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Abstract

In this paper, we introduce an alternative approach to Temporal Answer Set Programming
that relies on a variation of Temporal Equilibrium Logic (TEL) for finite traces. This approach
allows us to even out the expressiveness of TEL over infinite traces with the computational
capacity of (incremental) Answer Set Programming (ASP). Also, we argue that finite traces
are more natural when reasoning about action and change. As a result, our approach is readily
implementable via multi-shot ASP systems and benefits from an extension of ASP’s full-fledged
input language with temporal operators. This includes future as well as past operators whose
combination offers a rich temporal modeling language. For computation, we identify the class of
temporal logic programs and prove that it constitutes a normal form for our approach. Finally,
we outline two implementations, a generic one and an extension of the ASP system clingo.

Under consideration for publication in Theory and Practice of Logic Programming (TPLP)

1 Introduction

Representing and reasoning about dynamic systems is a key problem in Artificial Intelli-
gence and beyond. Accordingly, various formal systems have arisen, including temporal
logics (Emerson 1990) and calculi for reasoning about actions and change (Sandewall
1994). In Answer Set Programming (ASP; Lifschitz 1999), this is reflected by temporal
extensions of Equilibrium Logic (Aguado et al. 2013), the host logic of ASP, and action
languages (Gelfond and Lifschitz 1998). Although both constitute the main directions
of non-monotonic temporal systems, their prevalence lags way behind the usage of plain
ASP for modeling dynamic domains. Hence, notwithstanding the meticulous modeling
of dynamics in ASP due to an explicit representation of time points, it seems that its
pragmatic advantages, such as its rich (static) modeling language and readily available
solvers, often seem to outweigh the firm logical foundations of both dedicated approaches.

Although the true reasons are arguably inscrutable, let us discuss some possible causes.
The appeal of action languages lies in their elegant syntactic and semantic simplicity:
they usually consist of static and dynamic laws inducing a unique transition system.
Although most of them are implemented in ASP, their simplicity denies the expressive
possibilities of ASP. Also, despite some recent reconciliation (Lee et al. 2013), existing
action languages lack the universality of ASP as reflected by the variety of variants.

Temporal Equilibrium Logic (TEL; Aguado et al. 2013) builds upon an extension of
the logic of Here and There (HT; Heyting 1930) with Linear Temporal Logic (LTL; Pnueli
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1977). This results in an expressive non-monotonic modal logic, which extends traditional
temporal logic programming approaches (Cabalar et al. 2015) to the general syntax of
LTL and possesses a computational complexity beyond LTL (Bozzelli and Pearce 2015).
As in LTL, a model in TEL is an infinite sequence of states, called a trace. This rules out
computation by ASP technology (and necessitates model checking) and is unnatural for
applications like planning, where plans amount to finite prefixes of one or more traces.

Unlike this, we address the representation and reasoning about dynamic systems by
proposing an alternative combination of the logics of HT and LTL whose semantics
rests upon finite traces. On the one hand, this amounts to a restriction of TEL to finite
traces. On the other hand, this is similar to the restriction of LTL to LTLf advocated
by De Giacomo and Vardi (2013). Our new approach, dubbed TELf , has the following
advantages. First, it is readily implementable via ASP. Second, it can be reduced to a
normal form which is close to logic programs and much less complex than the one obtained
for TEL. Finally, its temporal models are finite and offer a one-to-one correspondence
to plans. Interestingly, TELf also sheds light on concepts and methodology used in
incremental ASP solving when understanding incremental parameters as time points.

Another distinctive feature of TELf is the inclusion of future as well as past temporal
operators. We associate this with the following benefits. When using the causal reading
of program rules, it is generally more natural to draw upon the past in rule bodies and to
refer to the future in rule heads. A similar argument was put forward by Gabbay (1987).
This format also yields a simpler normal form and lends itself to a systematic modeling
methodology which favors the definition of states in terms of the past rather than mixing
in future operators. For instance, in reasoning about actions, the idea is to derive action
effects for the current state and check their preconditions in the previous one, rather than
to represent this as a transition from the current to the next state. This methodology
aligns state constraints, effect axioms, etc. to capture the present state. As well, past
operators are much easier handled computationally than their future counterparts when
it comes to incremental reasoning, since they refer to already computed knowledge.

We make the above arguments more precise once our formal apparatus is set up. In
fact, we introduce our approach in a more general semantic setting encompassing not only
TELf but also its close ancestors TEL, LTL, and LTLf . This uniform base provides us
with immediate insights into their interrelationships. Once we have formally elaborated
our approach (in the restricted space), we turn to computational aspects. First, we define
the class of temporal logic programs and show that they constitute a normal form for
TELf . Then, we provide bounded and time point-wise translations of temporal logic
programs into regular ones. Finally, we sketch two existing implementations: tel, comput-
ing bounded temporal models of TELf theories, and telingo, incrementally computing
temporal models of temporal logic programs over the extended full-fledged input language
of clingo.

