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Abstract

We provide the first generic exact simulation algorithm for multivariate diffusions.
Current exact sampling algorithms for diffusions require the existence of a transforma-
tion which can be used to reduce the sampling problem to the case of a constant diffusion
matrix and a drift which is the gradient of some function. Such a transformation, called
the Lamperti transformation, can be applied in general only in one dimension. So,
completely different ideas are required for the exact sampling of generic multivariate
diffusions. The development of these ideas is the main contribution of this paper. Our
strategy combines techniques borrowed from the theory of rough paths, on the one hand,
and multilevel Monte Carlo on the other.
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1. Introduction

Consider a probability space (�,F , P) and an Itô stochastic differential equation (SDE)

dX(t)=μ(X(t))dt+ σ (X(t))dW(t), X(0)= x0, (1)

where W(·) is a d′-dimensional Brownian motion under P, and μ(·)= (μi(·))d : Rd→R
d and

σ (·)= (σij(·))d×d′ : Rd→R
d×d′ satisfy suitable regularity conditions. For instance, in order for

(1) to have a strong solution, it is sufficient to assume that both μ (·) and σ (·) are uniformly
Lipschitz.

Under additional regularity conditions on μ (·) and σ (·), this paper provides the first Monte
Carlo simulation algorithm which allows sampling of any discrete skeleton X (t1), ..., X (tm)
exactly, without any bias.

The precise regularity conditions that we impose on μ (·) and σ (·) are stated in Section 3.
In particular, it is sufficient for the validity of our Monte Carlo method to assume μ (·) and
σ (·) to be three times continuously differentiable, both with Lipschitz continuous derivatives
of order three. In addition, we must assume that σ (·) is uniformly elliptic.

Exact simulation of SDEs has generated a substantial amount of interest in the applied prob-
ability and Monte Carlo simulation communities. The landmark paper [5] introduced what has
become the standard procedure for the design of generic exact simulation algorithms for diffu-
sions. The authors of [5] propose a clever acceptance-rejection sampler which uses Brownian
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motion as a proposal distribution. The authors of [7] apply a localization technique which
eliminates certain boundedness assumptions originally present in [5]; see also [4] for the use
of retrospective simulation ideas to dispense with boundedness assumptions.

The fundamental assumption underlying the work of [5] and its extensions is that the under-
lying (target) process has a constant diffusion coefficient; i.e., σ (x)= σ for every x. Beskos
and Roberts [5] note that in the case d= 1, owing to Lamperti’s transformation, the constant
diffusion coefficient assumption comes basically at no cost in generality.

Unfortunately, however, Lamperti’s transformation is only generally applicable in one
dimension. In fact, [1] characterizes the multidimensional diffusions for which Lamperti’s
transformation can be successfully applied, and these models are very restrictive.

Moreover, even if Lamperti’s transformation is applicable in a multidimensional setting,
another implicit assumption in the application of the Beskos and Roberts acceptance-rejection
procedure is that the drift coefficient μ (·) is the gradient of some function (i.e. μ (x)=∇v (x)
for some v (·)). This assumption, once again, comes at virtually no cost in generality in the
one-dimensional setting, but it may be very restrictive in the multidimensional case.

Because of these limitations, a generic algorithm for exact simulation of multidimensional
diffusions, even under the regularity conditions that we impose here, requires a completely
different set of ideas.

The contribution in this paper is therefore not only the production of such a generic exact
simulation algorithm, but also the development of the ideas that are behind its construc-
tion. In Section 2 we introduce an algorithm which assumes a constant diffusion coefficient,
but removes the assumption of the drift coefficient being the gradient of some function. In
Section 3, we eventually remove the requirement of a constant diffusion matrix and propose
an algorithm applicable to general diffusions. The algorithms in Sections 2 and 3 are dif-
ferent in nature. However, they share some common elements, such as the use of so-called
Tolerance-Enforced Simulation (TES) techniques based on rough path estimates. Even though
the algorithm in Section 3 is more general, we believe that there is significant value in devel-
oping the algorithm in Section 2, for two reasons. The first one is pedagogical: the algorithm
in Section 2 is easier to understand, while building on a key idea, which involves localizing
essential quantities within specific compact domains with probability one. The second reason
is that the algorithm in Section 2, being simpler, may be subject to potential improvement
methodologies to be pursued in future research.

Potential improvements are particularly interesting directions, especially given that, unfor-
tunately, the algorithms that we present have infinite expected termination time. We recognize
that this issue should be resolved for the algorithms to be widely used in practice, and we dis-
cuss the elements which lead to infinite expected running time in Section 4. There are basically
two types of elements that affect the running time of the algorithm in Section 3; one of them
has to do with the types of issues that arise when trying to fully remove the bias in TES and
related approximations, and the other has to do with the use of a density approximation coupled
with Bernoulli factories. In contrast, the algorithm in Section 2 is only affected by removing
the bias in TES-type approximations. We must stress, however, that the present paper shows
for the first time that it is possible to perform exact sampling of multidimensional diffusions
in substantial generality, and, in doing so, it provides a conceptual framework different from
the prevailing use of Lamperti transformation, which is the only available generic approach for
producing exact sampling of diffusions.

Now, despite the algorithm’s practical limitations, it is vital to recognize the advantages that
unbiased samplers have over biased samplers in the context of a massive parallel computing
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environment, because it is straightforward to implement a parallel procedure to reduce the
estimation error of an unbiased sampler.

Recently, there have been several unbiased estimation procedures which have been pro-
posed for expectations of the form α =E( f (X(t))), assuming Var( f (X(t))) <∞. For example,
the work of [21] shows that if f (·) is twice continuously differentiable (with Lipschitz deriva-
tives) and if there exists a discretization scheme which can be implemented with a strong
convergence error of order 1, then it is possible to construct an unbiased estimator for α with
finite variance and finite expected termination time. The work of [12] shows that such a dis-
cretization scheme can be developed if μ (·) and σ (·) are sufficiently smooth under certain
boundedness assumptions. The paper [13] also develops an unbiased estimator for α using a
regime-switching technique. Our work here is somewhat related to this line of research, but
an important difference is that we actually generate X (t) exactly, while all of the existing
algorithms which apply in multidimensional diffusion settings generate Z such that E(Z)= α.
So, for example, if f (·) is positive, one cannot guarantee that Z is positive using the type of
samplers suggested in [21]. However, by sampling X (t) directly, one maintains the positivity
of the estimator.

Another instance in which direct exact samplers are useful arises in the context of stochastic
optimization. For instance, consider the case in which one is interested in optimizing a convex
function of the form g (θ)=E(h(X(t), θ)), where h (x, ·) is differentiable. In this case, one can
naturally construct an estimator Z (θ) such that g (θ)=E(Z(θ)) using the results in [21] and
optimize the mapping θ→ n−1 ∑n

i=1 Zi (θ), which unfortunately will typically not be convex.
So, having access to a direct procedure to sample X (t) in this setting is particularly convenient,
as convexity is preserved.

The rest of the paper is organized as follows. In Section 2, we consider the case of multidi-
mensional diffusions with a constant diffusion coefficient and a Lipschitz continuous (suitably
smooth) drift. The general case is discussed in Section 3. Our development uses localization
ideas which are introduced in Section 2, as well as some basic estimates of the transition den-
sity of the underlying diffusion (e.g. Lipschitz continuity), which are developed in Appendix A.
As mentioned before, we discuss the bottlenecks in the expected running time of the algorithm
in Section 4.

2. Exact simulation of SDEs with identity diffusion coefficient

In the case that Lamperti’s transformation is applicable, the SDE of interest is reducible
to another SDE whose diffusion matrix is the identity. As a result, it suffices to consider
simulating the following SDE:

dX(t)=μ(X(t))dt+ dW(t), X(0)= x0, (2)

where W = {W(t)= (W1(t), · · · ,Wd(t)) : 0≤ t<∞} is a d-dimensional Brownian motion. In
this section we concentrate on the identity diffusion case (2), but the development can be
immediately extended to the case of a constant diffusion matrix. However, throughout this
section we must impose the following assumptions.

Assumption 1. The SDE (2) has a strong solution.

Assumption 2. The drift coefficient μ(·) is three times continuously differentiable.

Assumption 2 is the requirement of TES, the theoretical foundation of our algorithm, which
we shall introduce later.
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Let us introduce some notation first. For any set G and x ∈Rd , we use d(x,G)=
inf {‖x− y‖2 : y ∈G} to denote the distance between x and G;

◦
G denotes the interior of G;

∂G denotes the boundary of G; Gc denotes the complement of G.
Consider a probability space (�,F , P̃) endowed with a filtration {Ft : 0≤ t≤ 1}, and

supporting a d-dimensional Brownian motion

X(t)= (X1(t), · · · , Xd(t)), 0≤ t≤ 1.

Let {L(t) : 0≤ t≤ 1} be a P̃-local martingale defined as

L(t)= exp

(∫ t

0
μT (X(t))dX(t)− 1

2

∫ t

0
‖μ(X(t))‖22dt

)
, (3)

where μT (·) denotes the transpose of the column vector μ(·). Under Assumption 1, L(·) is a
P̃-martingale; see Corollary 3.5.16 of [15].

In this case we can define a probability measure P through

P(A)=E
P̃ [I(A)L(1)] ∀A ∈F ,

where I(A) denotes the indicator function of the set A and E
P̃ (·) is the expectation operator

under P̃.
Let

W(t)= (W1(t), · · · ,Wd(t)), 0≤ t≤ 1,

be a d-dimensional process defined by

W(t)= X(t)−
∫ t

0
μ(X(s))ds, 0≤ t≤ 1. (4)

The following theorem provides the distribution of W(·).
Theorem 1 (Girsanov’s theorem). If Assumption 1 is satisfied, then the process W(·) is a
d-dimensional Brownian motion on the probability space (�,F , P).

