Suppose that 4=2 4, and let H=H(4, (dQD/K, ). If n
is an endomorphism of H onto H, then for («a, a) in H

(a, @)n = (a, a)(”‘ ;Z) = (am, am+ ans)

J

where ¢ is the zero homomorphism of N=(4Q 4)/K into 4, n: is a homomor-
Dhism of 4 into N, m is an endomorphism of 4 onto 4 such that Kmi S K, and
T is the endomorphism ¢ 'nl¢ of N that is induced by n\. = is an automorphism
if and only if n, is an automorphism and Kn] =K. In particular, if K =0, then

ms=my and w is an automorphism if and only if n; is an automorphism.

The corollary is an immediate consequence of the theorem. Let =, be an
automorphism of 4 such that Krn{=K, let . be a homomorphism of 4 into

4® 4, and let ¢ be the zero homomorphism of 4® 4 into 4. Then

(5 %)

is an automorphism of G(4, 4® 4, e) and the mapping

(5 )= o)

is a homomorphism into the group of all automorphisms of H(4, (4® 4)/K, 1),
where ¢ is the natural homomorphism of 4@ 4 onto (4® 4)/K. This will be
a homomorphism onto the group of all automorphisms of H if and only if ¢
induces a homomorphism of Hom(4, 4® 4) onto Hom(4, (4® 4)/K).

Let H=H(4, (4R 4)/K, f), where 4 is torsion free. Let 4* be the abelian
completion of 4. Since 4* is a rational vector space, it follows that 4*® 4* is
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also a rational vector space. Hence by Proposition 4.7 the natural homomor-
phism of 4® 4 into 4*® 4% is an isomorphism. Thus we may consider 4® 4
as a subgroup of 4*® 4*. If a ® f=4* Q@ 4%, then there exists a positive integer
n such that nea, nfe 4 and hence #n(a @B) =na@nB 4@ 4. It follows that
A*® 4* is the abelian completion of 4®4. For « and B in 4" define that
fMa, B) =K+a®pB. Then r*is a (*)-mapping of 4% x 4% into B= (4*® 4*)/K
that generates B, and H is a subgroup of H*(4% B, f*).

TueoreM 5.4. If 4 is a torsion free abelian group and H = H(4, (4® 4)/K,
1), then H*(4* (4*Q@ 4*)/K, %) is a completion of H. In particular, if K=0,

then H* is the unique torsion free completion of H.

Proof. H* is a nilpotent group of class 2 that contains H and by Proposi-
tion 2.1, H* is complete. Thus it suffices to show that no proper complete
subgroup of H* contains H. Let @ be a complete subgroup of H* that contains
H. If (o, a)Q and » is a positive integer, then there exists an element (3, b)
in Q such that («, @) =n(B, b) = (nB, nb). Therefore {yre4*: (1, c) =@} is
a complete subgroup of 4* that contains 4, hence it must equal 4*. Thus,
since (4*® 4*)/K is generated by f* it follows that @ = H*. If K=0, then
since 4% and, 4* @ 4* are torsion free it follows that H™ is torsion free. Thus
by a theorem of Vinogradov it follows that H* is the unique torsion free
completion of H (see the corollary to Theorem 3.3 in [3]).

The last part of the above theorem may be generalized as follows: Suppose
that H= H(4, (4R 4)/K, f) and that 4 and (4Q® 4)/K are torsion free. Then
there exists a unique completion K* of K in 4*® 4%, and the mapping of K+
as(4® 4)/K upon K*+a is an isomorphism of D= (4® 4)/K into D*= (4*®
4%)/K. Thus we may assume that D is a subgroup of D* and that H is a
subgroup of K (4% D% g), where gla, 3) =K*+a®p for all « and B in 4*
It follows that D* is the abelian completion of D, and that K is the unique
torsion free completion of H. This result and the above theorem are good

illustrations of what is going on in [3].