2 Temporal Equilibrium Logic on Finite Traces

All logics treated in this paper share the common syntax of LTL with past opera-
tors (Emerson 1990). We start from a given set A of atoms which we call the alphabet.
Then, a (temporal) formula ϕ is defined by the grammar:

ϕ ::= a | ⊥ | ϕ1 ⊗ ϕ2 | •ϕ | ϕ1 S ϕ2 | ϕ1 T ϕ2 | ◦ϕ | ϕ1Uϕ2 | ϕ1Rϕ2
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where a ∈ A is an atom and ⊗ is any binary Boolean connective ⊗ ∈ {→,∧,∨}. The last
six cases correspond to the temporal connectives whose names are listed below:

Past • for previous
S for since
T for trigger

Future ◦ for next
U for until
R for release

We also define several derived operators like the Boolean connectives �def
= ¬⊥, ¬ϕdef

= ϕ →
⊥, ϕ ↔ ψ

def
= (ϕ → ψ) ∧ (ψ → ϕ), and the following temporal operators:

�ϕ
def
= ⊥ T ϕ always before

�ϕ def
= � S ϕ eventually before

I def
= ¬•� initial

•̂ϕ def
= •ϕ ∨ I weak previous

�ϕ
def
= ⊥Rϕ always afterward

♦ϕ def
= �Uϕ eventually afterward

F def
= ¬◦� final

◦̂ϕ def
= ◦ϕ ∨ F weak next

As an example of a temporal formula, take for instance:

�(shoot ∧ •�shoot ∧�unloaded → ♦fail) (1)

capturing the sentence: “If we make two shots with a gun that was never loaded, then it
will eventually fail.” Intuitively, ‘�’ is used to assert that the rule is applicable at every
time point. An explanation why shooting a loaded gun fails in unloading it, could then be
queried as follows (where double negation allows us to express an integrity constraint).

�(F → ¬¬(shoot ∧ •loaded ∧ loaded)) (2)

For the semantics, we start by defining a trace of length λ over alphabet A as a sequence
〈Hi〉λi=0 of sets Hi ⊆ A. We say that the trace is infinite if λ = ω and finite otherwise,
that is, λ = n for some natural number 0 ≤ n < ω. We let i = j..k stand for i ∈ N ∪ {ω}
and j ≤ i ≤ k. Given traces H = 〈Hi〉λi=0 and H′ = 〈H ′

i〉λi=0 both of length λ, we write
H ≤ H′ if Hi ⊆ H ′

i for each i = 0..λ; accordingly, H < H′ iff both H ≤ H′ and H �= H′.
A Here-and-There trace (for short HT-trace) of length λ over alphabet A is a sequence

of pairs 〈Hi, Ti〉λi=0 such that Hi ⊆ Ti ⊆ A for any i = 0..λ. As before, an HT-trace is
infinite if λ = ω and finite otherwise. We often represent an HT-trace as a pair of traces
〈H,T〉 of length λ where H = 〈Hi〉λi=0 and T = 〈Ti〉λi=0 and H ≤ T.

Definition 1 (Satisfaction)
An HT-trace 〈H,T〉 of length λ over alphabet A satisfies a temporal formula ϕ at time
point k = 0..λ, k �= ω, written 〈H,T〉, k |= ϕ, if the following conditions hold:

1. 〈H,T〉, k �|= ⊥
2. 〈H,T〉, k |= a iff a ∈ Hk, for any atom a ∈ A
3. 〈H,T〉, k |= ϕ ∧ ψ iff 〈H,T〉, k |= ϕ and 〈H,T〉, k |= ψ

4. 〈H,T〉, k |= ϕ ∨ ψ iff 〈H,T〉, k |= ϕ or 〈H,T〉, k |= ψ

5. 〈H,T〉, k |= ϕ → ψ iff 〈H′,T〉, k �|= ϕ or 〈H′,T〉, k |= ψ, for all H′ ∈ {H,T}
6. 〈H,T〉, k |= •ϕ iff k > 0 and 〈H,T〉, k−1 |= ϕ

7. 〈H,T〉, k |= ϕ S ψ iff for some j = 0..k, we have 〈H,T〉, j |= ψ and 〈H,T〉, i |= ϕ for
all i = j+1..k

8. 〈H,T〉, k |= ϕTψ iff for all j = 0..k, we have 〈H,T〉, j |= ψ or 〈H,T〉, i |= ϕ for some
i = j+1..k

9. 〈H,T〉, k |= ◦ϕ iff k < λ and 〈H,T〉, k+1 |= ϕ
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10. 〈H,T〉, k |= ϕUψ iff for some j = k..λ, we have 〈H,T〉, j |= ψ and 〈H,T〉, i |= ϕ for
all i = k..j−1

11. 〈H,T〉, k |= ϕRψ iff for all j = k..λ, we have 〈H,T〉, j |= ψ or 〈H,T〉, i |= ϕ for some
i = k..j−1. �

A formula ϕ is a tautology, written |= ϕ, iff 〈H,T〉, k |= ϕ for any HT-trace and any
k = 0..λ. We call the logic induced by the set of all tautologies Temporal logic of Here
and There (THT for short). We say that an HT-trace 〈H,T〉 is a model of a set of
formulas (or theory) Γ iff 〈H,T〉, 0 |= ϕ for any ϕ ∈ Γ.