Proof. See, for instance, Theorem 3.5.1 of [15]. �
It is readily apparent from (4) that X(·) is a weak solution to the SDE (2) on the prob-

ability space (�,F , P). The exact simulation problem becomes sampling X(1) under the
measure P. Since X(1) follows a normal distribution under the measure P̃, we can attempt
to use acceptance-rejection to sample X(1). A direct application of acceptance-rejection may
proceed by using the P̃ distribution of X(1) (which is simply a normal distribution) as the
proposal, which, if acceptance-rejection is applicable, would then be accepted with probabil-
ity proportional to L(1). However, there are two obstacles when trying to apply such a direct
acceptance-rejection approach. First, the presence of the general stochastic integral appearing
in the definition of L(1) makes the likelihood ratio difficult to compute directly. Second, a direct
application of acceptance-rejection requires the likelihood ratio, L(1), to be bounded, which is
unfortunately violated.

In order to deal with the first obstacle, we note that it is really not necessary to accurately
evaluate the likelihood ratio. In the standard procedure of acceptance-rejection, the likelihood
ratio is only used for comparison with an independent uniform random variable. Thus, to
address the first obstacle, we can approximate the likelihood ratio with a deterministic error
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bound, and keep refining until we can decide to either accept or reject the proposal. It turns
out, as we shall see in Corollary 1, that the same approximation technique can actually be used
to localize L (1) and also resolve the second obstacle. Then, we will sample the distribution
of X(1) conditional on the localization of L (1) using acceptance-rejection, where the rejection
scheme is suggested by Lemma 1.

The theoretical foundation for such an approximation and refinement strategy is given by
Tolerance-Enforced Simulation (TES), which is presented in Theorem 2.

Theorem 2 (Tolerance-Enforced Simulation). Consider a probability space (�,F , P) and
the following SDE:

dY(t)= α(Y(t))dt+ ν(Y(t))dW(t), Y(t)= y0, (5)

where α(·)= (αi(·))d : Rd→R
d, ν(·)= (νij(·))d×d′ : Rd→R

d×d′ , and W(·) is a d’-dimensional
Brownian motion. Suppose that α(·) is continuously differentiable and that ν(·) is three times
continuously differentiable. Then, given any deterministic ε > 0, there is an explicit Monte
Carlo procedure that allows us to simulate a piecewise constant process Yε(·) such that

sup
t∈[0,1]

‖Yε(t)− Y(t)‖2 ≤ ε

with probability one. Furthermore, for any m> 1 and 0<εm < · · ·< ε1 < 1, we can simulate
Yεm conditional on Yε1, . . . , Yεm−1 .

Proof. See Theorem 2.1, Theorem 2.2, and Section 2.1 of [6], where a detailed TES
procedure is also provided. �
Remark 1. TES is based on the Lévy–Ciesielski construction of the driving Brownian motion
W(·) up to a random level. Consequently, W(1) is obtained for free when we run TES in which
a skeleton of the driving Brownian motion W(·) is simulated. In particular, for any m> 1 and
0< εm < · · ·< ε1 < 1, we can simulate Yεm conditional on Yε1, . . . , Yεm−1 and W(1).

As a straightforward consequence of Theorem 2, we develop a localization procedure for
SDE in Corollary 1. Before moving forward to state the result, we define some notation that
will be used therein.

Definition 1. A family of (Borel measurable) sets G = {Gi ⊂R
d : i ∈N} is said to be a count-

able continuous partition for a d-dimensional random vector Y if and only if the following
hold:

1. The sets in G are mutually disjoint; that is, Gi ∩Gj =∅ for i �= j.

2. Y is concentrated on G; that is, P(Y ∈∪i∈NGi)= 1.

3. P(Y ∈ ∂Gi)= 0 for all i ∈N.

In addition, a function 	G(x) : supp(Y)→N is defined such that 	G(x)= i if and only if
x ∈Gi.

Corollary 1. In the setting of Theorem 2, let G = {Gi : i ∈N} be a countable continuous par-
tition for Y(1); then there is an algorithm for simulating 	G(Y(1)) that terminates in finite
time with probability one. In particular, for any set G such that P(Y(1)∈ ∂G)= 0, there is an
algorithm for simulating I(Y(1)∈G).
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Algorithm 1: Localization of SDE over countable continuous partition G.

1: Initialize ε← 1/2.
2: Apply TES to simulate Yε(1), i←	G(Yε(1)).
3: while d(Yε(1),Gc

i )≤ ε do
4: Apply TES to simulate Yε/2(1) conditional on Y1/2(1), . . . , Yε(1).
5: i←	G(Yε/2(1)).
6: ε← ε/2.
7: Output i.

Proof. Notice that P(Y(1)∈ ∂Gi)= 0, so Y(1) ∈⋃i∈N
◦

Gi holds almost surely. Recall from
Theorem 2 that ‖Yε(1)− Y(1)‖2 ≤ ε almost surely, which suggests that

P

(
{ω ∈� : Y(1)∈ ◦

Gi}
)
= P

(⋃
ε>0

{ω ∈� : d(Yε(1),Gc
i )> ε}

)
.

Thus, we pick ε ∈ (0, 1) and apply TES to simulate the approximation process Yε(1). If

d
(

Yε(1),Gc
	G (Yε(1))

)
> ε,

then 	G(Y(1))=	G(Yε(1)), which terminates the algorithm. Otherwise we keep refining the
approximation of TES, by setting ε← ε/2, until d(Yε(1),Gc

	G (Yε (1)))> ε. The algorithm will
ultimately terminate since

P

(⋃
i∈N

⋃
ε>0

{ω ∈� : d(Yε(1),Gc
i )> ε}

)
= 1.

The procedure for simulation of I(Y(1)∈G) is just a particular case, obtained by setting G =
{G,Gc}. The details of the algorithm are given in Algorithm 1. �

The algorithm for simulating X(1) is performed in a two-stage fashion. At the first stage, the
likelihood ratio L(1) is localized with the help of Corollary 1. (The efficiency of the algorithm
may be slightly improved if we localize X(1) and L(1) simultaneously at the first step, then
apply acceptance-rejection based on localization. However, this does not solve the problem of
the infinite expected running time.) Then, at the second stage, X(1) is sampled conditional on
the result of localization.

We now illustrate how to localize L(1) in detail. In order to write the dynamics of Y(1)
in standard form as in (5), we consider the SDE of (L(·), X(·)) under the measure P as
follows: {

dL(t)= L(t)‖μ(X(t))‖22dt+ L(t)μT (X(t))dW(t),

dX(t)=μ(X(t))dt+ dW(t).
(6)

Let G = {Gi = [i, i+ 1)×R
d : i ∈N} in the rest of this section. As (3) guarantees that L(1)

is nonnegative, it follows immediately that G is a countable continuous partition for L(1).
Therefore, Algorithm 1 is directly applicable to sample 	G((L(1),X(1))) using the SDE (6).
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Without loss of generality, we assume	G((L(1),X(1)))= i in the rest of this section. It remains
to sample X(1) conditional on 	G((L(1), X(1)))= i under the probability measure P.

The following lemma provides an alternative expression of the conditional distribution of
X(1), which facilitates the simulation of X(1) conditional on localization.

Lemma 1. Let U ∼Unif (0, 1) independent of everything else under the probability measure
P̃; then we have

P

(
X(1)∈ dx

∣∣∣	G
(
(L(1),X(1))

)= i
)
= P̃

(
X(1)∈ dx

∣∣∣max
(
i, (i+ 1)U

)
< L(1)< i+ 1

)
.

Proof. From the definition of conditional probability,

P

(
X(1)∈ dx

∣∣∣	G
(
(L(1),X(1))

)= i
)
=

P

(
X(1)∈ dx; 	G

(
(L(1),X(1))

)= i
)

P

(
	G
(
(L(1),X(1))

)= i
) .

Recall that dP̃= L(1)dP, so we have

P

(
X(1)∈ dx

∣∣∣	G
(
(L(1),X(1))

)= i
)
=

E
P̃

[
L(1)I(X(1)∈ dx; 	G

(
(L(1), X(1)

)= i
]

P

(
	G
(
(L(1),X(1))

)= i
) .

Since on 	G ((L(1),X(1))= i,
i≤ L(1)≤ i+ 1,

we can rewrite the expectation into a probability by introducing U ∼Unif(0, 1), as follows:

E
P̃

[
L(1)I(X(1)∈ dx; 	G

(
(L(1), X(1))

)= i)
]

= (i+ 1)P̃
(

X(1)∈ dx; 	G
(
(L(1),X(1))

)= i; (i+ 1)U< L(1)
)

= (i+ 1)P̃
(

X(1)∈ dx; max
(
i, (i+ 1)U

)
< L(1)< i+ 1

)
.

By substitution, it follows easily that

P

(
X(1)∈ dx

∣∣∣	G((L(1), X(1)))= i
)
=

(i+ 1)P̃
(

max
(
i, (i+ 1)U

)
< L(1)< i+ 1

)
P

(
	G
(
(L(1),X(1))

)= i
)

× P̃

(
X(1)∈ dx

∣∣∣max
(
i, (i+ 1)U

)
< L(1)< i+ 1

)
.

It remains to prove that

(i+ 1)P̃
(

max
(
i, (i+ 1)U

)
< L(1)< i+ 1

)
= P

(
	G
(
(L(1),X(1))

)= i
)

.

By a similar argument we can deduce that

P

(
	G
(
(L(1), X(1)

)= i
)

=E
P̃

[
L(1)I

(
	G
(
(L(1), X(1)

)= i
)]

= (i+ 1)P̃
(
	G
(
(L(1), X(1)

)= i; (i+ 1)U< L(1)
)

= (i+ 1)P̃
(

max
(
i, (i+ 1)U

)
< L(1)< i+ 1

)
,

which ends the proof. �
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Algorithm 2: Exact simulation for SDE with constant diffusion coefficient.

