NORM ONE MULTIPLIERS ON SUBSPACES OF L^{p}

KATHRYN E. HARE

Abstract

We present a new elementary proof of the fact that a norm one multiplier ϕ on $L^{p}(T)$ satisfying $\phi(0)=\phi(k)=1$ is k-periodic, and extend this result, when possible, to multipliers on translation invariant subspaces of L^{p}. A consequence of our work is that all such multipliers on $H^{p}(T)$ are the restriction of a norm one multiplier on $L^{p}(T)$.

0 . Introduction. Let G be a compact abelian group and let Γ be its dual group. A function $\phi: \Gamma \rightarrow \mathbb{C}$ is called a multiplier on a subspace S of $L^{p}(G)$ if the map M_{ϕ} defined on S by $\widehat{M_{\phi}} f(\chi)=\phi(\chi) \hat{f}(\chi)$ for $f \in S, \chi \in \Gamma$, maps S to $L^{p}(G)$. The class of all multipliers on S will be denoted $M(S)$ and the operator norm of the multiplier $\phi \in M(S)$ will be denoted by $\|\phi\|_{M(S)}$. If μ is a measure on G then $\hat{\mu} \in M\left(L^{p}\right)$ for $1 \leq p \leq \infty$, and indeed all elements of $M\left(L^{1}\right)$ and $M\left(L^{\infty}\right)$ are of this form. The reader is referred to [3, Ch. 16] for standard results on multipliers.

In this paper we are interested in studying an extreme face of the unit ball of $M(S)$, namely

$$
W(S):\left\{\phi \in M(S):\|\phi\|_{M(S)}=1=\phi(1)\right\}
$$

(Here 1 is the identity element of Γ.) The space $W\left(L^{p}(G)\right)$ was introduced by Shapiro [5]. For $1<p<\infty$ the space $W\left(L^{p}(G)\right)$ is known to contain multipliers which are not the Fourier Stieltjes transform of a measure [4]. Shapiro and subsequently Benyamini and Lin (in [1] and [2]) have shown a striking similarity between certain multipliers in $W\left(L^{p}(G)\right)$ and the multipliers arising from probability measures on G. For example, Benyamini and Lin show that all multipliers $\phi \in W\left(L^{p}(T)\right)$ for $1 \leq p \leq \infty, p \neq 2$, satisfying $\phi(k)=1$ for some $k \neq 0$, are k-periodic sequences on \mathbb{Z}. The cases $p=1$ and $p=\infty$ are easy as any such multiplier $\phi=\hat{\mu}$ where μ is a probability measure supported on the k-th roots of unity.

We present new elementary proofs of these results and extend them (when possible) to multipliers on translation invariant subspaces of L^{p} such as the classical Hardy spaces $H^{p}(T)$. A consequence of our results is that any $\phi \in W\left(H^{p}(T)\right)$ satisfying $\phi(k)=1$ for some $k \neq 0$, is the restriction of a norm one multiplier on $L^{p}(T)$.

Research partially supported by the NSERC
Received by the editors February 5, 1991 .
AMS subject classification: Primary 42A45; secondary 43A22.
(c) Canadian Mathematical Society 1992.

1. Multipliers on subgroups. Motivated by properties of probability measures, Shapiro [5] proved that if $p \neq 2, \phi \in W\left(L^{p}(T)\right)$ and $\phi(-1)=1$, then $\phi \equiv 1$. Subsequently it was shown that if G was any lca group and $\phi \in W\left(L^{p}(G)\right)$ for $p \neq 2$, then $\{\gamma \in \Gamma: \phi(\gamma)=1\}$ was a subgroup of Γ. (See [2] and remark (a) at the end of [5]). (Of course the $p=2$ case is different since any bounded sequence is an L^{2}-multiplier.) Deep results about norm one projections of $L^{p}(G)$ were used by Benyamini and Lin to give an elegant proof of this generalization.

Shapiro's method was to find an appropriate test function $f \in L^{p}(G)$ and show $M_{\phi}=f$. Our approach is a little different. We choose test functions f belonging to the translation invariant subspace which is the domain of the map M_{ϕ} and then use Taylor series expansions to estimate the p-norms of f and $M_{\phi} f$. We make repeated use of the fact that if $|x| \leq r<1$ then
$(1+x)^{\alpha}=1+\alpha x+\frac{\alpha(\alpha-1)}{2} x^{2}+\frac{\alpha(\alpha-1)(\alpha-2) x^{3}}{3!}+\frac{\alpha(\alpha-1)(\alpha-2)(\alpha-3) x^{4}}{4!}+R(x)$
where $|R(x)| \leq C(\alpha, r)|x|^{5}$.
First a preliminary estimate:
Lemma 1.1. Let $1 \leq p<\infty, \chi \in \Gamma$ and $\chi^{2} \neq 1$. If b is a real number and $|r| \leq 1$, then as $b \rightarrow 0$

$$
\left\|1+b \chi+r b \chi^{-1}\right\|_{p}=1+b^{2}\left(\frac{1}{2}\left(1+|r|^{2}\right)+\frac{1}{2}\left(\frac{p}{2}-1\right)|1+r|^{2}\right)+0\left(|b|^{3}\right)
$$

Proof. Let

$$
X=X(b, r) \equiv \frac{2 \operatorname{Re} \chi(\overline{r b}+b)+2 \operatorname{Re} \chi^{2} b^{2} \bar{r}}{1+|b|^{2}\left(1+|r|^{2}\right)}
$$