6. The Groups H(4, (4Q 4)/K, f), Where 4 is a Rational
Vector Space, and the Class <.

Throughout this section 4 will always denote a rational vector space with
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dimension d(4), G will denote the group G(4, 4Q 4, e), and R will denote the
rational numbers. By the second corollary to Theorem 5.3, the group a(G) of
all automorphism of G is isomorphic to the group of all two by two matrices

of the form
(5 %)

where ¢ is the zero homomorphism of 4® 4 into 4, n; is an automorphism of
4, m is a homomorphism of 4 into 4® 4, and =i is the automorphism of 4® 4
that is induced by m;. Since both 4 and 4® 4 are rational vector spaces, it
follows that m, 7, and =] are linear transformations, and that n; and ={ are non-

singular. Suppose that d(4) == is finite, then without loss of generality
G=((x1; e ooy Xny x12, e ooy Xiny x23; R Y T xn—b”): Xi» leER}
and

(%1, o e ey Ty Xizy « v oy Znety) F O oo o, Yy Yiy o o vy Yro1,m)
= (y1+y1, ey XnF Y X1 %Y1 X2 F Yoy - o oy X1V
— X Y1+ Xn-1,n +Yn-1,n)-

If = is an automorphism of G, then

- (33

where

Qi1 G2 ° ° " Qin
mp=\--"- ai;€R, |m|=x0

Qni Qnn
an ar . |@1Ln-1 ai,n
Qz1 Az az, n-1 az,n

An-1,1 @Gn-1,2 An-1,n-1 Gn-1,n

Qn,1 Qn,2

An,n-1 Qn,n

¢ is the (n’—n)/2 by n zero matrix, and = is an n by (#*—n)/2 rational
matrix. Also |n| =zl |#l|={m|" (Proposition 4.10). Thus the group a(G)
is a fairly decent subgroup of the full linear group of (#*+%)/2x (#°+n)/2
non-singular rational matrices. If d(4) is infinite, then the above has a

straightforward generalization.
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LemMmA 6.1. For the elements X and Y in G\ C(G) the following are

equivalent :

(a) X+Y=Y+X.
(b) mX=nY mod C(G) for some non-zero integers m and n.

Proof. X=(a, @) and Y= (B, b), where a =60 p[. Clearly (a) is satisfied
if and only if 0 =e(a, B) =a®B, but this is true if and only if « and B are
dependent (special case III of Proposition 4.6) and this is equivalent to (b).

THEOREM 6.1. G is directly indecomposable and G is not a direct sum of

proper central extensions of C(G) with amalgamated C(G).

Proof. Suppose (by way of contradiction) that G = G;® G,, where G;=0.
Z(G) =Z(G) D Z(Gy). If Z(Gy) =Gy, then GiSOXx (d® 4). If (a, a) is in G,
then (a, a) = (0, ) + («, »), where (6, ¥) €G; and («, ) €G.. Since Z(G) = C(G)
(Corollary II of Lemma 6.3), it follows that G, is generated by elements in
G: a contradiction. Thus there exist a=G,\Z(G) and be G.\Z(G), and
a+b=>b+a. Therefore, by Lemma 6.1, ma = nb mod Z(G) for some non-zero
integers m and n. Thus ma = nb+ d; + d», where d;=Z(G;) for i=1, 2. Since
the Z(G;) are complete, there exists e; = Z(G;) such that me; =d; and #ne, = d,.
Therefore m(a —e)) =n(b+e,) belongs to G, NG, and hence a=e;€ Z(Gy), a
contradiction. Therefore G is directly indecomposable.

Finally suppose that G is a direct sum of proper central extensions G; and
G: of C(G) with amalgamated C(G). Pick X€ G\ C(G) and Ye G\ C(G).
Then X and Y satisfy (a) of Lemma 6.1, but not (b), a contradiction.

Recall that .2 is the class of all complete nilpotent groups H of class 2
such that H/C(H) is torsion free. It is now clear that .Z consists of all those

groups in & that have a representation of the form
H(4, (4 D/K, f)

where 4 is a rational vector space and f is the natural (*)-mapping. Such an
H is torsion free if and only if K is a subspace of 4® 4. The structure of the
group of all automorphisms of H is given by the second Corollary to Theorem
5.3.

LemMma 6.2. If t is a homomorphism of 4 into (Ad® 4)/K, where K is a
subspace of 4Q 4, then there exists @ homomorphism o of 4 into 4R 4 such that
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T = g9, where ¢ is the natural homomorphism of 4Q 4 onto (4Q 4)/K.