1: Apply Algorithm 1 to simulate random variable 	G(L(1),W(1)) associated with SDE (6);
record the result as i←	G (L(1),W(1)).

2: repeat
3: Draw a sample u from Unif(0, i+ 1).
4: Apply Algorithm 1 to sample I(max (i, u)< L(1)< i+ 1) using SDE (7). The end of

P̃-Brownian path x← X(1) is also sampled as a by-product of TES.
5: until I(max (i, u)< L(1)< i+ 1)= 1.
6: Output x as a sample of X(1).

As a direct implication of Lemma 1, in order to obtain an example sample for X (1) under
P, given 	G

(
(L(1), X(1)

)= i, we can simply simulate X(1) conditional on max (i, (i+ 1)U)<

L(1)< i+ 1 under the probability measure P̃. In order to do this sampling under P̃, we can
sample U first and denote the value by u. Then, observing that X(·) is the driving Brownian
motion under the probability measure P, Algorithm 1 is applied to the SDE

dL(t)= L(t)μT (X(t))dX(t) (7)

to simulate the indicator function I(max (i, u)< L(1)< i+ 1). In addition, according to
Remark 1, when TES is employed in Algorithm 1, a sample of X(1) is also produced simultane-
ously. Thereafter, the value of X(1) is accepted if and only if I(max (i, u)< L(1)< i+ 1)= 1;
otherwise we repeat the procedure in this paragraph, but we fix the parameter i, because
	G ((L(1),X(1)))= i has already been sampled under the correct distribution P. The output
of the algorithm, once the value X (1) is finally accepted, follows the distribution of X(1) under
P without any bias.

We summarize the discussion in this section in the following theorem.

Theorem 3. If Assumptions 1 and 2 are satisfied, then there is an exact simulation algorithm
for X(1) that terminates with probability one; see Algorithm 2.

3. Exact simulation for general SDEs

In this section, we will develop an exact simulation algorithm for the SDE (1). We shall fix
X (0)= x0, and the dependence of x0 on some objects (such as the transition density of X (1))
will be omitted.

We are still going to construct an exact simulation algorithm based on acceptance-rejection
in this section. However, for SDEs with non-constant diffusion matrix, applying Girsanov’s
theorem no longer provides a Brownian-type proposal distribution for acceptance-rejection, so
we will construct an acceptance-rejection algorithm based on the density of X(1).

Throughout the rest of this section, we shall assume the following assumptions and
conditions.

Assumption 3. The drift coefficient μ(·) is continuously differentiable, and the diffusion coef-
ficient σ (·) is three times continuously differentiable. Moreover, a strong solution to the SDE
(1) exists.
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Condition 1. The probability distribution of X(1) is absolutely continuous with respect to the
Lebesgue measure. In other words, X(1) has a density function, denoted by p(·), with respect
to the Lebesgue measure.

Condition 2. For any relatively compact set S, the density p(·) is Lipschitz continuous with
Lipschitz constant CS; i.e.

|p(x)− p(y)| ≤CS|x− y| ∀x, y ∈ S.

Condition 3. For any relatively compact set S, there exist δS > 0 such that

p(x)≥ δS ∀x ∈ S.

As we have seen in the previous section, Assumption 3 is the necessary condition for the
applicability of the TES result introduced in Theorem 2, which enables us to strongly approx-
imate X(1). Condition 1 will eventually be used to apply the acceptance-rejection technique
using an absolutely continuous (with respect to the Lebesgue measure) proposal distribution.
Conditions 2 and 3, as we shall see, will allow us to control the bound of the likelihood ratio
when applying acceptance-rejection.

It is important to ensure that the constants CS and δS are explicitly computable in terms of
μ (·) and σ (·) only, but we should also emphasize that we are not assuming that the density
p(·) is known.

There are many ways in which the computability of CS and δS can be enforced. For instance,
in Appendix A we discuss a set of assumptions involving classical estimators of the fun-
damental solutions of parabolic equations, which we review in order to compute CS and δS

explicitly.
The standard use of the acceptance-rejection algorithm requires knowing the density p(x),

which seems hopeless for the general SDE problem that we study. An alternative approach is
constructing a nonnegative, bounded, and unbiased estimator of p(x). While the density p(x) is
unknown, an unbiased estimator of p(x), denoted by 
N(x) in Section 3.1, can be constructed
by means of a local approximation of the density. However, the unbiased estimator
N(x) may
be negative, so it cannot be directly used in acceptance-rejection. To remedy this problem, in
Lemma 3 we construct a nonnegative and unbiased estimator 
+N (x) of p(x) using a random
walk and a suitable Bernoulli factory. However, the estimator 
+N (x) is unbounded, so we
propose to sample enough information about the SDEs (the ancillary variable N′) so that the
estimator 
+N (x) conditional on the sampled information is locally bounded. Consequently,
conditional on the localization of X(1) and the additional information N =N′, the estimator

+N (x) is bounded and nonnegative.

We now state the outline of our exact simulation algorithm. First of all, we apply a
localization technique on the countable continuous partition Gloc defined as

Gloc= {[i1, i1 + 1)× · · · × [id, id + 1) : (i1, . . . , id) ∈Zd}.
Since Gloc has countably many components, we can enumerate Gloc and rewrite it in the form
Gloc = {Gi : i ∈N}, where each Gi is a unit hypercube. Obviously, Algorithm 1 is applicable to
X(1) with respect to the countable continuous partition Gloc.

Then, we introduce an ancillary random variable N′ coupled with X(1), and simulate
(N′|X(1)∈Gi). As we shall see, the random variable N′ will play an important role after we
introduce a suitable family of random variables whose expectations converge to the density

https://doi.org/10.1017/apr.2020.39 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2020.39


1012 J. BLANCHET AND F. ZHANG

Algorithm 3: Exact simulation for multivariate SDE.

1: Simulate 	Gloc (X(1)) applying Algorithm 1. Set i← ts	Gloc (X(1)).
2: Simulate (N′|X(1)∈Gi); denote the result by n′.
3: Simulate (X(1)|N′ = n′, X(1)∈Gi); denote the result by x.
4: Output x.

of X (1) at a given point. In the end, we will be able to sample X(1) conditional on N′ and
X(1)∈Gi, using the estimator
+N (x), which is bounded and nonnegative for x ∈Gi and N =N′.

The following theorem provides the main contribution of this paper.

Theorem 4. If Assumption 3 and Conditions 1–3 are satisfied, then there is an algorithm for
exactly simulating X(1) which terminates in finite time with probability one; see Algorithm 3.

The rest of this section is organized as follows. Section 3.1 applies a technique borrowed
from multilevel Monte Carlo to construct the unbiased density estimator and the ancillary
random variable N′. Section 3.2 explains how to sample N′ using acceptance-rejection and a
suitable Bernoulli factory [19, 17, 14] conditional on localization. Section 3.3 demonstrates
how to sample X(1) conditional on N′, once again using a suitable localization.

3.1. A multilevel representation of the density

In this section, we borrow an idea from multilevel Monte Carlo [11] to construct an unbiased
estimator for p(·), and we also introduce the ancillary random variable N′.

In order to illustrate our idea, first we need to introduce some notation. For any x in Gi, we
define {Brn(x) : n≥ 1} as a sequence of open balls centered at x, whose radii {rn : n≥ 1} form a
decreasing sequence with rn→ 0 as n→∞.

Let V(r) denote the volume of a d-dimensional ball with radius r (i.e. the volume of Br (0)).
We define pn(x) to be the average density over the ball Brn(x), i.e.

pn(x)= [V(rn)]−1
∫

Brn (x)
p(x)dx.

Let p̂n(x) denote a nonnegative unbiased estimator for pn(x), i.e.

p̂n(x)= [V(rn)]−1× I(X(1)∈ Brn(x))

for n≥ 1, where p̂n(x) is defined using the same realization X(1) for all n and x. We define
p̂0(x) := 0 and p0 := 0 for notational simplicity. It follows immediately that E[p̂n(x)]= pn(x)
for n≥ 0.

The density p(x) is first decomposed into an infinite telescoping sum,

p(x)=
∞∑

n=0

(pn+1(x)− pn(x)).

Then we introduce a randomization technique inspired by randomized multilevel Monte Carlo
(see [18, 22]. The density p(x) can be decomposed as the expectation of an infinite sum of
estimators, which is truncated to a finite but random level so that the expectation is invari-
ant. The idea is to introduce an integer-valued random variable N, which is independent of
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everything else. Then p(x) can be expressed as

p(x)=
∞∑

n=0

(pn+1(x)− pn(x))

=
∞∑

n=0

∞∑
k=0

(pn+1(x)− pn(x))

P(N ≥ n)
P(N = k)I(n≤ k)

=
∞∑

k=0

∞∑
n=0

(pn+1(x)− pn(x))

P(N ≥ n)
P(N = k)I(n≤ k)

=
∞∑

k=0

k∑
n=0

(pn+1(x)− pn(x))

P(N ≥ n)
P(N = k)

=E

[
N∑

n=0

(pn+1(x)− pn(x))

P(N ≥ n)

]
,

where the third equality follows from Fubini’s theorem, which can be justified if

∞∑
n=0

∞∑
k=0

|pn+1(x)− pn(x)|
P(N ≥ n)

P(N = k)I(n≤ k)=
∞∑

n=0

|pn+1(x)− pn(x)|

≤ 2CGi,r1

∞∑
n=0

rn

<∞.

We will show
∑∞

n=0 rn <∞ in the sequel. Moreover, by the tower property we have

E

[
N∑

n=0

(pn+1(x)− pn(x))

P(N ≥ n)

]
=E

[
N∑

n=0

E[p̂n+1(x)− p̂n(x)|N]

P(N ≥ n)

]

=E

[
E

[
N∑

n=0

p̂n+1(x)− p̂n(x)

P(N ≥ n)

∣∣∣∣∣N

]]

=E

[
N∑

n=0

p̂n+1(x)− p̂n(x)

P(N ≥ n)

]
.

