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Abstract

We improve some results of [17], which relate to key tools given in [7] for establishing
canonical inequalities used in the analysis of sum sets and fractals.

1. Introduction

In recent years a number of striking results have been derived for probability measures
of certain sum sets involving fractals (see, for example, [2,4,5,8,9,13]). By the
algebraic sum set E + F of two sets E, F we signify the set

E + F = {x + y : x € E, y € F}.

The earliest and simplest of these results, established in [5], is the following.

THEOREM A. Suppose m denotes Lebesgue measure andfic Cantor-Lebesgue mea-
sure, that is, the uniform distribution on the Cantor subset C of [0, 1] formed by
repeated removal of middle thirds. If E, F are Borel subsets of[0, 1], then

m{E + F)> 2nc(E)anc(F)a,

where a = log 3/ log 4.

These results depend on novel inequalities involving nonintegral powers of real
numbers. Thus Theorem A uses the inequality

x)a(l-y)a>l ( 0 < x , y < l ) (1.1)
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established by Woodall [19].
Woodall and subsequently Hajela and Seymour [10] derived a variety of interesting

results in combinatorial geometry from the latter inequality, which is therefore of
some interest in its own right. The history of these results and related ideas pertaining
to a multivariate extension of (1.1) (see [4,12]) is quite colourful. A brief account is
given by Brown [2].

Inequalities like (1.1) may be shown to depend on canonical univariate inequalities
(see Brown [2,3]). Thus (1.1) can be deduced from the following result.

PROPOSITION B. Suppose that s,t>\ and 5"1 + r] = log 3 / log 2. Then

l+x+x2>(l+xs)l/s(l+x')l/l (1.2)

for all for 0 < x < 1 if and only if 3(s + t) < 8.

These inequalities are central. For example, (1.2) also leads to more general
multivariate inequalities than (1.1) and consequent new measure-theoretic inequalities.
A comprehensive account is given in [6].

Establishing the canonical univariate inequalities can be quite tricky and some
effort has been put into sharpening techniques for their derivation (see [7,11,14-17]
and most recently [1]). The 'two lemmas' of the title are special cases of the two parts
of Theorem 3.2 below, the earliest versions of which are due to Brown and Shepp [7]
and have influenced further work in the area.

This paper is a continuation of [17], from which we take the terminology and
notation. We are able to improve the main theorems of [17], due to improvements
in the auxiliary results and lemmas. In Section 2 we give a strengthened form of
the main lemma underlying the results of [1]. Improved forms of several existing
theorems follow immediately and are given in Section 3.

2. Key results

In [1] the following theorem is proved.

THEOREM C. Letpt (i = 1 , . . . ,n\n > 2) be positive real numbers with Y1"=\P / = !•
Then for all real numbers au . . . , anwe have

where

p = min pt. (2.1)
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The proof of this theorem is rather complicated, especially for the case when the
quantities a, are not all of the same sign.

We shall give a very simple proof of the following improvement of this theorem.

THEOREM 2.1. Let pt (i = l,...,n; n > 2) be positive real numbers with

Yl"=i Pi — 1 and at,... ,an real numbers. Suppose

a,v = max a,.

Then we have

a,-- -
,=. " -

where p' — min,^,* pt.

PROOF. Let bn < bn-{ < • • • < b\ be a permutation of au ... ,an and ru ..., rn the
corresponding permutation of p\,..., pn. Then

y = l j = \ 7=2

For each i e { 1 , . . . , n — 1} we have

7=2 y =i-(-l J=i + 1 7=1+1

Hence

n 1 n—l n

7=1 n l i=l 7=2

1=1 ;=i+i

and we are done.

REMARK 2.2. We have p' > p, where p is defined by (2.1). Hence Theorem 2.1 is
in fact stronger than Theorem C, since

k -aj\> (y\a~\ - T/\O~\) .
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Also, the remark in [ 1 ] that the constant factor p/(n — 1 ) cannot be replaced by a 
greater number is not completely correct. As we see, this factor can be replaced by 
p'/(n — 1) , which may be greater if pv — p. 

In fact, we can establish an even better estimate of difference between max a, and 
the weighted mean, in terms of the symmetric function • I a, — a,\-

Let us prove first following minimax lemma, which may be of independent interest. 

LEMMA 2.3. Let pu ..., pn be positive numbers. Then 

M := sup min q-,pj 
qi,...,q„ l<i<" 

is attained and is given by 

M = V " W (2-2) 

where p\,..., p'n are defined by p\ = min,<^<„ pj. 

PROOE The minimum of qtPj taken over 1 < i < n and i < j < n will be 
nonnegative if and only if each qt is nonnegative, so without loss of generality we 
may restrict attention to the situation in which {q\,... ,qn] is a set of nonnegative 
probabilities. In this case, that M exists and is attained follows by compactness. 

For transparency of reference, the quantities qtpj may be arranged in rows as 

q\P\ q\Pi ••• qiPi ••• q\pn 

qiPi ••• qiPi ••• qiPn 

qiPi ••• qtp„' 

qnPn 

For each member in the i-th row we have qtpj > qip't, since j > i. Suppose that 
the supremum M is attained for some n-tuple (qu ..., qn) for which qip\ < qjp'j for 
some i ^ j . Then we can replace q{ by q\ and qj by qj such that q\p\ — q'jPj and 
q'. + q'. = qt + q^. Doing this will increase the value of the minimum, a contradiction 
to the definition of M. 