With this notation

$$
\left\|1+b \chi+r b \chi^{-1}\right\|_{p}^{p}=\left(1+b^{2}\left(1+|r|^{2}\right)\right)^{\frac{p}{2}} \int(1+X)^{\frac{p}{2}}
$$

If $|b|$ is sufficiently small a Taylor series expansion gives

$$
\int(1+X)^{\frac{p}{2}}=\int\left(1+\frac{p}{2} X+\frac{p}{2} \frac{\left(\frac{p}{2}-1\right)}{2} X^{2}+0\left(\|X\|_{\infty}^{3}\right)\right)
$$

As $\int \chi^{ \pm 1}=\int \chi^{ \pm 2}=0$ the latter integral simplifies to

$$
1+\frac{\frac{p}{2}\left(\frac{p}{2}-1\right) b^{2}|r+1|^{2}}{\left(1+b^{2}\left(1+|r|^{2}\right)\right)^{2}}+0\left(|b|^{3}\right)
$$

After taking a Taylor series expansion for $\left(1+b^{2}\left(1+|r|^{2}\right)\right)^{\frac{p}{2}}$ we see that

$$
\left\|1+b \chi+r b \chi^{-1}\right\|_{p}=\left[1+b^{2} p\left(\frac{1+|r|^{2}}{2}+\frac{1}{2}\left(\frac{p}{2}-1\right)|1+r|^{2}\right)+0\left(|b|^{3}\right)\right]^{\frac{1}{p}}
$$

and one final Taylor series expansion completes the proof.
For $E \subseteq \Gamma$ let $L_{E}^{p}(G)=\left\{f \in L^{p}(G): \hat{f}(\chi)=0\right.$ if $\left.\chi \notin E\right\}$. Of course $L_{\Gamma}^{p}(G)=L^{p}(G)$. It is well known that all translation invariant subspaces of L^{p} are of this form; for example $H^{p}(T)=L_{\mathbf{Z}+}^{p}(T)$.

Theorem 1.2. Let $1 \leq p \leq \infty, p \neq 2$ and suppose $\phi \in M\left(L_{E}^{p}\right)$ is a multiplier of norm 1. Assume that $\chi, \chi \psi$ and $\chi \psi^{2}$ (or $\chi \psi^{-1}$) belong to E, and $\phi(\chi)=\phi(\chi \psi)=1$. Then $\phi\left(\chi \psi^{2}\right)\left(\right.$ or $\left.\phi\left(\chi \psi^{-1}\right)\right)=1$.

Proof. We may assume $\psi^{2} \neq 1$ else there is nothing to prove and we consider the cases $p=\infty$ and $1 \leq p<\infty$ but $p \neq 2$ separately. Note that when $E \neq \Gamma$ the case $p=\infty$ does not follow by duality from the case $p=1$.

Suppose $\phi\left(\chi \psi^{2}\right)=s \neq 1$. (The case $\phi\left(\chi \psi^{-1}\right) \neq 1$ is similar). Replacing ϕ if necessary by the norm one multiplier $\frac{1}{N} \sum_{n=1}^{N} \phi^{n}$, we may assume $|s|$ is arbitrarily small.

Let $f=\chi \psi+b \chi+r b \chi \psi^{2} \in L_{E}^{p}$ for $|r| \leq 1$ and b real and small. Since

$$
\frac{\left\|M_{\phi} f\right\|_{p}}{\|f\|_{p}}=\frac{\left\|\chi \psi+b \chi+r b s \chi \psi^{2}\right\|_{p}}{\left\|\chi \psi+b \chi+r b \chi \psi^{2}\right\|_{p}} \leq 1
$$

with $|s|$ arbitrarily small, we may as well assume $s=0$. (We could also reach this conclusion by replacing ϕ by a weak cluster point of the sequence $\frac{1}{N} \sum_{1}^{N} \phi^{n}$ in the weak operator topology, but we prefer to keep the proof entirely elementary.) When $1 \leq p<\infty$ Lemma 1.1 shows that

$$
\frac{\left\|M_{\phi} f\right\|_{p}}{\|f\|_{p}}=\frac{1+\frac{b^{2} p}{4}+0\left(|b|^{3}\right)}{1+\frac{b^{2}}{2}\left(1+|r|^{2}+\left(\frac{p}{2}-1\right)|1+r|^{2}\right)+0\left(|b|^{3}\right)}
$$

Since ϕ is a norm one multiplier, letting $b \rightarrow 0$ we see that

$$
2 \operatorname{Re} r\left(\frac{p}{2}-1\right)+\frac{p}{2}|r|^{2} \geq 0
$$

When $p \neq 2$ we can clearly choose r with $|r| \leq 1$ but contradicting this inequality. Hence s must equal 1 .

For the case $p=\infty$ set $r=-1$ and $b>0$. Then

$$
\begin{aligned}
\|f\|_{\infty}^{2} & =\sup \left\{\left|1+b\left(\psi^{-1}(x)-\psi(x)\right)\right|^{2}: x \in G\right\} \\
& =\sup \left\{|1-2 b i \operatorname{Im} \psi(x)|^{2}: x \in G\right\} \leq 1+4 b^{2}
\end{aligned}
$$

while

$$
\left\|M_{\phi} f\right\|_{\infty}^{2} \geq\left|M_{\phi} f(0)\right|^{2}=|1+b-b s|^{2}
$$

As before, if $s \neq 1$ we may assume $s=0$, and since $(1+b)^{2}>1+4 b^{2}$ for b small we again obtain a contradiction.