Therefore, if we define


n(x)=
n∑

k=0

p̂k+1(x)− p̂k(x)

P(N ≥ k)
for n≥ 0,

it follows easily that
p(x)=E [
N(x)] . (8)
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We now are interested in obtaining bounds for 
n(x) and its expectation for x ∈Gi. To this
end we first define Gi,r1 as an r1-neighborhood of the set Gi, which consists of all points at a
distance less than r1 from Gi; i.e.

Gi,r1 =
⋃
x∈Gi

Br1(x).

It is not hard to observe that Gi,ri is a relatively compact set, to which Conditions 1–3 are
applicable. In the following lemma, we will demonstrate that under these conditions, one can
judiciously pick the distribution of N and the radii {rn : n≥ 1} in order to establish explicit
bounds for 
n(x) and E[
n(x)], respectively.

Lemma 2. Suppose that x ∈Gi and Conditions 1–3 are satisfied. If we pick

rn =
(
3δGi,r1

)
/
(
2π2n3CGi,r1

)
and P(N = n)= 1/[n(n+ 1)]

for n≥ 1, then we have

δGi,r1
/2≤E[
n(x)]≤ [V(r1)]−1 + δGi,r1

/2 (9)

and

|
n(x)| ≤ [V(r1)]−1 +
n∑

k=1

(
k[V(rk+1)]−1 + k[V(rk)]−1

)
=: mn. (10)

Proof. Let us construct the lower bound of E[
n(x)] first. By the triangle inequality,

E[
n(x)]≥E[
0(x)]−
n∑

k=1

E |
k(x)−
k−1(x)| .

On the one hand, from the definition of 
0(x) and Condition 3, we can conclude that

E[
0(x)]=E[p̂1(x)]= p1(x)≥ δGi,r1
.

On the other hand, using the triangle inequality,

E |
k(x)−
k−1(x)| =E

∣∣∣∣ p̂k+1(x)− p̂k(x)

P(N ≥ k)

∣∣∣∣
≤
∣∣∣∣Ep̂k+1(x)−Ep̂k(x)

P(N ≥ k)

∣∣∣∣
= (P(N ≥ k))−1|pk+1(x)− pk(x)|.

Then, from Condition 2 we have

|p(x)− p(y)| ≤CGi,r1
|x− y| for x, y ∈CGi,r1

. (11)

Recall that pk(x) is the average density over the ball Brk (x) and Brk (x)⊆ Br1 (x)⊆Gi,r1 for
x ∈Gi. It then follows from (11) that

|pk+1(x)− pk(x)| ≤CGi,r1
diam

(
Br1 (x)

)= 2CGi,r1
r1.
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Consequently,

n∑
k=1

E |
k(x)−
k−1(x)| ≤
n∑

k=1

2CGi,r1 (P(N ≥ k))−1rk ≤ δGi,r1
/2.

Combining the above inequality with E[
0(x)]≥ δGi,r1
yields

E[
n(x)]≥ δGi,r1
/2.

Similarly, observing that

E[
0(x)]=E[p̂1(x)]= [V(r1)]−1 × P(X(1)∈ Br1(x))≤ [V(r1)]−1,

for the upper bound we have

E[
n(x)]≤E[
0(x)]+
n∑

k=1

E |
k(x)−
k−1(x)| ≤ [V(r1)]−1 + δGi,r1
/2.

We can also derive an upper bound of |
n(x)|:

|
n(x)| ≤
n∑

k=0

(P(N ≥ k))−1
∣∣p̂k+1(x)− p̂k(x)

∣∣
≤ [V(r1)]−1 +

n∑
k=1

(
k[V(rk+1)]−1 + k[V(rk)]−1

)
=: mn <∞,

which ends the proof. �
In the rest of this paper, we will adopt the value of rn and the distribution of N in Lemma 2.
Even though we have constructed an unbiased estimator 
N(x) for p(x), acceptance-

rejection is not applicable because 
N(x) may be negative and unbounded. In order to apply
acceptance-rejection, we need a nonnegative unbiased estimator for p(x), which will be con-
structed in Lemma 3. The idea of the construction is borrowed from [8]. Let {
n,k(x) : k≥ 1}
be independent and identically distributed copies of 
n(x). We then define

Sn,k(x) :=
n,1(x)+ · · · +
n,k(x)

and
τn(x) := inf{k≥ 1 : Sn,k(x)≥ 0}.

By Wald’s first equation,

E[
n(x)]=E
[
Sn,τn(x)(x)

]
/E[τn(x)]. (12)

Note that Sn,τn(x)(x)≥ 0, but now we have an additional contribution 1/E[τn(x)], which can
be interpreted as a probability. In order to sample a Bernoulli random variable with such a
probability, we will need the following result, which we refer to as the Bernoulli factory.

Theorem 5 (Bernoulli factory [19, 14]). Assume that ε ∈ (0, 1/2] and α > 0 are two known
constants and that we have an oracle that outputs independent and identically distributed
Bernoullis with parameter p ∈ (0, (1− ε) /α]. Then there is an algorithm which takes the
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output of the oracle and produces a Bernoulli random variable with parameter f (p)=
min (αp, 1− ε)= αp. Moreover, if N̄ (α, ε) is the number of Bernoulli(p) random variables
required to output Bernoulli( f (p)), then .004 · α/ε ≤E

(
N̄(α, ε)

)≤ 10 · α/ε.

We can now explain how to construct
+n (x)≥ 0 such that E[
+n (x)]=E[
n(x)].

Lemma 3. There exists a family of random variables {
+n (x) : n ∈N, x ∈Gi} such that the
following properties hold:

1. 0≤
+n (x)≤mn.

2. E[
+n (x)]=E[
n(x)].

3. Given n and x, there is an algorithm for simulating
+n (x).

Proof. Let �̄n(x) be a Bernoulli random variable with parameter (E[τn(x)])−1, which is
independent of everything else. It follows that

E[
n(x)]=E
[
�̄n(x)Sn,τn(x)(x)

]
.

We write 
+n (x) := �̄n(x)Sn,τn(x)(x). Property 1 follows from the facts that 0≤ Sn,τn(x)(x)≤

n,τn(x)(x)≤mn and that 0≤ �̄n(x)≤ 1. Property 2 is justified directly by (12). To show that

+n (x) can be simulated, we just need to provide an algorithm for simulating �̄n(x).

Recall that E[
n(x)]≥ δGi,r1
/2, so we have

E[τn(x)]= E[Sn,τn(x)(x)]

E[
n(x)]
≤ 2δ−1

Gi,r1
mn.

Consider Wald’s second equation

E

[(
Sn,τn(x)(x)−E(
n(x))τn(x)

)2]=Var(
n(x))E[τn(x)],

which implies

E

[
(τn(x))2

]
≤ 2E

[
τn(x)Sn,τn(x)(x)

]
E [
n(x)]+Var(
n(x))E [τn(x)]

E [
n(x)]2

≤ (2m2
n +m2

n)E(τn(x))

(δGi,r1/2)2

≤ 3m3
n

(δGi,r1/2)3 =: mτ,n. (13)

Now we shall proceed to simulate the random variable �̄n(x). Consider a random variable Tn(x)
with distribution

P(Tn(x)= k)= P(τn(x)≥ k)/E[τn(x)] for k≥ 1.

Since I(Tn(x)= 1) is the desired Bernoulli random variable with parameter (E[τn(x)])−1, it
then suffices to simulate Tn(x). Towards this end, we apply acceptance-rejection again using
another random variable T ′ as proposal, whose distribution is

P(T ′ = k)= 6

π2k2
for k≥ 1.
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Algorithm 4: Simulation of
+n (x).

1: repeat
2: Sample random variable T’; set k← T ′.
3: repeat
4: Sample an independent copy of I(τn(x)≥ k) as an input of Bernoulli factory

associated with function

f (p)=min

(
k2

2mτ,n
p, 1

2

)

5: until Bernoulli factory produces an output γ .
6: until γ = 1.
7: if k=1 then
8: Sample Sn,τn(x)(x) and output the result.
9: else

10: Output 0.

Since τn(x) is nonnegative, Markov’s inequality asserts that

P(τn(x)≥ k)= P

(
(τn(x))2 ≥ k2

)
≤ k−2

E
[
τn(x)2]≤ k−2mτ,n, (14)

where the last inequality follows from (13). Also, from the definition of τn(x) we know that
E[τn(x)]≥ 1. Consequently, the likelihood ratio between Tn(x) and T ′ is given by

P(Tn(x)= k)

P(T ′ = k)
= π

2k2
P(τn(x)≥ k)

6E[τn(x)]
≤ π

2

6
mτ,n.

From the above inequality we see that the likelihood ratio is bounded, so the acceptance-
rejection procedure is applicable.

Conditional on the proposal T ′ = k, we then introduce a new Bernoulli random variable
�̃n,k(x) to decide whether or not the proposal is accepted as Tn(x). The distribution of �̃n,k(x)
is defined as

P
(
�̃n,k(x)= 1

)= 1− P
(
�̃n,k(x)= 0

)= k2

2mτ,n
P(τn(x)≥ k).

Hence it follows from (14) that

P
(
�̃n,k(x)= 1

)≤ 1/2. (15)

Observe that the indicator I(τn(x)≥ k) is simulable, but its distribution is not explicitly acces-
sible, so it is natural to sample �̃n,k(x) via the Bernoulli factory introduced in Theorem 5. By
(15), the function f (·) involved in the Bernoulli factory is a linear function, as follows:

f (p)=min

(
k2

2mτ,n
p,

1

2

)
= k2

2mτ,n
p.