When compared to standard temporal logics, the main peculiarity of Definition 1 is
the satisfaction of implication ϕ → ψ that requires that both (i) 〈H,T〉, k |= ϕ implies
〈H,T〉, k |= ψ and (ii) 〈T,T〉, k |= ϕ implies 〈T,T〉, k |= ψ. This interpretation of ‘→’
is inherited from the (non-temporal) logic of Here and There (HT; Heyting 1930), an
intermediate logic dealing with exactly two worlds {h, t} with the accessibility relation
h ≤ t plus the reflexive closure h ≤ h and t ≤ t. This logic is weaker than classical
logic and does not satisfy, among others, some classical tautologies such as the law of
the Excluded Middle ϕ∨¬ϕ. A particular type of HT-traces are the ones of form 〈T,T〉
(that is, H = T) which we call total. Total models can be forced by adding the following
variant of the excluded middle axiom schema:

�(a ∨ ¬a) for each atom a ∈ A in the alphabet. (EM)

Under total models, implication collapses to material implication and THT satisfaction
〈T,T〉, k |= ϕ collapses to T, k |= ϕ in LTL (for possibly infinite traces). This implies
that all THT tautologies are LTL tautologies but not vice versa, e.g. (EM).

Another important remark is that the finiteness of 〈H,T〉 only affects the last three
items of Definition 1 dealing with future-time operators. In particular, if 〈H,T〉 has some
finite length λ = n, then in the semantics for U and R (the last two items) j ranges in
the finite interval {k, . . . , n}. Besides, if λ = n the satisfaction of ◦ϕ forces k < n so
that it implies that there does exist a next state k+1. As a result, the formula ◦� is not
always satisfied, since it is false when k = n = λ. On the other hand, when λ = ω, time
points j in the semantics for U and R are just required to be j ≥ k without an upper
limit. Similarly, the condition k < λ = ω in the satisfaction of ◦ϕ becomes obviously
true, and so irrelevant (a state k+1 is always granted).

The semantics for derived operators can also be easily deduced:

12. 〈H,T〉, k |= �
13. 〈H,T〉, k |= �ϕ iff 〈H,T〉, i |= ϕ for all i = 0..k
14. 〈H,T〉, k |= �ϕ iff 〈H,T〉, i |= ϕ for some i = 0..k
15. 〈H,T〉, k |= I iff k = 0
16. 〈H,T〉, k |= •̂ϕ iff k = 0 or 〈H,T〉, k−1 |= ϕ

17. 〈H,T〉, k |= �ϕ iff 〈H,T〉, i |= ϕ for any i = k..λ

18. 〈H,T〉, k |= ♦ϕ iff 〈H,T〉, i |= ϕ for some i = k..λ

19. 〈H,T〉, k |= F iff k = λ

20. 〈H,T〉, k |= ◦̂ϕ iff k = λ or 〈H,T〉, k+1 |= ϕ

We see that operators I and F exclusively depend on the value of time point k, so that the
valuation for atoms from 〈H,T〉 becomes irrelevant for them. As a result, they behave
“classically” and satisfy the excluded middle, that is, |= I ∨ ¬I and |= F ∨ ¬F are THT
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tautologies. Besides, operator F has the additional peculiarity that it can only be true
with finite traces (remember that k �= ω in Def. 1). This implies that the inclusion of
axiom ♦F in any theory forces its models to be finite traces, while including its negation
¬♦F instead causes the opposite effect, that is, all models of the theory are infinite traces.

In this paper, we consider several logics that are stronger than THT and that can be
obtained by the addition of axioms (or the corresponding restriction on sets of traces). For
instance, we define THTω as THT + {¬♦F}, that is, THT where we exclusively consider
infinite HT-traces.1 The finite-trace version, we call THTf , corresponds to THT + {♦F}
instead. Linear Temporal Logic for possibly infinite traces, LTL, can be obtained as
THT + {(EM)}, that is, THT with total HT-traces. Accordingly, we can define LTLω as
THTω + {(EM)}, i.e. infinite and total HT-traces, and obtain LTLf as THTf + {(EM)},
that is, LTL on finite traces (De Giacomo and Vardi 2013).

In the rest of the paper, we study several transformations preserving some kind of THT-
equivalence. In this sense, it is important to observe that being equivalent is something
generally stronger than simply having the same set of models. We say that two formulas
ϕ,ψ are (globally) equivalent, written ϕ ≡ ψ, iff |= ϕ ↔ ψ, that is, 〈H,T〉, k |= ϕ ↔ ψ

for any HT-trace 〈H,T〉 of length λ and any k = 0..λ, k �= ω. Whenever ϕ and ψ are
equivalent, they are completely interchangeable when occurring in any theory Γ, without
altering the semantic interpretation of Γ. We say that ϕ,ψ are just initially equivalent,
written ϕ ≡0 ψ, if they have the same models, that is, 〈H,T〉, 0 |= ϕ iff 〈H,T〉, 0 |= ψ,
for any HT-trace 〈H,T〉. Obviously, ϕ ≡ ψ implies ϕ ≡0 ψ but not vice versa. To put
a simple example, note that •a ≡0 ⊥, since •a is always false at the initial situation,
whereas in the general case •a �≡ ⊥ or, otherwise, we could always replace •a by ⊥ in
any context. The following are some generally useful properties satisfied in THT.

Proposition 1 (Persistence)
Let 〈H,T〉 be an HT-trace of length λ and ϕ be a temporal formula. Then, for any
k = 0..λ, k �= ω, if 〈H,T〉, k |= ϕ then 〈T,T〉, k |= ϕ (or, if preferred, T, k |= ϕ). �

As a corollary, we have that 〈H,T〉 |= ¬ϕ iff T �|= ϕ in LTL. As said before, all THT
tautologies are LTL tautologies but not vice versa. However, they coincide for some types
of equivalences, as stated below.

