ON THE ALMOST PERIODIC SOLUTION OF AN ABSTRACT DIFFFERENTIAL EQUATION

ARIBINDI SATYANARAYAN RAO

(Received 15 August 1972)

Communicated by J. P. O. Silberstein

Abstract. Under certain suitable conditions, the Stepanov-bounded solution of an abstract differential equation corresponding to a Stepanov almost periodic function is strongly (weakly) almost periodic.

1

Suppose X is a Banach space and X^* is the dual space of X. Let J be the interval $-\infty < t < \infty$. A continuous function $f: J \to X$ is said to be (Bochner or strongly) almost periodic if, given $\varepsilon > 0$, there is a positive real number $\ell = \ell(\varepsilon)$ such that any interval of the real line of length ℓ contains at least one point τ for which

(1.1)
$$\sup_{t \in J} \left\| f(t+\tau) - f(t) \right\| \leq \varepsilon.$$

We say that a function $f: J \to X$ is weakly almost periodic if the scalarvalued function $\langle x^*, f(t) \rangle = x^*f(t)$ is almost periodic for each $x^* \in X^*$.

For $1 \leq p < \infty$, a continuous function $f: J \to X$ is said to be Stepanovbounded or S^{p} -bounded if

(1.2)
$$||f||_{S^p} = \sup_{t \in J} \left[\int_t^{t+1} ||f(s)||^p ds \right]^{1/p} < \infty.$$

For $1 \leq p < \infty$, a continuous function $f: J \to X$ is said to be Stepanov almost periodic or S^{p} -almost periodic if, given $\varepsilon > 0$, there is a positive real number $\ell = \ell(\varepsilon)$ such that any interval of the real line of length ℓ contains at least one point τ for which

(1.3)
$$\sup_{t\in J} \left[\int_t^{t+1} \|f(s+\tau) - f(s)\|^p ds \right]^{1/p} \leq \varepsilon.$$

Let $\mathscr{L}(X, X)$ be the set of all bounded linear operators of X into itself. An operator-valued function $T: J \to \mathscr{L}(X, X)$ is called a (strongly) continuous group if

252

(1.4) T(0) = I = the identity operator of X;

(1.5)
$$T(t_1 + t_2) = T(t_1)T(t_2)$$
 for all $t_1, t_2 \in J$;

(1.6) for each $x \in X$, T(t)x, $t \in J \to X$ is continuous.

Denote by A the infinitesimal generator associated with the continuous group T(t), with domain of definition D(A) (see Dunford-Schwartz [3]).

The group T(t) is said to be almost periodic if $T(t)x, t \in J \to X$ is almost periodic for each $x \in X$.

Our main result is as follows.

THEOREM 1. Suppose X is a reflexive Banach space, A is the infinitesimal generator of an almost periodic group T(t), $t \in J \to \mathcal{L}(X, X)$, f(t), $t \in J \to X$ is an S^p-almost periodic continuous function with $1 \leq p < \infty$, and u(t), $t \in J \to D(A)$ is a (strong) solution of the differential equation

(1.7)
$$u'(t) = Au(t) + f(t)$$
 on J.

Then, if u(t) is S^p-bounded, it is almost periodic from J to X.

REMARK. For $T(t) \equiv I$, and hence A = 0, Theorem 1 reduces to a result which extends a theorem of Prouse [4, Theorem 5.1] for p = 1.

2

We require the following lemmas

LEMMA 1. Any solution of (1.7) has the representation

(2.1)
$$u(t) = T(t)u(0) + \int_0^t T(t-s)f(s)ds.$$

PROOF. For an arbitrary but fixed $t \in J$, an application of the operator T(t - s) to (1.7) yields

(2.2)
$$T(t-s)[u'(s) - Au(s)] = T(t-s)f(s), s \in J.$$

Integrating (2.2) from 0 to t, we obtain

$$\int_0^t T(t-s)[u'(s) - Au(s)]ds = \int_0^t T(t-s)f(s)ds,$$

that is,

[2]

$$\int_0^t \left[\frac{d}{ds} T(t-s)u(s) \right] ds = \int_0^t T(t-s)f(s)ds,$$

which gives the desired representation.