We summarize the procedure for simulating 
+n (x) in Algorithm 4. �
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We now introduce an ancillary random variable N′ coupled with X(1) in the following
way:

P(N′ = n|X(1)∈ dx)∝ P(N = n)× E[
+n (x)]. (16)

Assuming (N′|X(1)∈Gi) can be simulated, (X(1)|N′, X(1)∈Gi) can easily be simulated by
acceptance-rejection as well, thanks to the convenient density representation given by (18).
The algorithm for sampling (N′|X(1)∈Gi) will be explained in the next section.

3.2. Conditional sampling of N′

In this section we will focus on the procedure for simulating N′ conditional on X(1)∈Gi.
First we derive from (16) the probability mass function of (N′|X(1)∈Gi), namely

P(N′ = n|X(1)∈Gi)= P(N = n)

P(X(1)∈Gi)
×
∫

G1

E[
+n (x)]dx.

From the upper bound of E[
n] given by Lemma 2, we have the following inequality:

P(N′ = n|X(1)∈Gi)≤ P(N = n)

P(X(1)∈Gi)
×
(

[V(r1)]−1 + δGi,r1
/2
)

.

Simulation of (N′|X(1)∈Gi) can be achieved by acceptance-rejection. Consider a Bernoulli
random variable �n(x) defined as

P(�n(x)= 1)= 1− P(�n(x)= 0)= 1

2

(
[V(r1)]−1 + δGi,r1

/2
)−1

E[
+n (x)]≤ 1

2
. (17)

Then the outline of the acceptance-rejection algorithm for simulating N′ would be as follows:

Step 1. Sample n from random variable N.
Step 2. Sample x from uniform distribution UGi ∼Unif(Gi).
Step 3. Simulate �n(x). If �n(x)= 0, go to Step 1. Otherwise accept n as a sample of N′.

The only difficult step in the above procedure is Step 3, namely, simulating �n(x), which
we will discuss now.

Lemma 2 implies that 0≤
+n (x)≤mn. Let U ∼Unif(0,mn), which is independent
of everything else; then I(U ≤
+n (x)) is a Bernoulli random variable with parameter
(mn)−1

E[
+n (x)]. By (17), the Bernoulli factory given in Theorem 5 can be applied to simulate
�n(x), using I(U ≤
+n (x)) as input and using the function

f (p)=min

(
mn

2

(
[V(r1)]−1 + δGi,r1

/2
)−1

p,
1

2

)
= mn

2

(
[V(r1)]−1 + δGi,r1

/2
)−1

p.

To conclude, we synthesize the complete steps for simulating N′ in the following algorithm.

3.3. Sampling of (X(1)|N′, X(1) ∈ Gi)

In this section, we will focus on sampling (X(1)|N′, X(1)∈Gi).
Without loss of generality, let us assume N′ = n throughout the the rest of this section.

According to (16) and Lemma 3, the conditional distribution of X(1) can be written as

P(X(1)∈ dx|N′ = n, X(1)∈Gi)=Cn,GiE[
+n (x)], (18)
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Algorithm 5: Simulation of (N′|x ∈Gi).

1: repeat
2: Sample n from random variable N.
3: Sample x from uniform distribution UGi ∼Unif(Gi).
4: repeat
5: Sample u from U ∼Unif(0,mn).
6: Sample λ from distribution of 
+n (x) using Algorithm 4.
7: Use I(u<λ) as an input of Bernoulli factory associated with function

f (p)=min

(
mn
2

(
[V(r1)]−1 + δGi,r1

/2
)−1

p, 1
2

)
.

8: until Bernoulli factory produces an output γ .
9: until γ = 1.

10: Output n.

Algorithm 6: Simulation of X(1) conditional on N′ = n, X(1)∈Gi.

1: repeat
2: Sample x from uniform distribution UGi ∼Unif(Gi).
3: Sample u from U ∼Unif(0,mn).
4: Sample λ from distribution of 
+n (x) using Algorithm 4.
5: until u≤ λ.
6: Output x.

where Cn,Gi is a constant independent of x. Once again, as we shall see, (X(1)|N′ = n, X(1)∈
Gi) can be simulated by acceptance-rejection. We use the uniform distribution UGi as the pro-
posal distribution, and accept the proposal with probability m−1

n × E[
+n (x)], so we can accept
if and only if I

(
U ≤
+n (x)

)= 1, where U ∼Unif(0,mn) is independent of everything else.
The output of the acceptance-rejection follows the desired distribution. The explicit procedure
for simulating (X(1)|N′, X(1)∈Gi) is given in Algorithm 6.

4. Conclusion

The main contribution of this paper is the construction of the first generic exact simulation
algorithm for multidimensional diffusions. The algorithm extensively uses several localization
ideas and TES techniques. But it also combines ideas from multilevel Monte Carlo in order to
construct a sequence of random variables which ultimately provides an unbiased estimator for
the underlying transition density.

Although the overall construction can be implemented with a finite termination time almost
surely, the expected running time is infinite. Thus, the contribution of the paper is of theo-
retical nature, showing that it is possible to perform exact sampling of multivariate diffusions
without applying Lamperti’s transformation. However, more research is needed to investigate
whether the algorithm can be modified to be implemented in finite expected time, perhaps
under additional assumptions. Alternatively, perhaps some controlled bias can be introduced
while preserving features such as positivity and convexity in the applications discussed at the
end of the introduction. To this end, we conclude with a discussion of the elements in the
algorithm which are behind the infinite expected termination time.
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There are three basic problems that cause the algorithm to have infinite expected termina-
tion time. Two of them can be appreciated already from the constant diffusion discussion and
involve the use of the localization techniques that we have introduced. The third problem has
to do with the application of the Bernoulli factory.

• Problem 1: The first problem arises when trying to sample a Bernoulli of the form
I (X (1) ∈G). Given εn > 0, sampling Xεn (1) such that

∥∥Xεn (1)− X (1)
∥∥≤ εn takes

an O(ε−(2+δ)n ) computational cost for any δ > 0. So, if G is a unit hypercube in d
dimensions, using the density estimates for X (1) we obtain

P(d (X (1), ∂Gi)≤ ε)≥ cGε

for some cG > 0. Therefore, if N0 is the computational cost required to sample
I (X (1) ∈G), we have that for some δ0 > 0,

P

(
N0 >

1

ε2+δ

)
≥ P(d (X (1), ∂Gi)≤ δ0ε)≥ cGδ0ε.

Therefore,

P(N0 > x)≥ cGδ0
1

x1/(2+δ) ,

which yields that E(N0)=∞.

• Problem 2: The second problem arises in the acceptance-rejection step applied in
Lemma 1, which requires sampling X (1) under P̃ conditional on max (i, (i+ 1)U)<
L(1)< i+ 1. Directly sampling from this conditional law might be inefficient if i is
large. However, this problem can be mitigated using rare-event simulation techniques,
which might be available in the presence of additional structure on the drift, because
under P̃ (·), X (·) follows a Brownian motion.

• Problem 3: This arises because, as indicated in Theorem 5, the computational com-
plexity of the Bernoulli factory of a linear function of the form f (p)=min (αp, 1− ε)
scales with order O (α/ε). In our case, we are able to select ε = 1/2, and we invoke
the Bernoulli factory in Algorithms 4 and 5. In Algorithm 4, α =O

(
k2
)
, given T ′ = k

and E
(
T ′
)=∞. In Algorithm 5, α =O (mn), given N = n. Although the bound which is

used to define mn in Lemma 3 is far from optimal, in its current form, mn =O
(
n3d+2

)
,

we have that E(N)=∞.

Appendix A. Transition density estimates

In the appendix, we will discuss some assumptions which are sufficient for the applicability
of Conditions 1, 2, and 3. In addition, we also give explicit procedures for computing the
constants which appear in these conditions.

Consider a matrix-valued function a(·)= (aij(·))d×d : Rd �→R
d×d defined as

aij(x) :=
d′∑

k=1

σik(x)σjk(x) for 1≤ i, j≤ d.

Assumption 4. Every component of μ and a is three times continuously differentiable.
Moreover, there exists a constant M such that ‖μ(i)‖∞ ≤M and ‖a(i)‖∞ ≤M for i= 0, 1, 2, 3.
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Algorithm 7: Computation of local Lipchitz constant CS.

1: Input: M in Assumption 4, λ↓ and λ↑ in Assumption 5, dimension d, time T, an arbitrary
number ε ∈ (0, 1).

2: C0← (2
√
π)−dλ

d/2
↑ .

3: C1← (2εe)−1/2λ
1/2
↓ λ−1

↑ C0.

4: C2← C0

(
4λ↓
eελ↑

)2
.

5: C3← C0

(
4λ↓
eελ↑

)2 +C0
M
4

(
2λ↓
εe

) 1
2

.

6: C4← dMC3 + d(d− 1)MC2 + d(d+ 1)MC1 + T
1
2 (0.5d2+ d)MC0.

7: C5←
(

4πλ↓
1−ε

)− d
2

.

8: C6← C4

(
4πλ↓
1−ε

) d
2

.

9: C7← C5C6 exp (C6T).

10: C8← 2C1C7

(
4πλ↓
1−ε

) d
2

.

11: CS←
[

dC1

T
d+1

2
+ dC8

T
d−1

2

]
exp

(
− (1−ε) infx̄∈S ‖x̄−x0‖2

4λ↓T

)
.

12: Output CS.

Assumption 5. There exist constants 0<λ↓ <λ↑ <∞ such that for all x ∈Rd and ξ = (ξi)d ∈
R

d, we have
λ↓‖ξ‖2 ≤

√
ξTa(x)ξ ≤ λ↑‖ξ‖2.

Under Assumptions 4 and 5, it is proved in [10] that the SDE (1) possesses a transition
density denoted by p(x, t; y, τ ), which satisfies

P(X(t)∈ dx|X(τ )= y)= p(x, t; y, τ )dx

for τ < t. Therefore, Condition 1 is proved given Assumptions 4 and 5.
In the following proposition, we will establish Condition 2 via the Kolmogorov forward

equation.