Proof. Let %, %5, ... be a basis for 4. In each coset %t of (4R 4)/K
pick a representative @i, xit=K+a;. Let ¢ be the homomorphism of 4 into
4® 4 that is determined by the mapping x;—ai. Then xi0¢ = x;r, and it follows
that ¢¢ =r.

CoroLLARY. If K is a subspace of A® 4, then there is a nalural homo-
morphism of a subgroup of the automorphism group of G(4, 4R 4, e) onto the
group of all automorphisms of H(4, (4R 4)/K, f).

This follows at once from the Lemma and the remarks after the second
Corollary to Theorem 5.3.

THEOREM 6.2. If d(4) is finite, K is a subspace of 4® 4, and n is an
endomorphism of H(4, (4@ /K, f) onto itself, then = is an gqutomorbphism.

Proof. We make repeated use of the second Corollary to Theorem 5.3.
First = induces an endomorphism n; of 4 onto 4, and since d(4) is finite, m
must be an automorphism. Thus #{ is an automorphism of 4® 4 and K=i< K.
Hence, since d(K) =d(Kr}) is finite, Kni=K and it follows that = is an auto-
morphism of H.

For each a4, let B,={a®p : B 4}. Then the mapping f~a®B
is a homomorphism of 4 onto B, with kernel Ra. Thus B. is 'ka subspace of
4® 4, and d(B,) =d(4) —1. Let

H=H(4, (4® 4)/K, f).
By the definition of the class ¥, H&% if and only if C(H) = Z(H)

Lemma 6.3. The following are equivalent:

(a) H belongs to €.

(b)) K+a®pB=K for all B in 4 implies that a = 0.
(¢) B.C K implies that a = 0.

Proof. The proof is straightforward. Note that K in (c) can be replaced

by the maximal complete subgroup K of K, because B. is complete.

CororrarY 1. If K is the maximal complete subgroup of K and if d(K)<
d(4) — 1, then H belongs to ©.
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Proof. If 6xacd, then B, is a subspace of 4®4, and d(B,) =d(4)—1.
Thus if d(K) <d(4) —1, then K satisfies (c).

Cororrary II. If d(4)>1, then G(4, 4R 4, e) belongs to %.

Since d(K) =0<d(d4) —1, this is an immediate consequence of Corollary L

For each cardinal number 2 let

\={He Z: d(H/C(H)) =1}
and let
G\=G(4, 4® 4, e)

where d(4) =2. If H, and H, belong to ., and if H;= H., then there exists a
cardinal number A such that H; and H; belong to .Z,. Let d(4) =4 We have
a correspondence between the groups in 2, and the subgroups of 4® 4.
Moreover, by the first Corollary to Theorem 5.3, if K; and K, are subgroups
of 4@ 4, then the corresponding groups in .7, are isomorphic if and only if
there exists an automorphism = of 4 such that Kiz'’=K,. The group in 9,
that is determined by K is torsion free if and only if K is a subspace of 4® 4,
and it belongs to ¥ if and only if B,< K implies that a =60 for all a in 4,
where K is the maximal divisible subgroup of K. Each of the following two

theorems gives a characterization of G,.

THEOREM 6.3. For each H in .2\ there exists a homomorphism of G onto
H that induces an isomorphism on G,/C(G)). Moreover, if K is any other group
in I\ that satisfies this condition, then K=G,. In particular, if X is finite
and if K is a group in 7, such that every other group in J» is a homomorphic
image of K, then K=G,. ‘

Proof. If HE.Z), then H has a representation H(4, (4® 4)/K, f) and the
natural homomorphism of G, onto H (Theorem 5.1) induces an isomorphism
on G,/C(G)). Conversely, suppose that K= .2, and for each He .Z, there
exists a homomorphism of K onto H that induces an isomorphism on K/C(K).
Let 7; be a homomorphism of G, onto K that induces an isomorphism on
G,/C(G»), and let 7 be a homomorphism of K onto G, that induces an isomor-
phism on K/C(K). Then mn is an endomorphism of G\ onto G, that induces
an isomorphism on G,/C(G,), and hence by the second Corollary to Theorem

5.3. mm is an automorphism. Therefore n; is an isomorphism of G\ onto K..
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In general, if H and K belong to .2, and = is a homomorphism of H onto
K, then C(H)zn = C(K), and hence = induces a homomorphism of H/C(H) onto
K/C(K). In particular, if 1 is finite, then = must induce an isomorphism of
H/C(H) onto K/C(K).