Corollary 1.3. Let $1 \leq p \leq \infty, p \neq 2$. If E contains the arithmetic progression $\Lambda=\left\{\chi^{-m}, \ldots, \chi^{-1}, 1, \chi, \ldots, \chi^{n}\right\}$ for some $n, m, \in N$, and $\phi \in W\left(L_{E}^{p}\right)$ with $\phi(\chi)=1$, then $\left.\phi\right|_{\Lambda}=1$.

Next we generalize from arithmetic progressions to subgroups.

Theorem 1.4. Let $1 \leq p \leq \infty, p \neq 2$ and suppose $\phi \in W\left(L_{E}^{p}(G)\right)$. If $1, \chi, \psi, \chi \psi \in$ E, none of χ, ψ or $\chi \psi$ are of order 2 and $\phi(\chi)=\phi(\psi)=1$, then $\phi(\chi \psi)=1$.

REMARK. The condition $(\chi \psi)^{2} \neq 1$ is unnecessary but without it several additional cases need to be considered. Our purpose here is not to give as complete a proof as possible, just to illustrate the technique.

Proof. The case $p=\infty$ is easiest and does not require the order 2 condition. For $c<0$ and $a=b=\sqrt{|c|}$, let $f=1+a \chi+b \psi+c \chi \psi$. As before, if $\phi(\chi \psi)=s \neq 1$ we can assume $s=0$ so $M_{\phi} f=1+a \chi+b \psi$ and $\left\|M_{\phi} f\right\|_{\infty}=1+a+b$. Certainly

$$
\|f\|_{\infty} \leq \sup \{|1+a \alpha+b \beta+c \alpha \beta|:|\alpha|=|\beta|=1\}
$$

One can verify by routine calculations that for c sufficiently small $\|f\|_{\infty}$ is strictly less than $\left\|M_{\phi} f\right\|_{\infty}$, contradicting the fact that the norm of ϕ is 1 .

Now assume $1 \leq p<\infty, p \neq 2$. Without loss of generality we may assume none of the following products is 1 ; for if so then the fact that $\phi(\chi \psi)=1$ is either obvious or follows immediately from Theorem 1.2:

$$
\chi \psi, \chi \bar{\psi}, \chi^{2} \psi, \psi^{2} \chi, \chi^{2} \bar{\psi}, \psi^{2} \bar{\chi}
$$

Choose $\lambda=\lambda_{p}$ with λ^{2} real so that
(1) if $\chi^{3} \psi=1=\psi^{3} \chi$ then $\lambda^{2}(p-2) p\left(\frac{p}{2}-1\right)+\frac{p^{2}}{4}<0$;
(2) if precisely one of $\chi^{3} \psi$ or $\psi^{3} \chi=1$ then $\left(\lambda^{2} p+\frac{p}{2}-2\right) \frac{p}{2}\left(\frac{p}{2}-1\right)+\frac{p^{2}}{2}<0$; or
(3) if neither $\chi^{3} \psi$ nor $\psi^{3} \chi$ is 1 then $\frac{p^{2}}{2} \lambda^{2}\left(\frac{p}{2}-1\right)+\frac{p^{2}}{4}<0$.
(Note that as $p \neq 2$ these are always possible to do.)
In either case 1 or 3 we let $f=1+\lambda c(\chi+\psi)+c^{2} \chi \psi$ where c is a small real number. If $\chi^{3} \psi=1$ but $\psi^{3} \chi \neq 1$ let $f=1+c \chi+\lambda^{2} c \psi+c^{2} \chi \psi$ (case 2a) and if $\psi^{3} \chi=1$ but $\chi^{3} \psi \neq 1$ let $f=1+\lambda^{2} c \chi+c \psi+c^{2} \chi \psi$ (case 2b). For $a, b \in \mathbb{C}, d \in \mathbb{R}$ let

$$
X(a, b, d):=\frac{1}{\left(1+|a|^{2}+|b|^{2}+|d|^{2}\right)}(2 \operatorname{Re}(\chi(a+d \bar{b})+\psi(b+d \bar{a})+\chi \psi d+\chi \overline{\psi b} a))
$$

As usual we may assume $\phi(\chi \psi)=0$, thus

$$
\|f\|_{p}^{p}=\left(1+|a|^{2}+|b|^{2}+|c|^{4}\right)^{p / 2} \int\left(1+X\left(a, b, c^{2}\right)\right)^{p / 2}
$$

and

$$
\left\|M_{\phi} f\right\|_{p}^{p}=\left(1+|a|^{2}+|b|^{2}\right)^{p / 2} \int(1+X(a, b, 0))^{p / 2}
$$

where $a=b=\lambda c$ in (1) or (3), $a=c, b=\lambda^{2} c$ in (2a) and $a=\lambda^{2} c, b=c$ in (2b).