Proposition 2
Let ϕ and ψ be formulas without implications (and so, without negations either). Then,
ϕ ≡ ψ in LTL iff ϕ ≡ ψ in THT.

As an example, the usual inductive definition of the until operator from LTL:

ϕUψ ≡ ψ ∨ (ϕ ∧ ◦(ϕUψ)) (3)

is also valid in THT due to Proposition 2. In fact, we can exploit this result further. By
De Morgan laws, LTL satisfies a kind of duality guaranteeing, for instance, that (3) iff:

ϕRψ ≡ ψ ∧ (ϕ ∨ ◦̂(ϕRψ)) (4)

and, by Proposition 2 again, this is also a valid equivalence in THT. Let us define all the
pairs of dual connectives as follows: ∧/∨, �/⊥, U/R, ◦/◦̂, �/♦, S/T, •/•̂, �/�. For a

1 This corresponds to the (stronger) version of THT considered previously by Aguado et al. (2013).
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formula ϕ without implications, we define δ(ϕ) as the result of replacing each connective
by its dual operator. Then, we get the following corollary of Proposition 2.

Corollary 1 (Boolean Duality)
Let ϕ and ψ be formulas without implication. Then, THT satisfies: ϕ ≡ ψ iff δ(ϕ) ≡ δ(ψ).

In a similar manner, we can also exploit the temporal symmetry in the system so
we can switch the temporal direction of operators to conclude, for instance, that (3) iff
ϕ S ψ ≡ ψ ∨ (ϕ ∧ •(ϕ S ψ)). This second type of duality, however, has some obvious
limitations when we allow for infinite traces. In that case, for instance, the past has a
beginning �I ≡ � but the future may have no end ♦F �≡ �. If we restrict ourselves to
finite traces, we get the following result. Let U/S, R/T, ◦/•, ◦̂/•̂, �/�, and ♦/� denote
all pairs of swapped-time connectives and let σ(ϕ) denote the replacement in ϕ of each
connective by its swapped-time version.

Lemma 1
There exists a mapping � on finite THT-traces of the same length n ≥ 0 such that for
any k = 0..n, 〈H,T〉, k |= ϕ if and only if �(〈H,T〉), n−k |= σ(ϕ).

Theorem 1 (Temporal Duality Theorem)
A temporal formula ϕ is a THTf -tautology if and only if σ(ϕ) is a THTf -tautology.

Before introducing non-monotonicity, we begin by providing notation for representing
sets of THT models. We write THT(Γ, λ) to stand for the set of THT models of length λ

of a theory Γ, and define THT(Γ) def
=

⋃ω
λ=0 THT(Γ, λ), that is, the whole set of models of

Γ of any length. Given a set of THT models, we define the ones in equilibrium as follows.

Definition 2 (Temporal Equilibrium Model)
Let S be some set of HT-traces. A total HT-trace 〈T,T〉 ∈ S is a temporal equilibrium
model of S iff there is no other H < T such that 〈H,T〉 ∈ S. �

If this is the case, we also say that trace T is a temporal stable model of S. We
further talk about temporal equilibrium or temporal stable models of a theory Γ when
S = THT(Γ), respectively. Moreover, we write TEL(Γ, λ) and TEL(Γ) to stand for the
temporal equilibrium models of THT(Γ, λ) and THT(Γ) respectively.

Since the ordering relation among traces is only defined for a fixed λ, the following can
be easily observed:

Proposition 3
The set of temporal equilibrium models of Γ can be partitioned by the trace length λ,
that is,

⋃ω
λ=0 TEL(Γ, λ) = TEL(Γ). �

Temporal Equilibrium Logic (TEL) is the (non-monotonic) logic induced by temporal
equilibrium models. We can also define the variants TELω and TELf by applying the
corresponding restriction to infinite or finite traces, respectively.

As an example of non-monotonicity, consider the formula

�(•loaded ∧ ¬unloaded → loaded) (5)

along with literal loaded which combines the inertia for loaded with the initial state for
that fluent. Without entering into much detail, this formula behaves as the logic program
consisting of fact loaded(0) and rule ‘loaded(T) :- loaded(T-1), not unloaded(T)’
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for any time point T>0. As expected, for some fixed λ, we get a unique temporal stable
model of the form T such that Ti = {loaded} for i = 0..λ, as there is no reason to
become unloaded . Note that in the most general case of TEL, we actually get one stable
model per each possible λ, including λ = ω. Now, consider formula (5) with loaded ∧
◦◦unloaded which amounts to adding the fact unloaded(2). As expected, for each λ,
the only temporal stable model now is T0 = T1 = {loaded}, T2 = {unloaded} and Ti = ∅
for i = 3..λ. Note that by making ◦◦unloaded true we are also forcing λ ≥ 3, that is,
there are no temporal stable models (nor even THT models) of length smaller than three.
Thus, by adding the new information ◦◦unloaded some conclusions that could be derived
before, such as �loaded , are not derived any more.

As an example emphasizing the behavior of finite traces, take the formula �(¬a → ◦a)
which can be seen as a program rule ‘a(T+1) :- not a(T)’ for any natural number T.
As expected, temporal stable models make a false in even states and true in odd ones.
However, we cannot take finite traces where the final state λ makes a false, since the
rule would force ◦a and this implies the existence of a successor state. As a result, the
temporal stable models of this formula have the (regular expression) form (∅ {a})+ for
finite traces in TELf , or the infinite trace (∅ {a})ω in TELω.