Remark. If 1 is infinite, then there exists a K in .2, such that every other
group in .2, is a homomorphic image of K, but K# G). For example, K= RO G)
has this property. One can also construct a group in Z\N% with this pro-
perty.

THEOREM 6.4. A group H is isomorphic to G if and only if H is a com-
plete torsion free nilpotent group of class 2 that contains a well ordered set S
of elements s, 3, . .. such that

(i) I1Sl=31,
(ii) {C(H) +si|sie S} is a basis for H/C(H),
(iii) {Csi, s;j1|si, s;i€E S and i<j} is a basis for C(H).

Proof. We first show that G\= G(4, 4® 4, e) has these proportions. Pick

and well order a basis B=a;, as, . . . for 4. Then |B| =24 and
{0x(4® 4) + (ai, 0) |ai = B}
is a basis for G,/C(G)), and since [(ai, 0), (aj, 0)1= (6, 2 a;i @ a;j)
{[{a;, 0), (aj, 0)1lai, j€ B and i<j}
is a basis for C(G)).

Conversely suppose that H satisfies the conditions in the Theorem. Then,
since H is torsion free and d(H/C(H)) =21, H belongs to .2, and has a
representation

H(4, (4R 4)/K, f)

where K is a subspace of 4® 4 and f(a, B)=K+a®pB for all « and B in 4.
Let s;=(ai, a;) be the given subset of H that satisfies (i), (ii), and (iii).
Then clearly the a; form a basis for 4. If k€ K, then in G\=G(4, 4Q 4, e)

we have

(8, &) = (6, Z} kij(ai ® aj)),

thus under the natural homomorphism of G\ onto H
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i<y i<j 2

Lsi, sil.

But since {[s;, s;11i<j} is a basis for C(H), it follows that all of the k;; are
zero, and hence K=0. Therefore H= G\

THEOREM 6.5. Let G = G, where n is finite. Then G is the unique nilpotent
group of class 2 such that G/C(G)=4 and C(G)=4Q 4.

Proof. Suppose that H is a nilpotent group of class 2 and that H/C(H) =4
and C(H)=4® 4. Then H has a representation H(4, 4® 4, f) where f is a
(*)-mapping ([3] Theorem 2.1.). It follows that H is complete and hence by
Theorem 3.1 f generates 4® 4. Thus there exists a unique homomorphism
of 4® 4 onto itself such that f(a, B) = («a®B)¢ for all a, = 4 (Proposition
4.3). Since d(4® 4) = (#*—n)/2 is finite, ¢ is necessarily an automorphism.
It follows that the natural homomorphism of G» onto H (in Theorem 5.1) is

an isomorphism.

Remark. If d(4) =2 is infinite, then the above theorem is false. For let
¢ be a homomorphism of 4® 4 onto itself that is not 1—1. Define f(a, B) =
(a®RB)¢ for all &, BE 4 and let

H=H(4, (40 4)/K(¢), 1)

It follows easily that C(H)=~4® 4 and H|C(H) = 4, but by the first Corollary
to Theorem 5.3, H¥ G.
A group -« of automorphisms of a group @ is transitive if for each pair

of non-zero elements @ and b in @ there exists a ¢ € a such that as =b.

THEOREM 6.6. Let H=H(4, (AQ 4 /K, /) € T and let ¥ be the group of
automorphisms of 4Q 4 that are z'nduced by the automorphisms of 4. The

JSollowing are equivalent:

a) & is transitive modulo K,

b) Every element in C(H) is a commutator.

Proof. Clearly (b) holds if and only if for each Z in (4® 4)/K there exist
X and Y in 4 such that Z=K+ X® Y. Thus using the notation that was
developed at the beginning of this section, it follows that (b) is equivalent to
(b') for each (z;, ...) in 4® 4 there exist (%, ...)and (y, ...) in 4 such,

/
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that (21, R (xlyz—‘xzy1, ...)EK.

On the other hand, (a) is true if and only if for each non-zero (z, . ..)
in 4® 4 there exists an automorphism = of 4 such that (1, 0,0, ...)z' —
(21, ...)€ K. Thus (a) is equivalent to
(a') for each (z;, ...) in 4® 4 there exist rational numbers a;; such that

au ap G aw| ) _
( a1 G ' ’021 G|’ ) (Zh 22) €K

Clearly (a') and (b') are equivalent.