Taylor series expansions show that

$$
\begin{aligned}
\|f\|_{p}^{p}-\|M f\|_{p}^{p}= & \left(1+|a|^{2}+|b|^{2}+|c|^{4}\right)^{\frac{p}{2}} \int\left\{X\left(a, b, c^{2}\right)-X(a, b, 0)\right. \\
& +\frac{\frac{p}{2}\left(\frac{p}{2}-1\right)}{2}\left(X^{2}\left(a, b, c^{2}\right)-X^{2}(a, b, 0)\right) \\
& +\frac{\frac{p}{2}\left(\frac{p}{2}-1\right)\left(\frac{p}{2}-2\right)}{3!}\left(X^{3}\left(a, b, c^{2}\right)-X^{3}(a, b, 0)\right) \\
& \left.+\frac{\frac{p}{2}\left(\frac{p}{2}-1\right)\left(\frac{p}{2}-2\right)\left(\frac{p}{2}-3\right)}{4!}\left(X^{4}\left(a, b, c^{2}\right)-X^{4}(a, b, 0)\right)\right\} \\
& +\frac{p}{2} c^{4} \int(1+X(a, b, 0))^{\frac{p}{2}}+0\left(|c|^{5}\right) .
\end{aligned}
$$

Our assumptions clearly imply that

$$
\int X\left(a, b, c^{2}\right)=\int X(a, b, 0)=0
$$

in each case, and that

$$
\begin{aligned}
\int X^{4}\left(a, b, c^{2}\right) & -X^{4}(a, b, 0) \\
& =\left(\frac{1}{\left(1+|a|^{2}+|b|^{2}+|c|^{4}\right)^{4}}-\frac{1}{\left(1+|a|^{2}+|b|^{2}\right)^{4}}\right) O\left(|c|^{4}\right)+0\left(|c|^{5}\right) \\
& =0\left(|c|^{5}\right) .
\end{aligned}
$$

Similarly it can be seen that

$$
\begin{aligned}
& \int X^{2}\left(a, b, c^{2}\right)-X^{2}(a, b, 0) \\
& =2\left(\frac{1}{\left(1+|a|^{2}+|b|^{2}+|c|^{4}\right)^{2}}-\frac{1}{\left(1+|a|^{2}+|b|^{2}\right)^{2}}\right)\left(|a|^{2}+|b|^{2}+|a b|^{2}+\varepsilon 2 \operatorname{Re}(a \bar{b})^{2}\right) \\
& \quad+\frac{2}{\left(1+|a|^{2}+|b|^{2}+|c|^{4}\right)^{2}}\left(2 \operatorname{Re} a c^{2} b+\left|c^{2} b\right|^{2}+2 \operatorname{Re} b c^{2} a+\left|c^{2} a^{2}\right|+|c|^{4}\right)
\end{aligned}
$$

where $\varepsilon=1$ if $(\chi \bar{\psi})^{2}=1$ and $\varepsilon=0$ otherwise. This simplifies to

$$
2 c^{4}+8 c^{4} \lambda^{2}+0\left(|c|^{5}\right)
$$

in each of the cases.
The most complicated term to examine is $\int X^{3}\left(a, b, c^{2}\right)-X^{3}(a, b, 0)$. This is where the differences occur depending on whether or not $\chi^{3} \psi$ and/or $\psi^{3} \chi$ is 1 . Let $\varepsilon_{1}=1$ if $\chi^{3} \psi=1$ and 0 otherwise and let $\varepsilon_{2}=1$ if $\psi^{3} \chi=1$ and 0 otherwise. A careful analysis of all the terms appearing in X^{3} shows that

$$
\begin{aligned}
\int X^{3}\left(a, b, c^{2}\right)- & X^{3}(a, b, 0) \\
= & \left(\frac{1}{\left(1+|a|^{2}+|b|^{2}+|c|^{4}\right)^{3}}-\frac{1}{\left(1+|a|^{2}+|b|^{2}\right)^{3}}\right) 0\left(|c|^{3}\right) \\
& +\frac{1}{\left(1+|a|^{2}+|b|^{2}+|c|^{4}\right)^{3}}\left(\varepsilon_{1} 6 \operatorname{Re} a^{2} c^{2}+12 \operatorname{Re} a b c^{2}+\varepsilon_{2} 6 \operatorname{Re} b^{2} c^{2}\right) \\
= & \varepsilon_{1} 6 a^{2} c^{2}+12 a b c^{2}+\varepsilon_{2} 6 b^{2} c^{2}+0\left(|c|^{6}\right) .
\end{aligned}
$$

To finish off consider each case separately. In case 1 for example, $\varepsilon_{1}=\varepsilon_{2}=1$, $a=b=\lambda c$ so

$$
\|f\|_{p}^{p}-\left\|M_{\phi} f\right\|_{p}^{p}=c^{4}\left(\frac{p^{2}}{2}+\lambda^{2}(p-2) p\left(\frac{p}{2}-1\right)\right)+0\left(|c|^{5}\right) .
$$

By (1) this is negative if $|c|$ is sufficiently small, contradicting the fact that $\|\phi\|=1$. The other cases are similar.

Since there are no elements of order 2 in \mathbb{Z} the following corollaries are obvious.
Corollary 1.5. If ϕ is any norm one multiplier on $L_{E}^{p}(T)$ with $\phi(1)=\phi(n)=$ $\phi(k)=1$, and $n+k \in E$, then $\phi(n+k)=1$.

COROLLARY 1.6. If $\phi \in W\left(L^{p}(T)\right)$ then $\{n: \phi(n)=1\}$ is a subgroup of \mathbb{Z}.
3. Periodicity on cosets. Benyamini and Lin were able to generalize the results of the first section to show that if ϕ was a norm one multiplier on $L^{p}(G)$, then ϕ was constant on each coset of $\{\gamma \in \Gamma: \phi(\gamma)=1\}$. This answered a question of Carleson (see [5]). We will show that this result does not generalize to norm one multipliers on L_{E}^{p}, although it is true for multipliers on $H^{p}(T)$.