Another interesting example is the temporal formula �(¬◦a → a) ∧ �(◦a → a).
The corresponding rules ‘a(T) :- not a(T+1)’ and ‘a(T) :- a(T+1)’ have no stable
model (Fages 1994) when grounded for all natural numbers T. This is because there is no
way to build a finite proof for any a(T), as it depends on infinitely many next states to
be evaluated. The same happens in TELω, that is, we get no temporal stable model, but
in TELf , we can use the fact that ◦a is always false in the last state. Then, �(¬◦a → a)
supports a in that state and therewith �(◦a → a) inductively supports a everywhere.

As an example of a temporal expression not so close to logic programming consider,
for instance, the formula �♦a, which is normally used in LTLω to assert that a occurs
infinitely often. As discussed in (De Giacomo and Vardi 2013), if we assume finite traces,
then the formula collapses to �(F → a) in LTLf , that is, a is true at the final state
(and true or false everywhere else). The same behavior is obtained in THTω and THTf ,
respectively. However, if we move to TEL, a truth minimization is additionally required.
As a result, in TELf for a fixed λ ∈ N, we obtain a unique temporal stable model where
a is true at the last state, and false everywhere else, whereas TELω yields no temporal
stable model at all. This is because for any T with an infinite number of a’s we can
always take some H where we remove a at one state, and still have an infinite number of
a’s in H. Thus, for any total THTω model 〈T,T〉 of �♦a there always exists some model
〈H,T〉 with strictly smaller H < T.

3 Temporal Logic Programs

Our computational approach to TELf relies on a reduction to a normal form suitable for
ASP systems. For this, we identified the class of temporal logic programs defined next.

Definition 3 (Temporal literal, rule, and program)

Given alphabet A, we define the set of temporal literals as {a,¬a,•a,¬•a | a ∈ A}.
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A temporal rule is either:
– an initial rule of the form B→ A

– a dynamic rule of the form ◦̂�(B→ A)
– a final rule of the form �(F → (B→ A) )

where B = b1 ∧ · · · ∧ bn with n ≥ 0, A = a1 ∨ · · · ∨ am with m ≥ 0 and the bi and aj are
temporal literals for dynamic rules, or regular literals {a,¬a | a ∈ A} for initial and final
rules. A temporal logic program (TELf program, for short) is a set of temporal rules.

We let I (P ), D(P ), and F (P ) stand for the set of all initial, dynamic, and final rules in a
TELf program P , respectively. A TELf program just consisting of initial rules amounts
to a regular logic program. Dynamic rules are preceded by the weak version of next ◦̂
rather than ◦ since we deal with finite traces and the final state has no subsequent state.

Our earlier examples in (2) and (5) are already close to TELf programs, and a minor
transformation yields the following temporal rules equivalent to (2) and (5), respectively.

◦̂�(shoot ∧ •loaded ∧ loaded → goal) ∧�(F → (¬goal → ⊥))

◦̂�(•loaded ∧ ¬unloaded → loaded)

Note that no initial rules are needed since •loaded is false at the initial time point, and
goal is a new auxiliary atom. In the remainder, for illustration purposes, we use the
simple TELf program P :

{ → a, ◦̂�(•a → b), �(F → (¬b → ⊥)) } (6)

which has a single finite temporal stable model of length 1, viz. 〈{a}, {b}〉.
The following result warrants that TELf programs constitute indeed a normal form.

Theorem 2 (Normal form)
Every temporal formula ϕ can be converted into a TELf program THTf -equivalent to ϕ.

For transforming arbitrary temporal formulas into normal form, we use a Tseitin-style
reduction (1968) that relies on an alphabet extended by new atoms for each formula in the
original language. The equivalence result in Theorem 2 is then obtained after removing
auxiliary atoms and, in fact, is still preserved inside the context of a larger theory for
the original vocabulary (i.e. we have strong equivalence modulo auxiliary atoms).

Now, given a TELf program P and a fixed (finite) λ, we can compute all models in
TEL(P, λ) by a translation of P into a regular program. For this, we let Ak = {ak | a ∈ A}
be a time stamped copy of alphabet A for each time point k = 0..λ.

Definition 4 (Bounded translation)
We define the translation τ of a temporal literal at time point k as

τk(a)
def
= ak τk(¬a) def

= ¬ak for a ∈ A
τk(•a) def

= ak−1 τk(¬•a) def
= ¬ak−1 for a ∈ A

We define the translation of any temporal rule r in Definition 3 at time point k as

τk(r)
def
= τk(a1) ∨ · · · ∨ τk(am) ← τk(b1) ∧ · · · ∧ τk(bn)

We define the translation of a temporal program P bounded by finite length λ as

τλ(P ) def
= {τ0(r) | r ∈ I (P )} ∪ {τk(r) | r ∈ D(P ), k = 1..λ} ∪ {τλ(r) | r ∈ F (P )}
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Note that the translation of temporal rules is similar in just considering the implication
B → A in Definition 3; their difference manifests itself in their instantiation in τλ(P ).

Applying translation τ for some bound λ to our TELf program P in (6) yields regular
logic programs of the following form.