CoroLLARY. The group & of all automorphisms of 4Q 4 that are induced
by the automorphisms of AR 4 is transitive if and only if each element in the

commutator subgroup of G(d4, 4R 4, e) is a commutator.

In section 7 we show that & (in the Corollary) is transitive if and only if
d(4) =1, 2, or 3.

7. Special Cases and Examples

Let 4 be a rational vector space, and let G=G(4, 4R 4, e). If d(4) =1,
then 4® 4 =0, and hence G= 4= R, the rational numbers.

Suppose that d(4) =2. Then d(4® 4)=1, and so without loss of generality
4@ 4=R. If K is a proper subgroup of 4® 4. then 0 is the maximal complete
subgroup of K, and d(0) =0<1=d(4)~1. Thus by the first Corollary to
Lemma 6.3, H(4, (4Q 4)/K, f) belongs to % except when K=4® 4. The
mapping

an ar
Q1 Gz

( a1 ap )
-
Q21 Q22

is a homomorphism of the group of automorphisms of 4 onto the group of

automorphisms of 4@ 4. Thus each automorphism of 4® 4 is induced by an
automorphism of 4. In particular, if A and B are subgroups of 4® 4, then
AZB if and only if there exists an automorphism = of 4 such that A7’ = B.
Let 2} be the set of all equivalence classes of isomorphic groups in %, and
R be the set of all equivalence classes of isomorphic subgroups of R. It
follows from the first Corollary to Theorem 5.3 that there is a 1—1 corre-

spondence between .Z; and R'. Now by Baer’s theory on the subgroups of R
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we have a complete set of invariants for R (see [4] pp. 145-149). Consider
H(4, U D/K;, ;) (i=1,2) in D, Suppose that K; is of type (%1, %, .. .)
and that K; is of type (y1, %5, . ..). Ki=K, if and only if (%, %2 ...) = (¥,
%2, ...), that is, if and only if x =y; for all but a finite number of 7 and if
%% i, then both x; and y; are integers. Therefore Hi= H, if and only if (x,
%, . ..)=(y, ¥, ...). Ontheother hand, (4® 4)/K:i=(4® 4)/K; if and only

if for all ¢
xi= oo if and only if y; = co.

Thus for a fixed homomorphic image N of R there are infinitely many non-
isomorphic groups H(4, (4® 4)/K, f) such that (4Q 4)/K=N.

LemMma 7.1. Let d(4) =3 and let A and B be subspaces of 4@ 4. If d(A)
=d(B), then there exists an automorphism = of 4 such that Arn' = B.

Proof. Since d(d® 4) =3, d(A)=0,1,2 or 3. If d(A)=d(B)=0 or 3,
then clearly the identity automorphism of 4 will do. If d(A)=d(B) =2, then
A =Rx@® Ry, where x = (%1, %, x3) and y = (yy, ¥, ¥3) are independent. It suffices
to show that there is an automorphism 7 of 4 such that xz'= (1, 0, 0) and
yr'=(0,1,0). Note that this also takes care of the case where d(A) =d(B) =1,
and it shows that the group & of automorphisms of 4® 4 each of which is

induced by an automorphism of 4 is transitive.

Q21 G Q23

xr! = xA' = (%, %, xa)(du ap 013)' =
as1 A Az

(%1445 + %2 A + %3413, %1 Az + %Az + %3410, %143+ %Az + %3A1), where the Al; are

the minors of the matrix A. Let (ass, as, ais) = (%1, — %2, %3), and let (a@s, a,

ap) = (¥, — 2 ¥3), and choose @y, @2 and as so that |A]=1. Then we have
xA'=(1, 0, 0) and yA'=(0, 1, 0).

CoroLLARY. If d(4) =1, 2 or 3, then every element in the commutator
subgroup of G(4, 4Q 4, e) is a commutator.

This is an immediate consequence of Theorem 6.6 and the fact that the
group & of automorphisms of 4® 4 each of which is indued by an automor-

phism of 4 is transitive.
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TueOREM 7.1. For a group H and n=1, 2, 3 the following are equivalent:
a) H is isomorphic to Gn=G(d4, 4R 4, €) where d(4) =n;
b) H is a torsion free group in D and for a, b H\C(H), a+b=b+a

if and only if na=nb mod C(H) for some non-zero integers m and n.