Example 2.1. Let $E=\{0,1,4,5\}$ and let $\phi: \mathbb{Z} \rightarrow \mathbb{C}$ satisfy $\phi(0)=1=\phi(4)$, $\phi(1)=s, \phi(5)=t$. We will show that there exists an $\varepsilon>0$ such that if $|s|,|t| \leq \varepsilon$ then ϕ is a norm one multiplier on $L_{E}^{4}(T)$.

Proof. Let $f=d+a e^{i x}+b e^{i 4 x}+c e^{i 5 x}$. It is routine to verify that

$$
\begin{aligned}
\|f\|_{4}^{4}-\left\|M_{\phi} f\right\|_{4}^{4} \leq & |a|^{4}\left(1-|s|^{4}\right)+|c|^{4}\left(1-|t|^{4}\right) \\
& +4\left(1-|s|^{2}\right)\left(|a d|^{2}+|a b|^{2}\right)+4\left(1-|t|^{2}\right)\left(|b c|^{2}+|c d|^{2}\right) \\
& +4\left(1-|s t|^{2}\right)|a c|^{2}+8 \operatorname{Re} a \bar{d} b \bar{c}(1-s \bar{t}) .
\end{aligned}
$$

If $d=0$ then clearly $\|f\|_{4}^{4} \geq\left\|M_{\phi} f\right\|_{4}^{4}$ for all choices of s, t provided $|s|,|t| \leq 1$. Thus assume $d=1$. Now

$$
8|\operatorname{Re} a b \bar{c}(1-s \bar{t})| \leq 2|1-s \bar{t}|\left(|a b|^{2}+|c|^{2}+|a|^{2}+|b c|^{2}\right) .
$$

Hence if s, t are chosen so that

$$
2|1-s \bar{t}| \leq \min \left(4\left(1-|t|^{2}\right), 4\left(1-|s|^{2}\right)\right)
$$

then $\|f\|_{4}^{4} \geq\left\|M_{\phi} f\right\|_{4}^{4}$, hence ϕ is norm one.
It is well known that there are multipliers on $H^{1}(T)$ which are not multipliers on $L^{1}(T)$. Our next example shows there are multipliers in $W\left(H^{1}(T)\right)$ which are not in $W\left(L^{1}(T)\right)$.

Example 2.2. Let $\phi(0)=1,0<\phi(1)=a<\frac{1}{2}$ and $\phi(n)=0$ for all other integers. The norm of ϕ as a multiplier on $L^{1}(T)$ is equal to $\left\|1+a e^{i t}\right\|_{1}$ which by Lemma 1.1 is greater than one if a is small enough. Thus $\phi \notin W\left(L^{1}(T)\right)$.

Let $f \in H^{1}(T)$, say $f(t)=b+c e^{i t}+g(t)$, where $g \in H^{1}(T), \hat{g}(0)=\hat{g}(1)=0$. If $b=0$ then clearly $\left\|M_{\phi} f\right\|_{1} \leq\|f\|_{1}$, so assume $b=1$. If $|c| \geq 2$ then

$$
\left\|M_{\phi} f\right\|_{1} \leq 1+|a c| \leq|c| \leq\|f\|_{1} .
$$

Thus assume $|c|<2$. Let $F(t)=1+\frac{1}{2}\left(e^{i t}+e^{-i t}\right)$. As $\|F\|_{1}=1,\|F * f\|_{1} \leq\|f\|_{1}$. But

$$
\|F * f\|_{1}=\left\|1+\frac{c}{2} e^{i t}\right\|_{1}=\left\|\left(1+\frac{c}{2} e^{i t}\right)^{1 / 2}\right\|_{2}^{2} .
$$

Since $|c / 2|<1$ we can compute a Taylor series expansion for $\left(1+\frac{c}{2} e^{i t}\right)^{1 / 2}$ to obtain the inequality

$$
\|F * f\|_{1} \geq 1+\frac{|c|^{2}}{16}
$$

From Lemma 1.1

$$
\left\|M_{\phi} f\right\|_{1}=\left\|1+a c e^{i t}\right\|_{1} \leq 1+\frac{|a c|^{2}}{4}+0\left(|a c|^{3}\right),
$$

so for a sufficiently small $\left\|M_{\phi} f\right\|_{1} \geq\|f\|_{1}$ proving that $\phi \in W\left(H^{1}(T)\right)$.
This example shows that properties of multipliers in $W\left(H^{1}(T)\right)$ do not follow automatically from the corresponding results for $W\left(L^{1}(T)\right)$; however it is possible to modify [1] to prove

Theorem 2.3. Let $1 \leq p \leq \infty, p \neq 2$. Suppose ϕ is a norm one multiplier on $H^{p}(T)$ with $\phi(0)=\phi(k)=1$ for some $k \neq 0$. Then if m and n are positive integers and $m \equiv n \bmod k$ then $\phi(m)=\phi(n)$.

Proof. The cases $1 \leq p<2,2<p<\infty$ and $p=\infty$ are treated separately.
(a) $2<p<\infty$: Assume $\phi(m) \neq \phi(n)$ for some $m \equiv n \bmod k$. Let $f(t)=e^{i m t}-e^{i n t}$. Note that f is $\frac{2 \pi}{k}$ periodic, and as f is continuous and $f(0)=0$ an application of the mean value theorem shows that there is a neighbourhood I_{ε} of 0 such that $\left|I_{\varepsilon}\right|=C \varepsilon$ (for $\left.C=\frac{1}{|n-m|}\right)$ and $|f| \leq \varepsilon$ on I_{ε}. Since $M_{\phi}(f)(0)=\phi(m)-\phi(n) \neq 0$ there is an interval I and constant C_{0} such that $\left|M_{\phi}(f)\right| \geq C_{0}>0$ on I. Without loss of generality $I_{\varepsilon} \subseteq I$ and $\left|I_{\varepsilon}\right| \leq \frac{2 \pi}{k}$. Let $J_{\varepsilon}=\bigcup_{j=0}^{k-1}\left(I_{\varepsilon}+\frac{2 \pi j}{k}\right)$. By periodicity $|f| \leq \varepsilon$ on J_{ε}.