LEMMA 2. If g(t), $t \in J \to X$ is an almost periodic function, and if T(t), $t \in J \to \mathcal{L}(X, X)$ is an almost periodic group, then T(t)g(t) is an almost periodic function.

PROOF. See Zaidman [5].

Proof of Theorem 1. By (2.1), we have

(3.1)
$$u(t) = T(t)u(0) + T(t) \int_0^t T(-s)f(s)ds \quad \text{on } J$$

Consider the function

$$f_h(t) = \frac{1}{h} \int_0^h f(t+s) ds \quad \text{for any } h > 0.$$

Since f is S^P-almost periodic, and hence is S¹-almost periodic, it follows easily that $f_h(t)$ is almost periodic for each fixed h > 0. As shown for scalar-valued functions in Besicovitch [2], pp. 80-81, it can be proved that $f_h \to f$ as $h \to 0 + in$ the S¹ sense, that is,

(3.2)
$$\sup_{t \in J} \int_{t}^{t+1} \|f(s) - f_{h}(s)\| ds \to 0 \quad \text{as} \quad h \to 0 + t$$

Obviously, T(-s), $s \in J \to \mathscr{L}(X, X)$ is an almost periodic group. So, for each $x \in X$, the function T(-s)x is almost periodic, and hence is bounded on J. Thus, by the uniform boundedness principle,

(3.3)
$$\sup_{s \in J} \left\| T(-s) \right\| = M < \infty.$$

Now we have

(3.4)
$$T(-s)f(s) = T(-s)[f(s) - f_h(s)] + T(-s)f_h(s),$$

and, by (3.3),

(3.5)
$$\sup_{t \in J} \int_{t}^{t+1} \|T(-s)[f(s) - f_{h}(s)]\| ds \leq M \sup_{t \in J} \int_{t}^{t+1} \|f(s) - f_{h}(s)\| ds \to 0 \quad \text{as} \quad h \to 0+$$

By Lemma 2, the functions $T(-s)f_h(s)$ are almost periodic from J to X. Therefore it follows that T(-s)f(s) is S¹-almost periodic from J to X.

We write

(3.6)
$$v(t) = \int_0^t T(-s)f(s)ds$$
 on J.

Then, by Theorem VIII, page 79, Amerio-Prouse [1], v(t) is uniformly continuous on J. From (3.1) and (3.6), we obtain

(3.7)
$$T(-t)u(t) = u(0) + v(t).$$

We observe that the S^{p} -boundedness of u(t) implies the S^{1} -boundedness of u(t). Consequently, by (3.3) and (3.7), v(t) is S^{1} -bounded.

Almost periodic solution of a differential equation

By (3.6), we have

(3.8)
$$v'(t) = T(-t)f(t) = w(t)$$
, say.

Now consider a sequence $\{\rho_n(t)\}_{n=1}^{\infty}$ of infinitely differentiable non-negative functions such that

(3.9)
$$\rho_n(t) = 0 \text{ for } |t| \ge n^{-1}, \int_{-n^{-1}}^{n^{-1}} \rho_n(t) dt = 1.$$

The convolution between v and ρ_n is defined by

(3.10)
$$(v * \rho_n)(t) = \int_{-\infty}^{\infty} v(t-s)\rho_n(s)ds = \int_{-\infty}^{\infty} v(s)\rho_n(t-s)ds.$$

From (3.8), it follows easily that

(3.11)
$$(v * \rho_n)'(t) = (w * \rho_n)(t)$$
 on J.

We set

(3.13)

(3.12)
$$C_{\rho_n} = \max_{|t| \le n^{-1}}$$

Then we have

$$\|(v * \rho_n)(t)\| = \left\| \int_{-1}^{1} v(t - s)\rho_n(s)ds \right\|$$

$$\leq C_{\rho_n} \int_{t-1}^{t+1} \|v(\sigma)\| d\sigma$$

$$\leq 2C_{\rho_n} \|v\|_{S^1} \quad \text{for all } t \in J.$$

Similarly, we can show that $(w * \rho_n)(t)$ is almost periodic from J to X. So, X being a reflexive Banach space, it follows from (3.11) that $(v * \rho_n)(t)$ is almost periodic from J to X for all $n = 1, 2, \cdots$ (see Amerio-Prouse [1], page 55 and Authors' Remark on page 82).