Proof. By Lemma 6.1, G, satisfies (b) with no restriction on #n. Conversely
suppose that H satisfies (b). Without loss of generality

H=H(4, (4@ 4)/K, 1)

and since H is torsion free, K is a subspace of 4® 4. Clearly if n=1 or 2,
then K=0. Suppose (by way of contradiction) that #=3 and K%0. Let ay,
as as be a basis for 4. By Lemma 7.1 there exists an automorphism = of 4
such that Kr 2 R(a; @ az). This means that (aj, 0) and (a., 0) commute and
clearly mai= na, for any pair of non-zero integers, a contradiction.

If d(4) =4, then d(4® 4) =6 and a straightforward computation shows
that the group & of induced automorphisms of 4® 4 is not transitive. Thus
& is transitive if d(4) <3 and not transitive if d(4)>3. It follows that the
converse of the Corollary to Lemma 7.1 is valid, and that Theorem 7.1 is false
for n>3.

Each torsion free complete nilpotent group H of class 2 for which d(H|C(H))
is finite determines an ordered pair of integers (m, m), where m = d(C(H)) and
n=d(H|C(H)). We say that H is of type (n, m). Clearly the groups of type
(n, (n*—n)/2) are unique (to within an isomorphism) because they have a
representation of the form G(4, 4® 4, e) where d(4) =n. An immediate con-
sequence of Lemma 7.1 is that the groups of type (3,1) and (3, 2) are unique.

The group of type (3, 2) is determined by the (*)-mapping
S((x1, 22, %3), (1, 32, ¥3)) = (¥1y2 — %291, X1Ys — X391).

The group of type (3, 1) is a direct sum of R and the group of type (2, 1).
If d(4) =4, then the group & of induced automorphisms of 4® 4 is not trans-
itive. It follows that there exist non-isomorphic groups of type (4, 5).

Groups of type (n,1). Let G=G(4, R, f) where 4 is an n-dimensional
rational vector space and f is a (*)-mapping of 4 X 4 into R that generates R.
Let 0y, ..., 0, be a basis for 4, and consider a« = a161+ * * - +andn and B=
B101+ * + * Bnds in 4. Then
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a, B) = ;joaﬁff(a;, 8;) = g} (@i — ajBi) (i, 8).

Let 7(6:, 6;) = @ij. Then
f(a', B)= ((X;, « .. ,(Xn) (aij) (Bl, . ooy BM)T.

Thus f is determined by an znxn skew-symmetric rational matrix A = (aij).
Moreover, the mapping (a, @) ((a1, . . ., ax), @) is an isomorphism of G(4,
R, f) onto G(R,, R, A), where R,=RXRX - -+ xR (n factors). Let a—a*P
be an automorphism of R, (where P is an n#nXxn non-singular matrix). The
mapping ¢ of (a, @) upon (aP, @) is an isomorphism of G(R,, R, A) onto
G(Ru, R, P’AP™") and hence we may as well assume that A has the canonical
form

If n=2m is even, then C(G) = Z(G) if and only if 4 is non-singular. Thus
there exists a unique group of type (2 m, 1) in %, namely the one determined
by the non-singular 2 m X 2 m matrix in the above form.

Let G be a group of type (», 1) and let 2 m be the rank of the canonical
matrix A that is determined by G. Then clearly G is (isomorphic to) a direct
sum of the group of type (2 m, 1) in ¥ and a rational vector space of dimen-
sion #—2m. Thus two groups of type (n, 1) are isomorphic if and only if
their canonical matrices have the same rank.

It is easy to see that the group G of type (2m, 1) in & is a direct sum of
m groups of type (2, 1) with amalgamated R. The group -« (G) of all auto-
morphisms of G is a homomorphic image of the group of all automorphisms of
the group of type (2 m, 2 m*-m). By using Theorem 2.2, it is easy to show
to show that «/(G) is isomorphic to the group of all 2m+1)X (2 m+1)

rational matrices of the form

an* " " @Giem q:
Q2m,1° ° " Qrm,2m Qam
0:--0 d
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where

Az[an"'m,zm ]

Gym,1* * " C2m,2m

is a non-singular matrix that satisfies
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