Choose $0<r<p-2$ and $s>1+2 / r$. Choose a polynomial $g_{1}=g_{1}(\varepsilon)$ such that
(i) $1-\varepsilon^{s} \leq\left|g_{1}\right| \leq 1$ on $k I_{\varepsilon}$,
(ii) $\left\|\left.g_{1}\right|_{\left(k l_{\varepsilon}\right)}\right\|_{p} \leq \varepsilon^{s}$, and
(iii) $\left\|g_{1}\right\|_{\infty} \leq 1$.

Let $g_{2}(t)=g_{1}(k t)$ so \hat{g}_{2} is supported on $k \mathbb{Z}$. Furthermore notice that
(i') $1-\varepsilon^{s} \leq\left|g_{2}\right| \leq 1$ on J_{ε} and
(ii') $\left\|\left.g_{2}\right|_{J_{\varepsilon} c}\right\|_{p} \leq \varepsilon^{s}$.
Since $g_{2} f 1_{J_{\varepsilon}} \in L^{1}(T)$, it follows from the Riemann Lebesgue lemma that we can choose $N=N(\varepsilon) \in \mathbb{N}$ such that

$$
\left|\int_{J_{\varepsilon}} e^{i N k t} g_{2} \bar{f} d t\right|+\left|\int_{J_{\varepsilon}} e^{-i N k t} \bar{g}_{2} f d t\right| \leq \varepsilon^{s}
$$

If in addition we choose N large enough we can assume $g \equiv e^{i N k t} g_{2} \in H^{p}(T)$. Notice that g has properties (i^{\prime}) and (ii'), and supp $\hat{g} \subseteq k Z$, so g is $\frac{2 \pi}{k}$ periodic.

Now we make some estimates. By (ii') it follows that

$$
\int_{J_{\varepsilon}^{c}}\left|g+\varepsilon^{1 / r} f\right|^{p} \leq 2^{p}\left(\varepsilon^{s p}+\varepsilon^{p / r} 2^{p}\right) .
$$

Also

$$
\int_{J_{\varepsilon}}\left|g+\varepsilon^{1 / r} f\right|^{p}=\int_{J_{\varepsilon}}\left(1+\varepsilon^{2 / r}|f|^{2}+|g|^{2}-1+2 \operatorname{Re} g \bar{f} \varepsilon^{1 / r}\right)^{\frac{p}{2}} .
$$

Since $|f| \leq \varepsilon$ on J_{ε} and $\left||g|^{2}-1\right| \leq 1-(1-\varepsilon)^{2 s}$ on J_{ε}, we can use our usual Taylor series expansion (provided ε is small enough) to obtain

$$
\int_{J_{\varepsilon}}\left|g+\varepsilon^{1 / r} f\right|^{p}=\int_{J_{\varepsilon}}\left(1+\frac{p}{2}\left(\varepsilon^{2 / r}|f|^{2}+|g|^{2}-1+2 \operatorname{Re} g \bar{f} \varepsilon^{1 / r}\right)+0\left(\max \left(\varepsilon^{2 / r+2}, \varepsilon^{2 s}\right)\right)\right)
$$

Recalling further the definition of g we see that

$$
\left|\int_{J_{\varepsilon}} \operatorname{Re} g \bar{f}\right| \leq \varepsilon^{s},
$$

thus combining these results we get that

$$
\begin{aligned}
\left\|g+\varepsilon^{1 / r} f\right\|_{p}^{p} & \leq\left|J_{\varepsilon}\right|\left(1+0\left(\max \left(\varepsilon^{2 / r+2}, \varepsilon^{s}\right)\right)\right)+0\left(\max \left(\varepsilon^{s+1 / r}, \varepsilon^{s p}, \varepsilon^{p / r}\right)\right) \\
& =k\left|I_{\varepsilon}\right|\left(1+0\left(\max \left(\varepsilon^{2 / r+2}, \varepsilon^{s}\right)\right)\right)+0\left(\max \left(\varepsilon^{s+1 / r}, \varepsilon^{p / r}\right)\right)
\end{aligned}
$$

Next we estimate $\left\|M_{\phi}\left(g+\varepsilon^{1 / r} f\right)\right\|_{p}^{p}$. By Corollary 1.3 we see that $\phi(z)=1$ for $z \in k \mathbb{Z}^{+}$, so since \hat{g} is supported on $k \mathbb{Z}^{+}, M_{\phi}(g)=g$. Thus

$$
\left\|M_{\phi}\left(g+\varepsilon^{1 / r} f\right)\right\|_{p}^{p} \geq \int_{J_{\varepsilon}}\left|g+\varepsilon^{1 / r} M_{\phi}(f)\right|^{p} .
$$

The definition of f ensures that

$$
M_{\phi} f\left(t+\frac{2 \pi j}{k}\right)=M_{\phi} f(t) \exp 2 \pi \frac{i n j}{k} .
$$