Proposition 1. Suppose Assumptions 4 and 5 are satisfied. Then for any relatively compact
set S, the density p(·)= p(·, T; x0, 0) is Lipschitz continuous with Lipschitz constant CS; i.e.

|p(x)− p(y)| ≤CS‖x− y‖2 ∀x, y ∈ S.

Furthermore, CS can be computed by Algorithm 7.

Proof. Our methodology is closely related to the parametrix method introduced in [10].
Following the same scheme, we focus on explicit computation of the constants.

Under Assumptions 4 and 5, p(·, ·; y, τ ) is a solution of the Kolmogorov forward equation:

∂

∂ t
p(x, t; y, τ )=−

d∑
i=1

∂

∂xi
[μi(x)p(x, t; y, τ )]+ 1

2

d∑
i=1

d∑
j=1

∂2

∂xi∂xj
[aij(x)p(x, t; y, τ )]. (19)
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We shall rewrite (19) into its non-divergence form as

Lf p :=
d∑

i,j=1

aij(x)
∂2p(x, t; y, τ )

∂xi∂xj
+

d∑
i=1

bi(x)
∂p(x, t; y, τ )

∂xi
+ c(x)p(x, t; y, τ )− ∂p(x, t; y, τ )

∂ t
= 0,

where

bi(x) :=
d∑

j=1

∂aij(x)

∂xj
−μi(x), c(x) := 1

2

d∑
i=1

d∑
j=1

∂2aij(x)

∂xi∂xj
−

d∑
i=1

∂μi(x)

∂xi
,

and Lf is a uniform parabolic operator. By Assumption 4, it follows that

‖b(x)‖∞ ≤ (d+ 1)M, |c(x)| ≤ (0.5d2+ d)M. (20)

We denote by a−1(x)= (a−1
ij (x))d×d the inverse matrix of (aij(x))d×d, and define

θ (x, ξ ) :=
d∑

i,j=1

a−1
ij (ξ )(xi − ξi)(xj − ξj).

Assumption 5 implies that for all ξ ∈Rd,

λ−1
↑ ‖ξ‖2 ≤

√
ξT a−1(x)ξ ≤ λ−1

↓ ‖ξ‖2.

Following the idea of the parametrix method, we also define a partial differential equation with
constant coefficients, namely,

Ly
0u :=

n∑
i,j=1

aij(y)
∂2u(x, t)

∂xi∂xj
− ∂u(x, t)

∂ t
= 0.

The fundamental solution of function Ly
0u= 0 is given by

Z(x, t; ξ, τ )=CZ(ξ )w(x, t; ξ, τ ),

where
CZ(ξ ) := (2

√
π)−d[ det (aij(ξ ))]1/2≤ (2

√
π)−dλ

d/2
↑ =: C0,

w(x, t; ξ, τ ) := (t− τ )−d/2 exp

(
− θ (x, ξ )

4(t− τ )

)
.

According to Theorem 1.3 and Theorem 1.10 in [10], p(x, t; ξ, τ ) can be represented by the
parametrix method as

p(x, t; ξ, τ )= Z(x, t; ξ, τ )+
∫ t

τ

∫
Rd

Z(x, t; y, s)�(y, s; ξ, τ )dyds,

where

�(x, t; ξ, τ ) :=
∞∑

k=1

(Lf Z)k(x, t; ξ, τ ),

(Lf Z)1 :=Lf Z,

(Lf Z)k+1 :=
∫ t

τ

∫
Rd

Lf Z(x, t; y, s)(Lf Z)k(y, s; ξ, τ )dyds
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for k≥ 1. Furthermore, the partial derivatives of the fundamental solution admit the following
expression:

∂

∂xi
p(x, t; ξ, τ )= ∂

∂xi
Z(x, t; ξ, τ )+

∫ t

τ

∫
Rd

∂

∂xi
Z(x, t; y, s)�(y, s; ξ, τ )dyds. (21)

Let us pick ε ∈ (0, 1); then we can derive a bound for Z as

|Z(x, t; ξ, τ )| ≤C0 × (t− τ )−d/2 exp

(
− (1− ε)‖x− ξ‖22

4λ↓(t− τ )

)
.

For the bound of ∂Z(x, t; ξ, τ )/∂xi, note that∣∣∣∣∂Z(x, t; ξ, τ )

∂xi

∣∣∣∣= [4(t− τ )]−1
∣∣∣∣∂θ (x, ξ )

∂xi

∣∣∣∣CZ(ξ )w(x, t; ξ, τ ),

and that ∣∣∣∣∂θ (x, ξ )

∂xi

∣∣∣∣=
∣∣∣∣∣∣2

d∑
j=1

a−1
ij (ξ )(xj − ξj)

∣∣∣∣∣∣≤ 2λ−1
↑ ‖x− ξ‖2.

Combining the definition of CZ(·) and the above two equations implies that

∣∣∣∣∂Z(x, t; ξ, τ )

∂xi

∣∣∣∣≤ λ
−1
↑
2

C0|x− ξ |(t− τ )−
d+1

2 (θ (x, ξ ))−1/2
[
θ (x, ξ )

t− τ
]1/2

× exp

(
−εθ (x, ξ )

4(t− τ )

)
exp

(
− (1− ε)θ (x, ξ )

4(t− τ )

)
.

Applying the inequalities[
θ (x, ξ )

t− τ
]1/2

exp

(
−εθ (x, ξ )

4(t− τ )

)
≤ sup

x∈[0,+∞)
x

1
2 e−

εx
4 =

(
2

εe

)1/2

and
|x− ξ |(θ (x, ξ ))−1/2 ≤ λ1/2

↓ ,

we obtain ∣∣∣∣∂Z(x, t; ξ, τ )

∂xi

∣∣∣∣≤ C1

(t− τ )
d+1

2

exp

(
− (1− ε)‖x− ξ‖22

4λ↓(t− τ )

)

by setting
C1 := (2εe)−1/2λ

1/2
↓ λ−1

↑ C0.

Similarly, we can derive bounds for ∂2Z(x, t; ξ, τ )/(∂xi∂xj) and ∂2Z(x, t; ξ, τ )/(∂x2
i ).

For i �= j, ∣∣∣∣∂2Z(x, t; ξ, τ )

∂xi∂xj

∣∣∣∣≤ C2

(t− τ )
d+1

2 |x− ξ |
exp

(
− (1− ε)‖x− ξ‖22

4λ↓(t− τ )

)
,

∣∣∣∣∣∂
2Z(x, t; ξ, τ )

∂x2
i

∣∣∣∣∣≤ C3

(t− τ )
d+1

2 |x− ξ |
exp

(
− (1− ε)‖x− ξ‖22

4λ↓(t− τ )

)
,
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where

C2 :=C0

(
4λ↓
eελ↑

)2

,

C3 :=C0

(
4λ↓
eελ↑

)2

+C0
M

4

(
2λ↓
εe

) 1
2

.

By definition of Z(·) we can observe that

Lf Z(x, t; ξ, τ )=
d∑

i,j=1

[aij(x)− aij(ξ )]
∂2Z(x, t; ξ, τ )

∂xi∂xj

+
d∑

i=1

bi(x)
∂Z(x, t; ξ, τ )

∂xi
+ c(x)Z(x, t; ξ, τ ).

Suppose 0≤ t− τ ≤ T in the sequel. By considering the upper bounds of the partial derivatives
of Z, as well as (20) and Assumption 4, we obtain

|Lf Z(x, t; ξ, τ )| ≤ C4

(t− τ )
d+1

2

exp

(
− (1− ε)‖x− ξ‖22

4λ↓(t− τ )

)
, (22)

where
C4 := dMC3 + d(d− 1)MC2 + d(d+ 1)MC1 + T

1
2 (0.5d2+ d)MC0.

Now, in order to find a bound for�(x, t; ξ, τ ), we need to introduce a technical lemma.

Lemma 4 (Lemma 1.3 of [10]). If β and γ are two constants in (−∞, d
2 + 1), then

∫ t

τ

∫
Rd

(t− s)−β exp

(
−h‖x− y‖22

4(t− s)

)
(s− τ )−γ exp

(
−h‖y− ξ‖22

4(s− τ )

)
dyds

=
(

4π

h

) d
2

Beta

(
d

2
− β + 1,

d

2
− γ + 1

)
(t− τ )

d
2+1−β−γ exp

(
−h‖x− ξ‖22

4(t− τ )

)
,

where Beta(·) is the beta function.

From (22) and Lemma 4, we can derive

|(Lf Z)2(x, t; ξ, τ )| ≤
∫ t

τ

∫
Rd
|Lf Z(x, t; y, s)||Lf Z(y, s; ξ, τ )|dyds.

≤ C5C2
6

1! (t− τ )1− d
2 exp

(
− (1− ε)‖x− ξ‖22

4λ↓(t− τ )

)
,

where

C5 :=
(

4πλ↓
1− ε

)− d
2

, C6 :=C4

(
4πλ↓
1− ε

) d
2

.
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By induction we can show that, for any positive integer m,

|(Lf Z)m(x, t; ξ, τ )| ≤ C5Cm
6

(m− 1)! (t− τ )m− d
2−1 exp

(
− (1− ε)‖x− ξ‖22

4λ↓(t− τ )

)
.

It turns out that

�(x, t; ξ, τ )≤
∞∑

m=1

|(LZ)m(x, t; ξ, τ )|

≤ C7

(t− τ )
d
2

exp

(
− (1− ε)‖x− ξ‖22

4λ↓(t− τ )

)
,

where

C7 :=
∞∑

m=1

C5Cm
6

(m− 1)!T
m−1 =C5C6 exp (C6T).