τλ(P ) = {a0 ← } ∪ {bk ← ak−1 | k = 1..λ} ∪ {⊥ ← ¬bλ}

Program τ1(P ) has the stable model {a0, b1}, but all τλ(P ) for λ > 1 are unsatisfiable.

Theorem 3
Let P be a TELf program over A. Let T = 〈Ti〉λi=0 be a trace of finite length λ over A
and X a set of atoms over

⋃
0≤i≤λ Ai such that a ∈ Ti iff ai ∈ X for 0 ≤ i ≤ λ.

Then, T is a temporal stable model of P iff X is a stable model of τλ(P ).

Applied to our example, this result confirms that the temporal stable model 〈{a}, {b}〉
of P corresponds to the stable model {a0, b1} of τ2(P ).

Using this translation we have implemented a system, tel2, that takes a propositional
theory Γ of arbitrary TELf formulas and a bound λ and returns the regular logic program
τλ(P ), where P is the intermediate normal form of Γ left implicit. The resulting program
τλ(P ) can then be solved by any off-the-shelf ASP system. For illustration, consider the
representation of our example temporal program in (6) in tel ’s input language.

a.

#next^ #always+ ( (# previous a) -> b).

#always+ ( #final -> (~ b -> #false )).

As expected, passing the result of tel ’s translation for horizon 1 to clingo yields the stable
model containing a(0) and b(1) (suppressing auxiliary atoms).

The bounded translation τλ(P ) allows us to compute all models in TEL(P, λ) for a
fixed bound λ. However, in many practical problems (as in planning, for instance), λ is
unknown beforehand and the crucial task consists in finding a representation of TEL(P, k)
that is easily obtained from that of TEL(P, k-1). In ASP, this can be accomplished via
incremental solving techniques that rely upon the composition of logic program mod-
ules (Oikarinen and Janhunen 2006). The idea is then to associate the knowledge at each
time point with a module and to successively add modules corresponding to increasing
time points (while leaving all previous modules unchanged). A stable model obtained after
k compositions then corresponds to a TELf model of length k. This technique of modular
computation, however, is only applicable when modules are compositional (positive loops
cannot be formed across modules), something that cannot always be guaranteed for
arbitrary TELf programs. Still, we identify a quite general syntactic fragment3 that
implies compositionality. We say that a temporal rule as in Definition 3 is present-
centered, whenever all the literals a1, . . . , am in its head A are regular. Accordingly, a set
of such rules is a present-centered TELf program. In fact, such programs are sufficient to
capture common action languages, as witnessed by the correspondence between dynamic

2 https://github.com/potassco/tel
3 In order to compute loop formulas for TELω , (Cabalar and Diéguez 2011) used a similar fragment

(splittable programs) where rules cannot derive information from the future to the past.

https://doi.org/10.1017/S1471068418000297 Published online by Cambridge University Press

https://github.com/potassco/tel
https://doi.org/10.1017/S1471068418000297


Temporal Answer Set Programming on Finite Traces 415

temporal rules and static and dynamic laws in action language BC (Lee et al. 2013):4

a if b1, . . . , bm ifcons c1, . . . , cn ◦̂�(b1 ∧ · · · ∧ bm → a ∨ ¬c1 ∨ · · · ∨ ¬cn)
∧ (b1 ∧ · · · ∧ bm → a ∨ ¬c1 ∨ · · · ∨ ¬cn)

a after b1, . . . , bm ifcons c1, . . . , cn ◦̂�(•b1 ∧ · · · ∧ •bm → a ∨ ¬c1 ∨ · · · ∨ ¬cn)

Following these ideas, we provide next a “point-wise” variant of our translation that
allows for defining one module per time point and is compositional for the case of present-
centered TELf programs. We begin with some definitions. A module P is a triple (P, I,O)
consisting of a logic program P over alphabet AP and sets I and O of input and output
atoms such that (i) I ∩ O = ∅, (ii) AP ⊆ I ∪ O, and (iii) H(P ) ⊆ O, where H(P ) gives
all atoms occurring in rule heads in P . Whenever clear from context, we associate P

with (P, I,O). In our setting, a set X of atoms is a stable model of P, if X is a stable
model of logic program P .5 Two modules P1 and P2 are compositional, if O1 ∩ O2 = ∅
and O1 ∩ C = ∅ or O2 ∩ C = ∅ for every strongly connected component C of the
positive dependency graph of the logic program P1∪P2. In other words, all rules defining
an atom must belong to the same module, and no positive recursion is allowed among
modules. Whenever P1 and P2 are compositional, their join is defined as the module
P1 � P2 = (P1 ∪ P2, (I1 \O2) ∪ (I2 \O1), O1 ∪O2). The module theorem (Oikarinen and
Janhunen 2006) ensures that compatible stable models of P1 and P2 can be combined to
one of P1 � P2, and vice versa.

For literals and rules, the point-wise translation τ∗ coincides with τ up to final rules.

Definition 5 (Point-wise translation: Temporal rules)
We define the translation of a final rule r as in Definition 3 at time point k as

τ∗k (r) def
= τk(a1) ∨ · · · ∨ τk(am) ← τk(b1) ∧ · · · ∧ τk(bn) ∧ ¬qk+1 (7)

for a new atom q /∈ A and of an initial or dynamic rule r as τ∗k (r) def
= τk(r).