Thus

$$
\begin{aligned}
\left\|M_{\phi}\left(g+\varepsilon^{1 / r} f\right)\right\|_{p}^{p} & \geq \sum_{j=0}^{k-1} \int_{I_{\varepsilon}}\left|g+\varepsilon^{1 / r} M_{\phi} f(t) \exp 2 \pi \frac{i n j}{k}\right|^{p} \\
& \geq\left(1-\varepsilon^{s}\right)^{p} \sum_{j=0}^{k-1} \int_{I_{\varepsilon}}\left|1+\varepsilon^{1 / r} \frac{M_{\phi} f(t)}{g(t)} \exp 2 \pi \frac{i n j}{k}\right|^{p} .
\end{aligned}
$$

Hölder's inequality and orthogonality show that a lower bound for the sum is $k\left(1+C_{0} \varepsilon^{2 / r}\right)$ (cf. [1, p. 43]), thus

$$
\left\|M_{\phi}\left(g+\varepsilon^{1 / r} f\right)\right\|_{p}^{p} \geq\left(1-\varepsilon^{s}\right)^{p}\left|I_{\varepsilon}\right| k\left(1+C_{0} \varepsilon^{2 / r}\right)
$$

Upon considering the ratio

$$
\frac{\left\|M_{\phi}\left(g+\varepsilon^{1 / r} f\right)\right\|_{p}^{p}}{\left\|g+\varepsilon^{1 / r} f\right\|_{p}^{p}} \leq 1
$$

and recalling that $\left|I_{\varepsilon}\right| \leq C \varepsilon$ we see that we must have

$$
\left(1-p \varepsilon^{s}+0\left(\varepsilon^{2 s}\right)\right)\left(1+C_{0} \varepsilon^{2 / r}\right) \leq 1+0\left(\max \left(\varepsilon^{2 / r+2}, \varepsilon^{s}, \varepsilon^{s+1 / r-1}, \varepsilon^{s p-1}, \varepsilon^{p / r-1}\right)\right)
$$

Since $2 / r<s-1<s$ the left hand side is at least $1+0\left(\varepsilon^{2 / r}\right)$. Also $s p-1>2 s-1>2 / r$ and $p / r-1>(r+2) / r-1=2 / r$, so for ε sufficiently small the right hand side is less than the left, providing the contradiction.
(b) $1 \leq p<2$: Again assume $\phi(m) \neq \phi(n)$ for some $m \equiv n \bmod k$. Construct f, I_{ε} and J_{ε} as before and choose $0<r<2-p$ and $s>1+p / r$. Choose a polynomial $g \in H^{p}(T)$ such that $\|g\|_{\infty} \leq 1,\left\|\left.g\right|_{J_{\varepsilon}}\right\|_{p} \leq \varepsilon^{s},|g| \geq 1-\varepsilon^{s}$ on $J_{\varepsilon}^{c}, \hat{g}$ is supported on $k \mathbb{Z}$ and

$$
\left|\int_{J_{\varepsilon}} \operatorname{Re} g \bar{f}\right|+\left|\int_{J_{\varepsilon}^{c}} \operatorname{Re} g \overline{M_{\phi} f}\right| \leq \varepsilon^{s} .
$$

Again simple estimates show

$$
\int_{J_{\varepsilon}}\left|g+\varepsilon^{1 / r} f\right|^{p} \leq 2^{p}\left(\varepsilon^{p s}+\varepsilon^{p / r+p}\left|J_{\varepsilon}\right|\right)=0\left(\max \left(\varepsilon^{p s}, \varepsilon^{p / r+p+1}\right)\right)
$$

and

$$
\int_{J \varepsilon^{c}}\left|g+\varepsilon^{1 / r} f\right|^{p} \leq\left|J_{\varepsilon}^{c}\right|+0\left(\max \left(\varepsilon^{s}, \varepsilon^{2 / r}\right)\right)
$$

This time Hölder's inequality will not help in finding a lower bound for $\left\|M_{\phi}\left(g+\varepsilon^{1 / r} f\right)\right\|_{p}$. Instead we observe that since $s>1 / r+1 / p$

$$
\begin{aligned}
\int_{J_{\varepsilon}}\left|M_{\phi}\left(g+\varepsilon^{1 / r} f\right)\right|^{p} & \geq\left[\left(\int_{J_{\varepsilon}}\left|\varepsilon^{1 / r} M_{\phi} f\right|^{p}\right)^{\frac{1}{p}}-\left(\int_{J_{\varepsilon}}|g|^{p}\right)^{\frac{1}{p}}\right]^{p} \\
& \geq\left[\left|J_{\varepsilon}\right|^{\frac{1}{p}} \varepsilon^{1 / r} C_{0}-\varepsilon^{s}\right]^{p} \\
& \geq k C C_{0}^{p} \varepsilon^{1+p / r}\left(1-\frac{\varepsilon^{s-1 / p-1 / r}}{(k C)^{\frac{1}{\rho}} C_{0}}\right)^{p} \\
& \geq C_{1} \varepsilon^{1+p / r}
\end{aligned}
$$

for some constant $C_{1}>0$. (Assume ε is very small.)
Arguments similar to those used in the $2<p<\infty$ case of the proof for estimating $\int_{J_{\varepsilon}}\left|g+\varepsilon^{1 / r} f\right|^{p}$, show that

$$
\int_{J_{\varepsilon}^{c}}\left|M_{\phi}\left(g+\varepsilon^{1 / r} f\right)\right|^{p} \geq\left|J_{\varepsilon}^{c}\right|+0\left(\max \left(\varepsilon^{s}, \varepsilon^{2 / r}\right)\right)
$$