Hence we have 

q\p\ - qiP'i = ••• = qnp'n = M. 
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Since 

1=1 r t , = 1 

(2.2) follows. 

THEOREM 2.4. Let /?, ( i = l , . . . , n ; n > 2) be positive real numbers with 
]L;= iPI = 1 and a{,... ,a„ real numbers. Let b„ < • • • < bt be a permutation 
ofa\,... ,a„, and r\,..., rn the corresponding permutation ofp\,..., pn. Define 

p\ = min rj, i = 2 , . . . ,n. 
i<j<n 

Then 

max ai - VVa; > =r——) • Y] |a, - a, |. (2.3) 
i = l ¿—11-2 * / r i l < i < / < 7 i 

PROOF. For each i > 1 we have 

™,a<*a' ~ Xp i a i = bx ~ X r> &>= XI ̂ ( i i ~ ̂ ) - X ^(Z>' ~bti- (2-4) 

Let 9 i , . . . , q„ be positive numbers satisfying qi + • • • + q„ = 1. Multiplying (2.4) by 
<7, and summing over i — 1 , . . . , n — 1 gives 

;=i y=2 

1=1 y = i + l 

where g,' = q,/(l — q„) (i = 1,... ,n — 1). Since q't H h <^_[ = 1, Lemma 2.3 
yields 

fl /1 — 1 n 

max a, — > p,at > max min 7 7 (ft, — &.•) 
\<i<n ' a, o„_, l < i < / < n * — ' ' 

1 = 1 i'=l y = i + l 

= 2 ^w ,£ l a - a ' 1 

! < ! < / <n 
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REMARK 2.5. Suppose that an < an-i < • • • < au If p\ = p,for all i > 2, that
is, p2 < p-i < • • • < pn, then the multiplying factor in (2.3) is [l/p2 + • • • + l/pn]~l

which can be much better than the value p2/(n — 1) in Theorem 2.1.

COROLLARY 2.6. For n = 2,we have

a\P\ + a2p2 = max<3; - p'2\Oi — a2\,
i=l,2

where p'2= p\ ifax < a2 and p'2 = p2 if a\ > a2. In either case, we have

a\pi + a2p2 < maxat — min(pi,p2)\ai — a2\.
i=l,2

Therefore in the case n = 2, (2.4) and (2.3) hold with equality.

3. Applications

The improvements to the basic lemma given in the previous section have direct
consequences for several theorems given in [17]. The proofs of the first two involve
only straightforward modifications of those used in earlier improvements presented in
[1] and so are omitted.

THEOREM 3.1. Let a, b, st and tt (i = 0, 1,2) be positive real numbers with
a I Si + b/ti = 1 (i = 0, 1, 2) and si < s0 < s2, and let f, g : (0, oo) - • R be convex
functions. Then

h0 < max(/ii, h2) - a\hx - h2\,

where

h, = l^l + i^l (,- = 0,1,2)
Si ti

and

e (0, 1).
. /(s2-s0)si (so-a - minii ,

\(,S2-Si)S0 (S2-Si)s0/

Similarly, we have the following for Lp norms.

THEOREM 3.2. We adopt the assumptions and notation of the previous theorem.

(i) Suppose the quantities P, = | | / H,. \\g\\,. (i — 0, 1, 2) all exist. Then

Po < max(Pu P2) - a\Px - P2\.
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(ii) Suppose x = (*,), u = (M,) (J = 1 , . . . , « ) and y = (v7), v = (vj) (j =

1, . . . , m) are sequences of positive real numbers. Then

where

Qi = S[:'](x,u)S^](y,v) (i = 0,1,2) and

The following result is an improvement of Theorem 1 from [17].

THEOREM 3.3. Suppose that positive numbers M,,; (i = 0,1,2; j = 1 , . . . , n)

satisfy u{j > u0J > u2J (1 <j < n) and

aj « u + bj u,j = 1 (i = 0, 1, 2; 2 < j < n) (3.1)

for positive constants a;, bj (2 < j < n). If Fj : (0, oo) -> R (1 < j < n) are
convex functions, then

l ^ } J2FJ («U) ~ FJ (U2,Jj (uoj) < m a x l ^ F} (u,j)} - min(A., 1 - X)}
' '' l ; i > j=

where X is defined by

. _ «2,1

"2,1 - «1,1

PROOF. From (3.1), we conclude as in Theorem 1 of [17] that

_

U\J ~ UlJ "2,1 - Ml.l

_ i — Ul-J

l,y - «2J

Also, by the convexity of Fj,

Fj(u0J) < ^LZJHhLFjiUlj
U U 2J UUJ - U2J

that is,

Fj(UlJ) + (1 - X)Fj(u2J).
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After summation, we obtain by Corollary 2.6 that

Fj (uo,j) < k £ Fj, (Mlj) + (1 - k)
7 = 1 7 = 1 j=l

< maxl £ Fy («,,,)} - min(X, 1 - k)
7 = 1

- F,
7 = 1

REMARK 3.4. By Corollary 2.6, the factor min(X, 1 — k) can be replaced by k or
1 — k, depending on the value of the maximum. The same is true for the factor a in
Theorems 3.1 and 3.2.
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