Recalling (21), we can apply Lemma 4 again and conclude that∣∣∣∣ ∂∂xi
p(x, t; ξ, τ )

∣∣∣∣≤
∣∣∣∣ ∂∂xi

Z(x, t; ξ, τ )

∣∣∣∣+
∫ t

τ

∫
Rd

∣∣∣∣ ∂∂xi
Z(x, t; y, s)�(y, s; ξ, τ )

∣∣∣∣ dyds.

≤
[

C1

(t− τ )
d+1

2

+ C8

(t− τ )
d−1

2

]
exp

(
− (1− ε)‖x− ξ‖22

4λ↓(t− τ )

)
,

where

C8 := 2C1C7

(
4πλ↓
1− ε

) d
2

.

Therefore, we obtain an upper bound for |∇xp(x, t; ξ, τ )| by considering

|∇xp(x, t; ξ, τ )| ≤ d×
∣∣∣∣ ∂∂xi

p(x, t; ξ, τ )

∣∣∣∣ .

Therefore, for all x, y ∈ S we have

|p(x)− p(y)| ≤CS‖x− y‖2,
where

CS =
[

dC1

T
d+1

2

+ dC8

T
d−1

2

]
exp

(
− (1− ε) infx̄∈S ‖x̄− x0‖2

4λ↓T

)
. �

Next, we will propose a computational procedure for lower bounds of transition density.
There is a substantial amount of literature that studies lower bounds for the transition
density of diffusions, through analytical approaches or probabilistic approaches. For instance,
Aronson [2] develops estimates of lower bounds of fundamental solutions of second-order
parabolic partial differential equations in divergence form. Using Malliavin calculus, Kusuoka
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and Stroock [16] derived a lower bound for the transition density of uniformly elliptic
diffusions. Bally [3] generalized the idea of [16] to locally elliptic diffusions. We follow the
approach suggested by Sheu [23] and review it in order to find explicit expressions to obtain
a computable lower bound.

In order to keep our paper self-contained, we first introduce some notation to be used later.
Let Lb be the generator of the Komolgorov backward equation:

Lbu(x, t) := 1

2

n∑
i,j=1

aij(x)
∂2u(x, t)

∂xi∂xj
+

d∑
i=1

μi(x)
∂u(x, t)

∂xi
− ∂u(x, t)

∂ t
.

The transition density as a function of (x, t) �→ p(y, t; x, 0) coincides with the fundamental
solution of the Komolgorov backward equation:

Lbu(x, t)= 0, t> 0, x ∈Rd,

u(0, x)= u0(x).

Throughout the rest of this section, we suppose that Assumptions 4 and 5 are in force.
Recall that a−1(x) is the inverse matrix of a(x), and define

k(x, ψ)= 1

2

d∑
i,j=1

a−1
ij (x)(μi(x)−ψi)(μj(x)−ψj).

For a fixed y0 ∈Rd, we define

f β (y; y0) :=
(

1√
2πβ

)d 1√
det a(y0)

exp

⎛
⎝− 1

2β

d∑
i,j=1

a−1
ij (y0)(y− y0)i(y− y0)j

⎞
⎠,

and
pβ (y0, t; x, 0) :=Ex[f β (X(t); y0)].

The continuity of the density implies

lim
β→0

pβ (y0, t; x, 0)= p(y0, t; x, 0). (23)

For simplicity, we also define the logarithmic transform of p and pβ as

J(t, x) :=− log (p(y0, t; x, 0)),

Jβ (t, x) :=− log (pβ(y0, t; x, 0)).

To prepare the analysis, which is based on stochastic control, we introduce the space of con-
trol functions, denoted by FT,x. The class FT,x is defined as a family of measurable functions
ψ : [0, T]×R

d→R
d such that the SDE

dη(t)=ψ(t, η(t))dt+ σ (η(t))dW(t), η(0)= x

has a weak solution η(·) that satisfies

E

(∫ T

0
‖ψ(t, η(t))‖22dt

)
<∞.
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Algorithm 8: Computation of the lower bound δS.

1: DS← supx∈S ‖x− x0‖2.
2: Evaluate �i(DS); i= 1, 2, 3, 4 by (31), (32), (33), and (34).
3: Evaluate J↑(DS; T) by (35).

4: δS← exp
(−J↑(DS; T)

)
.

5: Output δS.

Now we state a lemma that is crucial for proving the main result of this section.

Lemma 5. Recall the definition of FT,x and η(·) from the previous paragraph; then we have

Jβ (T, x)= inf
ψ∈FT,x

E

(∫ T

0
k(η(t), ψ(t))dt+ Jβ (0, η(T))

)
.

Together with (23), we see that

J(T, x)= lim
β→0

inf
ψ∈FT−β,x

E

(∫ T−β

0
k(η(t), ψ(t))dt+ Jβ (0, η(T − β))

)
. (24)

Proof. See [9]. �
Theorem 6. Suppose Assumptions 4 and 5 are satisfied. Then, for any relatively compact set
S, the density p(·)= p(·, T; x0, 0) has a uniform lower bound δS > 0 in S; i.e.

p(x)≥ δS ∀x ∈ S.

Furthermore, δS can be computed by Algorithm 8.

Proof. Finding a lower bound of the density p(y0, T; x0, 0) is equivalent to finding an upper
bound for J(T, x0). Towards this end, it suffices to find an upper bound for Jβ (T, x0) that is
uniform in β. We shall define φ(·) as a linear function such that φ(0)= x0, φ(T)= y0. Write

ψ(t, x)= y0 − x0

T
− x− φ(t)

T − t
, 0≤ t≤ T − β.

It is not hard to see that ψ ∈FT−β,x0 . Therefore,

Jβ (T, x0)≤E

(∫ T−β

0
k(η(t), ψ(t))dt+ Jβ (0, η(T − β))

)
, (25)

according to Lemma 5. Notice that

(η(t)− φ(t))i = (T − t)
d′∑

l=1

∫ t

0

1

T − s
σil(η(s))dWl(s), for i= 1, . . . , d. (26)

It follows that

E
(
(η(t)− φ(t))i(η(t)− φ(t))j

)= (T − t)2
E

(∫ t

0

1

(T − s)2
aij(η(s))ds

)
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and

E(‖η(t)− φ(t)‖22)= (T − t)2
E

(∫ t

0

1

(T − s)2

d∑
i=1

aii(η(s))ds

)
≤ dλ↑(T − t). (27)

We now apply a Taylor expansion of k(η(t), ψ(t)) around (φ(t), φ̇(t)), where φ̇(·) denotes
the derivative of φ(·). For notational simplicity, we define

�1(t)= η(t)− φ(t),

�2(t)=ψ(t)− φ̇(t)=− 1

T − t
�1(t).

We also define

Dxi k(λ)= ∂

∂xi
k(φ(t)+ λ�1(t), φ̇(t)+ λ�2(t)),

and similarly for Dψi k, Dxi,xjk, Dxi,ψj k, and Dψi,ψj k. The Taylor expansion with remainders of
third order is given as follows:

k(η(t), ψ(t))= k0(t)+ k1(t)+ k2,1(t)+ k2,2(t)+ k2,3(t)+ k3,1(t)+ k3,2(t)+ k3,3(t),

where

k0(t) := k(φ(t), φ̇(t)),

k1(t) :=
d∑

i=1

(
Dxi k(0)�1,i(t)+Dψi k(0)�2,i(t)

)
,

k2,1(t) := 1

2

d∑
i,j=1

Dxi,xjk(0)�1,i(t)�1,j(t),

k2,2(t) :=
d∑

i,j=1

Dxi,ψj k(0)�1,i(t)�2,j(t),

k2,3(t) := 1

2

d∑
i,j=1

Dψi,ψj k(0)�2,i(t)�2,j(t),

k3,1(t) :=
d∑

i,j=1

∫ 1

0

∫ 1

0

(
Dxi,xjk(λμ)−Dxi,xjk(0)

)
�1,i(t)�1,j(t)λdμdλ,

k3,2(t) :=
d∑

i,j=1

2
∫ 1

0

∫ 1

0

(
Dxi,ψj k(λμ)−Dxi,ψj k(0)

)
�1,i(t)�2,j(t)λdμdλ,

k3,3(t) :=
d∑

i,j=1

∫ 1

0

∫ 1

0

(
Dψi,ψj k(λμ)−Dψi,ψj k(0)

)
�2,i(t)�2,j(t)λdμdλ.

Now we integrate all the above terms from 0 to T − β with respect to the variable t, then take
expectations, and analyze the upper bounds of the result term by term.
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• Zeroth-order term: Notice that k is in quadratic form, with matrix (a−1
ij (x)), so

E

(∫ T−β

0
k0(t)dt

)
=E

(∫ T−β

0
k(φ(t), φ̇(t))dt

)
≤ λ−1
↓ T

(
M + |y0 − x0|

T

)2

.

• First-order term: We treat the first-order term k1(t) first. Since �2,i(t) is a martingale
by (26), the first-order term satisfies

E

(∫ T−β

0
k1(t)dt

)
=E

(∫ T−β

0

(
Dxik(0)�1,i(t)+Dψi k(0)�2,i(t)

)
dt

)
= 0.

• Second-order terms: We then treat the second-order terms. As Dψi,ψj k(0)= a−1
ij (φ(t)),

E

(∫ T−β

0
k2,3(t)dt

)
=E

⎛
⎝∫ T−β

0

1

2

d∑
i,j=1

Dψi,ψj k(0)�2,i(t)�2,j(t)dt

⎞
⎠

= 1

2

∫ T−β

0
E

⎛
⎝∫ t

0

1

(T − s)2

d∑
i,j=1

a−1
ij (φ(t))aij(η(s))ds

⎞
⎠ dt.