Thus

$$
\left\|M_{\phi}\left(g+\varepsilon^{1 / r} f\right)\right\|_{p}^{p} \geq\left|J_{\varepsilon}^{c}\right|+C_{1} \varepsilon^{1+p / r}+0\left(\max \left(\varepsilon^{s}, \varepsilon^{2 / r}\right)\right)
$$

while

$$
\left\|g+\varepsilon^{1 / r} f\right\|_{p}^{p} \leq\left|J_{\varepsilon}^{c}\right|+0\left(\max \left(\varepsilon^{s}, \varepsilon^{2 / r}, \varepsilon^{p / r+p+1}\right)\right) .
$$

But $1+p / r<\max (s, 2 / r, p / r+p+1)$, so we cannot have $\left\|M_{\phi}\left(g+\varepsilon^{1 / r} f\right)\right\|_{p}^{p} \leq \| g+$ $\varepsilon^{1 / r} f \|_{p}^{p}$ for ε sufficiently small, again giving a contradiction.
(c) $p=\infty$: Once again assume $\phi(n) \neq \phi(m)$ for some $n \equiv m \bmod k$ and construct f, I_{ε} and J_{ε} as before. Choose an $H^{\infty}(T)$ function g with $\operatorname{supp} \hat{g} \subseteq k \mathbb{Z},|g(0)| \geq 1-\varepsilon$,
$\|g\|_{\infty} \leq 1$ and $|g| \leq \varepsilon$ on J_{ε}^{c}. Suppose $\left|M_{\phi} f(0)\right| \geq C_{0}>0$ and let $|\lambda|=2 \varepsilon / C_{0}$ where $\operatorname{sgn} \lambda M_{\phi} f(0)=\operatorname{sgn} g(0)$. Then, for ε small,

$$
\|g+\lambda f\|_{\infty}=\max _{t}|g+\lambda f(t)| \leq 1+\frac{2 \varepsilon^{2}}{C_{0}}
$$

while

$$
\begin{aligned}
\left\|M_{\phi}(g+\lambda f)\right\|_{\infty} & \geq\left|g(0)+\lambda M_{\phi} f(0)\right| \\
& \geq(1-\varepsilon)+\frac{2 \varepsilon C_{0}}{C_{0}}=1+\varepsilon .
\end{aligned}
$$

Again when ε is small this contradicts the fact that $\|\phi\| \leq 1$.
Our final result, an application of the previous theorem, should be contrasted with Example 2.2.

Corollary 2.4. Let $1 \leq p \leq \infty$. Suppose ϕ is a norm one multiplier on $H^{p}(T)$ with $\phi(0)=\phi(k)=1$ for some $k \neq 0$. Then ϕ is the restriction of a norm one multiplier on $L^{p}(T)$.

Proof. The case $p=2$ is obvious so assume $p \neq 2$. By the previous theorem ϕ is a k-periodic sequence on \mathbb{Z}^{+}. Let μ be the measure on T given by

$$
\mu=\sum_{j=0}^{k-1} \phi(j) \frac{e^{i j t}}{k}\left(\delta_{x_{0}}+\cdots+\delta_{x_{k-1}}\right)
$$

where $x_{j}=2 \pi j / k$.
Since $\phi(n)=\hat{\mu}(n)$ for $n \in \mathbb{Z}^{+}, \phi$ is the restriction of the L^{p} multiplier $\hat{\mu}$ to $H^{p}(T)$. Clearly the multiplier norm of $\hat{\mu}$ is at least one.

Let f be a trigonometric polynomial and assume $g(t)=f(t) e^{i N k t} \in H^{p}(T)$.
Since $\hat{g}(n)=\hat{f}(n-N k)$, and ϕ and $\hat{\mu}$ are k-periodic, if $n \in \mathbb{Z}^{+}$

$$
\widehat{M_{\phi}} g(n)=\phi(n) \hat{g}(n)=\hat{\mu}(n-N k) \hat{f}(n-N k)=\widehat{M_{\hat{\mu}}} f(n-N k) .
$$

If n is a negative integer $\widehat{M_{\phi}} g(n)=0=\widehat{M_{\hat{\mu}}} f(n-N k)$. Thus $M_{\phi} g=e^{i N k t} M_{\hat{\mu}} f$ and $\left\|M_{\hat{\mu}} f\right\|_{p}=\left\|M_{\phi} g\right\|_{p} \leq\|g\|_{p}=\|f\|_{p}$. Since the trigonometric polynomials are dense in $L^{p}, \hat{\mu}$ is a norm one multiplier on $L^{p}(T)$.

References

1. Y. Benyamini and P. K. Lin, A class of norm-one multipliers on L^{p}, Longhorn Notes, University of Texas at Austin, 1984, 39-44.
2. \qquad Norm one multipliers on $L^{p}(G)$, Archiv. Math. 24(1986), 159-173.
3. R. E. Edwards, Fourier Series, 2, Springer-Verlag, New York, 1982.
4. C. Fefferman and H. S. Shapiro, A planar face of the unit sphere of the multiplier space $M_{p}, 1<p<\infty$, Proc. Amer. Math. Soc. 36(1972), 435-439.
5. H. S. Shapiro, Fourier multipliers whose norm is an attained value, Linear operators and approximization, Proc. Conf. Oberwolfach 1971, Birkhäuser, Basel-Stuttgart, 1972, 338-347.

Department of Pure Mathematics

University of Waterloo
Waterloo, Ontario N2L 3G1