 $\rho_n(t)$.

Further, by the uniform continuity of v(t) on J, the sequence of convolutions $(v * \rho_n)(t)$ converges uniformly to v(t) on J. Therefore v(t) is almost periodic from J to X. Hence, by (3.7), T(-t)u(t) is almost periodic from J to X.

Consequently, again by Lemma 2, T(t)[T(-t)u(t)] = u(t) is almost periodic from J to X, which completes the proof of the theorem.

4

THEOREM 2. Suppose X is a Banach space, A is the infinitesimal generator of a continuous group T(t), $t \in J \to \mathscr{L}(X, X)$, with the group of adjoint operators $T^*(t)$, $t \in J \to \mathscr{L}(X^*, X^*)$ being almost periodic, f(t), $t \in J \to X$ is an S^{P} -almost periodic (or weakly almost periodic) continuous function with $1 \leq p < \infty$. If u(t), $t \in J \to D(A)$ is an S^{P} -bounded solution of the equation (1.7), then it is weakly almost periodic.

To prove Theorem 2, we require the following lemma.

LEMMA 3. If $\alpha(t)$ is weakly almost periodic from J to X, and if $\beta(t)$ is almost periodic from J to the dual space X*, then $\beta(t)\alpha(t)$ is almost periodic from J to the scalars.

PROOF. See Amerio-Prouse [1, Page 72].

Proof of Theorem 2. The application of an arbitrary but fixed $x^* \in X^*$ to (3.7) gives

(4.1)
$$x^*T(-t)u(t) = x^*u(0) + \int_0^t x^*T(-s)f(s)ds$$
 on J.

By the assumption made on T^* , $x^*T(-s) = T^*(-s)x^*$ is almost periodic from J to X^* , and so is bounded on J. We set

(4.2)
$$\sup_{s \in J} \left\| x^*T(-s) \right\| = K < \infty.$$

Again consider the function f_h defined in the proof of Theorem 1. By Lemma 3, $x^*T(-s)f_h(s)$ is almost periodic from J to the scalars. So it follows from (3.2) and (4.2) that $x^*T(-s)f(s)$ is S¹-almost periodic from J to the scalars.

Also, by (4.2), $x^*T(-t)u(t)$, $t \in J \to$ the scalars is S¹-bounded.

Now, proceeding on the lines of the proof of Theorem 1, we can show that $x^*T(-t)u(t)$ is almost periodic from J to the scalars. Thus it follows that T(-t)u(t) is weakly almost periodic from J to X. Again by Lemma 3, T(t)[T(-t)u(t)] = u(t) is weakly almost periodic from J to X.

If f(t) is weakly almost periodic from J to X, then the proof is obviously simpler.

I am grateful to Professor S. Zaidman for the financial support from his National Research Council grant during the preparation of this paper.

References

- L. Amerio, and G. Prouse, Almost periodic functions and functional equations, (Van Nostrand Reinhold Company (1971)).
- [2] A. S. Besicovitch, Almost periodic functions, (Dover Publications, Inc. (1954)).
- [3] N. Dunford and J. T. Schwartz, *Linear operators*, part I, (Interscience Publishers, Inc., New York (1958)).
- [4] G. Prouse, 'Sulle equazioni differenziali astratte quasi-periodiche secondo Stepanoff', Ricerche di Matematica 11 (1962), 254–270.
- [5] S. Zaidman, 'Sur la perturbation presque périodique des groupes et semi-groupes de transformations d'un espace de Banach', *Rendiconti di Matematica e delle sue Applicazioni* (Rome) 16 (1957), 197-206.

Department of Mathematics University of Montreal Montreal, Quebec Canada