Writing

aij(η(s))= (aij(η(s))− aij(φ(s)))+ (aij(φ(s))− aij(φ(t)))+ aij(φ(t)),

and noticing that (aij(t)) is symmetric, we see that

1

2

∫ T−β

0
E

⎛
⎝∫ t

0

1

(T − s)2

d∑
i,j=1

a−1
ij (φ(t))aij(φ(t))ds

⎞
⎠ dt= d

2
( log (T)− log (β)). (28)

Assumption 4 implies the Lipschitz continuity of a(·), which gives

1

2

∫ T−β

0
E

⎛
⎝∫ t

0

1

(T − s)2

d∑
i,j=1

gij(φ(t))(aij(η(s))− aij(φ(s)))ds

⎞
⎠ dt

≤ 1

2

∫ T−β

0
E

⎛
⎝∫ t

0

M

(T − s)2

d∑
i,j=1

|gij(φ(t))| × ‖η(s)− φ(s)‖2ds

⎞
⎠ dt

= 1

2

∫ T−β

0

∫ t

0

M

(T − s)2

d∑
i,j=1

|a−1
ij (φ(t))| ×E(‖η(s)− φ(s)‖2) dsdt.

By (27) and Jensen’s inequality,

E [‖η(s)− φ(s)‖2]≤ (dλ↑(T − t)
)1/2 .

Observe that
∑d

i,j=1 |a−1
ij (φ(t))| ≤ dλ−1

↓ , so we have

1

2

∫ T−β

0
E

⎛
⎝∫ t

0

1

(T − s)2

d∑
i,j=1

a−1
ij (φ(t))(aij(η(s))− aij(φ(s)))ds

⎞
⎠ dt

≤M(dλ↑T)1/2dλ−1
↓ .

(29)
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By the Lipschitz continuity of (aij(·)), it follows that

|aij(φ(s))− aij(φ(t))| ≤MT−1‖x0 − y0‖2|s− t|.
Therefore,

1

2

∫ T−β

0
E

⎛
⎝∫ t

0

1

(T − s)2

d∑
i,j=1

a−1
ij (φ(t))(aij(φ(s))− aij(φ(t)))ds

⎞
⎠ dt

≤ 1

2
dλ−1
↓ MT−1‖x0 − y0‖2

∫ T−β

0

(∫ t

0

t− s

(T − s)2
ds

)
dt

≤ 1

2
dλ−1
↓ M‖x0 − y0‖2.

(30)

Combining (28), (29), and (30) yields

E

(∫ T−β

0
k2,3(t)dt

)
=E

⎛
⎝∫ T−β

0

1

2

d∑
i,j=1

Dψi,ψj k(0)�2,i(t)�2,j(t)dt

⎞
⎠

≤ d

2
( log (T)− log (β))+M(dλ↑T)1/2dλ−1

↓ +
d

2
λ−1
↓ M‖x0 − y0‖2.

By the chain rule and Assumption 4, we obtain

|Dxia
−1
ij (x)| ≤ d2λ−2

↓ M,

|Dxiψj k(0)| ≤�1(‖x0 − y0‖2/T),

|Dxixj k(0)| ≤�2(‖x0 − y0‖2/T),

where �i(·) : R→R, i= 1, 2, are defined as

�1(x) := d2λ−2
↓ M(M + x)+ dλ−1

↓ M, (31)

�2(x) := (M+ x)2d2
(

1

2
λ−2
↓ Md+ λ−3

↓ M2d2
)
+ 2λ−1

↓ M2d2 + λ−1
↓ Mdx

+ 2λ−2
↓ M3d3 + 2λ−2

↓ M2d2x. (32)

Taking (27) into consideration, we obtain

E

(∫ T−β

0
k2,2(t)dt

)
=E

⎛
⎝∫ T−β

0

1

2

d∑
i,j=1

Dxi,ψj k(0)�1,i(t)�2,j(t)dt

⎞
⎠

≤ 1

2
dλ↑T�1(‖x0 − y0‖2/T),

E

(∫ T−β

0
k2,1(t)dt

)
=E

⎛
⎝∫ T−β

0

1

2

d∑
i,j=1

Dxi,xjk(0)�1,i(t)�1,j(t)dt

⎞
⎠

≤ 1

4
dλ↑T2�2(‖x0 − y0‖2/T),
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• Third-order terms: We proceed to analyze the third-order remainder terms. Let us
consider k3,3(t) first. Notice that

|Dψi,ψj k(λμ)−Dψi,ψj k(0)| ≤ λ−2
↓ d2Mλμ‖�1(t)‖2;

thus, ∣∣∣∣E
(∫ T−β

0
k3,3(t)dt

)∣∣∣∣
=
∣∣∣∣∣∣E
⎛
⎝ d∑

i,j=1

∫ 1

0

∫ 1

0

(
Dψi,ψj k(λμ)−Dψi,ψj k(0)

)
�2,i(t)�2,j(t)λdμdλ

⎞
⎠
∣∣∣∣∣∣

≤ 1

6
Md3λ−2

↓ E(‖�1(t)‖2‖�2(t)‖22).

Then, by the Burkholder–Davis–Gundy inequality,

E(‖�1(t)‖2‖�2(t)‖22)≤ (T − t)CBDG(3)d
1
2

d∑
i=1

E

((∫ t

0

1

(T − s)2 aii(η(s))ds

) 3
2
)

≤CBDG(3)d
3
2 λ

3
2↑ (T − t)−

1
2 ,

where CBDG(3) is the explicit constant in the Burkholder–Davis–Gundy inequality. We
can pick

CBDG(p)=
(

p(p− 1)

2

(
p

p− 1

)p)p/2

(see Proposition 4.4.3 of [20]. To summarize, we obtain∣∣∣∣E
(∫ T−β

0
k3,3(t)dt

)∣∣∣∣
=
∣∣∣∣∣∣
∫ T−β

0
E

⎛
⎝ d∑

i,j=1

∫ 1

0

∫ 1

0

(
Dψi,ψj k(λμ)−Dψi,ψj k(0)

)
�2,i(t)�2,j(t)λdμdλ

⎞
⎠ dt

∣∣∣∣∣∣
≤ 1

3
CBDG(3)Md

9
2 λ−2
↓ λ

3
2↑T

1
2 .

Next, we consider the other two remainders k3,2(t), k3,1(t). Observe that

|Dxiψj k(λμ)| ≤�1(‖x0 − y0‖2/T + λμ‖�2(t)‖2)

and
|Dxixj k(λμ)| ≤�2(‖x0 − y0‖2/T + λμ‖�2(t)‖2).

Thus, by a similar argument, we can also derive∣∣∣∣E
(∫ T−β

0
k3,2(t)dt

)∣∣∣∣≤�3(‖x0 − y0‖2/T)
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and ∣∣∣∣E
(∫ T−β

0
k3,1(t)dt

)∣∣∣∣≤�4(‖x0 − y0‖2/T),

where �3(·) and �4(·) are defined as

�3(x) := d4Tλ↑λ−2
↓ Mx+ d4Tλ↑λ−2

↓ M2 + d3Tλ↑λ−1
↓ M+ 1

3
CBDG(3)d

7
2 T

1
2 λ

3
2↑λ
−2
↓ M,

(33)
�4(x) :=

(
1

4
d5T2λ↑λ−2

↓ M + 1

2
d6T2λ↑λ−3

↓ M2
)

x2

+ 1

9
CBDG(3)(dλ↑T)

3
2 (λ−2
↓ Md3 + 2λ−3

↓ M3d4)x+ d5T2λ↑λ−2
↓ M2x+ d6T2λ↑λ−3

↓ M3x

+ d3T2λ↑λ−1
↓ Mx+ 1

24
CBDG(4)d5Tλ↑λ−2

↓ M+ 1

12
CBDG(4)d6Tλ↑λ−3

↓ M2

+ 2

9
CBDG(3)d

9
2 T

3
2 λ

3
2↑λ
−2
↓ M2 + 2

9
CBDG(3)d

11
2 T

3
2 λ

3
2↑λ
−3
↓ M3 + 1

9
CBDG(3)d

5
2 T

3
2 λ

3
2↑λ
−1
↓ M

+ 1

2
d6T2λ↑λ−3

↓ M4 + 1

2
d4T2λ↑λ−1

↓ M2 + 3

4
d5T2λ↑λ−2

↓ M3. (34)

Finally, let us consider E(Jβ (0, η(T − β))). Since

E((η(T − β)− y0)i(η(T − β)− y0)j)

=E((η(T − β)− φ(T − β))i(η(T − β)− φ(T − β))j

+ (φ(T − β)− φ(T))i(φ(T − β)− φ(T))j)

≤ dλ↑β + β2|x0 − y0|2/T2,

it follows that

E(Jβ(0, η(T − β)))

= d

2
log (2πβ)+ 1

2
log det (a(y0))+ 1

2β

d∑
i,j=1

gij(y0)E((η(T − β)− y0)i(η(T − β)− y0)j)

≤ d

2
log (2πβ)+ d

2
log λ↑ + 1

2
d2λ↑λ−1

↓ +
d

2

‖x0 − y0‖22
T

.

To conclude, let us summarize all the intermediate results and substitute them into (25).
We have

J(T, x0)= lim
β→0

Jβ (T − β, x0)≤ J↑(‖x0 − y0‖2; T),

where J↑( · ;T) is defined as

J↑(x; T) := λ−1
↓ T

(
M + ‖y0 − x0‖2

T

)2

+ d

2
(log (2πT))+M(dλ↑T)1/2dλ−1

↓

+ d

2
λ−1
↓ Mx+ 1

2
dλ↑T�1(x/T)+ 1

4
dλ↑T2�2(x/T)
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+ 1

3
CBDG(3)Md

9
2 λ−2
↓ λ

3
2↑T

1
2 +�3(x/T)+�4(x/T)+ d

2
log λ↑

+ 1

2
d2λ↑λ−1

↓ +
d

2

x2

T
, ∀β ∈ (0, T). (35)

Therefore, if we pick DS = supx∈S ‖x− x0‖2, it follows that

p(x, T; x0, y)≥ exp
(−J↑(DS; T)

)
, ∀x ∈ S,

which ends the proof. �
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