The new atoms qk+1 in (7) are used to deactivate instances of final rules. This allows
us to implement operator F by using ¬qk+1 and therefore to enable the actual final rule
unless qk+1 is derivable. The idea is then to make sure that at each horizon k the atom
qk+1 is false, while q1, . . . , qk are true. In this way, only τ∗k (r) is potentially applicable,
while all rules τ∗i (r) are disabled at earlier time points i = 1..k−1.

Translation τ∗ is then used to define modules for each time point as follows.

Definition 6 (Point-wise translation: Modules)
Let P be a present-centered TELf program over A. We define the module Pk correspond-
ing to P at time point k as

P0
def
= (P0, {q1},A0) Pk

def
= (Pk,Ak−1 ∪ {qk+1},Ak ∪ {qk}) for k > 0

where

P0
def
= {τ∗0 (r) | r ∈ I (P )} ∪ {τ∗0 (r) | r ∈ F (P )}

Pk
def
= {τ∗k (r) | r ∈ D(P )} ∪ {τ∗k (r) | r ∈ F (P )} ∪ {qk ←}

4 In BC, ifcons stands for “if consistent”, while if and after have their literal meaning.
5 Note that the default value assigned to input atoms is false in multi-shot solving (Gebser et al. 2018);

this differs from the original definition (Oikarinen and Janhunen 2006) where a choice rule is used.

https://doi.org/10.1017/S1471068418000297 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000297


416 Pedro Cabalar et al.

Each module Pk defines what holds at time point k. The underlying present-centeredness
warrants that modules only incorporate atoms from previous time points, as reflected by
Ak−1 in the input of Pk. The exception consists of auxiliary atoms like qk+1 that belong
to the input of each Pk for k > 0 but only get defined in the next module Pk+1. This
corresponds to the aforementioned idea that qk+1 is false when Pk is the final module,
and is set permanently to true once the horizon is incremented by adding Pk+1. Note that
atoms like qk+1 only occur negatively in rule bodies in Pk and hence cannot invalidate the
modularity condition. This technique allows us to capture the transience of final rules.

The point-wise translation of our present-centered example program P from (6) yields
the following modules.

P0 = ({a0 ← } ∪ {← ¬b0,¬q1}, {q1}, {a0, b0})
Pi = ({bi ← ai−1} ∪ {← ¬bi,¬qi+1} ∪ {qi ←}, {ai−1, bi−1, qi+1}, {ai, bi, qi})

⊔λ
i=0 Pi = (P0 ∪

⋃λ
i=1 Pi, {qλ+1}, {ai, bi | i = 0..λ} ∪ {qi | i = 1..λ})

As above, only the composed module for λ = 1 yields a stable model, viz. {a0, b1, q1}.

Theorem 4
Let P be a present-centered TELf program over A. Let T = 〈Ti〉λi=0 be a trace of finite
length λ over A and X a set of atoms over

⋃
0≤i≤λ Ai such that a ∈ Ti iff ai ∈ X for 0 ≤

i ≤ λ. Then,
T is a temporal stable model of P iff X ∪ {qi | i = 1..λ} is a stable model of

⊔λ
i=0 Pi.

As with Theorem 3, this result confirms that the temporal stable model 〈{a}, {b}〉 of P
corresponds to the stable model {a0, b1, q1} of P0 � P1.

As one might expect, not any TELf theory is reducible to a present-centered TELf
program. Hence, computing models via incremental solving imposes some limitations
on the possible combinations of temporal operators. Fortunately, we can identify again
a quite natural and expressive syntactic fragment that is always reducible to present-
centered programs. We say that a temporal formula is a past-future rule if it consists of
rules as those in Definition 3 where B and A are just temporal formulas with the following
restrictions: B and A contain no implications other than negations (α → ⊥), B contains
no future operators, and A contains no past operators. An example of a past-future rule
is (1). Then, we have the following result.

Theorem 5 (Past-future reduction)
Every past-future rule r can be converted into a present-centered TELf program that is
TELf -equivalent to r.

We have implemented a second system, telingo6, that deals with present-centered
TELf programs that are expressible in the full (non-ground) input language of clingo
extended with temporal operators. In addition, telingo offers several syntactic extensions
to facilitate temporal modeling: First, next operators can be used in singular heads and,
second, arbitrary temporal formulas can be used in integrity constraints. All syntactic
extensions beyond the normal form of Theorem 2 are compiled away by means of the

6 https://github.com/potassco/telingo
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translation used in its proof. The resulting present-centered TELf programs are then
processed according the point-wise translation.

To facilitate the use of operators • and ◦, telingo allows us to express them by adding
leading or trailing quotes to the predicate names of atoms, respectively. For instance, the
temporal literals •p(a) and ◦q(b) can be expressed by ’p(a) and q’(b), respectively.
For another example, consider the representation of the sentence “A robot cannot lift a
box unless its capacity exceeds the box’s weight plus that of all held objects”:
:- lift(R,B), robot(R), box(B,W),

#sum {C : capacity(R,C); -V,O : ’holding(R,O,V)} < W.

Atom ’holding(R,O,V) expresses what the robot was holding at the previous time point.
The distinction between different types of temporal rules is done in telingo via clingo’s

#program directives (Gebser et al. 2018), which allow us to partition programs into
subprograms. More precisely, each rule in telingo’s input language is associated with a
temporal rule r of form (b1 ∧ · · · ∧ bn → a1 ∨ · · · ∨ am) as in Definition 3 and interpreted
as r, ◦̂�r, or �(F → r) depending on whether it occurs in the scope of a program
declaration headed by initial, dynamic, or final, respectively. Additionally, telingo
offers always for gathering rules preceded by � (thus dropping ◦̂ from dynamic rules). A
rule outside any such declaration is regarded to be in the scope of initial. This allows
us to represent the TELf program in (6) in the two alternative ways shown in Table 1.

Table 1. Two alternative telingo encodings for the TELf program in (6)

#program initial.

a.

#program dynamic.

b :- ’a.

#program final.

:- not b.

#program always.

a :- &initial.

b :- ’a.

:- not b, &final.

As mentioned, telingo allows us to use nested temporal formulas in integrity constraints
as well as in negated form in place of temporal literals within rules. This is accomplished
by encapsulating temporal formulas like ϕ in expressions of the form ‘&tel { ϕ }’. To
this end, the full spectrum of temporal operators is at our disposal. They are expressed
by operators built from < and > depending on whether they refer to the past or the
future, respectively. So, </1, <?/2, and <*/2 stand for •, S, and T, and >/1, >?/2,
>*/2 for ◦, U, R. Accordingly, <*/1, <?/1, <:/1 represent �, �, •̂, and analogously
their future counterparts. I and F are are represented by &initial and &final. This is
complemented by Boolean connectives &, |, ~, etc. For example, the integrity constraint
‘shoot ∧�unloaded ∧ •�shoot → ⊥’ is expressed as follows.

:- shoot , &tel { <* unloaded & < <? shoot }.

Once telingo has translated an (extended) TELf program into a regular one, it is
incrementally solved by clingo’s multi-shot solving engine (Gebser et al. 2018).
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4 Discussion and conclusions

For incorporating temporal representation and reasoning into existing ASP solving tech-
nology, we introduced a variant of Temporal Equilibrium Logic, TELf , that deals with
finite traces, something better aligned with incremental ASP solving for dynamic domains.
The original version of this logic, TELω (Aguado et al. 2013), was exclusively thought
for infinite traces and, accordingly, its computation (Cabalar and Diéguez 2011) is done
in terms of automata obtained by a model checker. This strategy is more adequate for
checking properties of reactive systems but not so convenient when looking for minimal
plans, performing temporal explanation, or even for diagnosis on finite executions. To
analyze which logical properties may vary depending on the finiteness assumption, we
defined a more general (and weaker) version of TEL and its monotonic basis THT,
which accepts both finite and infinite traces. This general TEL acts as an umbrella to
study the relation of the new finite trace variants, TELf and THTf , with their temporal
predecessors TELω, LTLω, LTLf as well as HT and its equilibria. For instance, we may
conclude that satisfiability for both THTf and TELf are PSpace-hard, since LTLf ,
proved to be PSpace-complete (De Giacomo and Vardi 2013), can be easily reduced
to THTf or TELf by adding the excluded middle axiom (EM). In fact, THTf is also
PSpace-complete: its membership can be proved by encoding THTf into LTLf as in the
reduction from THTω to LTLω made in (Cabalar and Demri 2011). In the case of TELf
satisfiability, we conjecture its ExpSpace membership by using a translation into TELω,
which is ExpSpace-complete (Bozzelli and Pearce 2015), similar to the one from LTLf
into LTLω in (De Giacomo and Vardi 2013). A detailed complexity analysis remains
future work.

As with TELω (Cabalar 2010), we proved that TELf can be reduced to a normal form
close to logic programs. Moreover, the one for TELf happens to be significantly simpler,
since it does not need to resort to nested global operators. We developed two translations
of this normal form into ASP: (i) one to obtain temporal stable models of fixed length; and
(ii), another based on the composition of logic program modules, allowing for incremental
computation. These translations gave rise to two different systems. Our first system,
tel , accepts an arbitrary propositional TELf -theory and a bound and then reduces it
to normal form followed by translation (i) into ASP. This allows us to harness the
full expressiveness of a temporal language while using any off-the-shelf ASP system.
Our second system, telingo, extends the ASP system clingo to compute the temporal
stable models of (non-ground) temporal logic programs. To this end, it extends the full-
fledged input language of clingo with temporal operators and computes temporal models
incrementally by multi-shot solving (Gebser et al. 2018) using translation (ii) into ASP.
It is also interesting to observe that TELf sheds light on existing concepts used in incre-
mental ASP solving, when interpreting increments as time-points. For instance, operator
F naturally corresponds to the so-called “external query atom” (Gebser et al. 2018) used
for progressing goal conditions, while the syntactic form of present-centered programs
reflects the modeling methodology (Gebser et al. 2012) put forward for incremental ASP
solving that avoids “future atoms” referring to time point T+1 in rule heads.

All in all, TELf offers an expressive, semantically well founded language for modeling
dynamic systems in ASP that allows for exploiting existing solving technology and,
at the same time, enables a fully logical analysis of temporal properties, either from
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plain ASP specifications or from action languages that can be naturally translated
into TELf . For future work, we plan to investigate some topics already studied for
TELω in the case of finite traces, such as characterizing strong equivalence, checking
unsatisfiability by automata-based methods, or improving the efficiency of grounding for
temporal programs.
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