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0. Preliminaries

We study the eigenproblem

where

n=\

and Tm, Vmn are self-adjoint operators on separable Hilbert spaces Hm. We assume the
Tm to be bounded below with compact resolvents, and the Vmn to be bounded and to
satisfy an "ellipticity" condition. If k = 1 then ellipticity is automatic, and if each Tm is
positive definite then the problem is "left definite".

We show that certain eigenvectors xm of (*) corresponding to AeK* generate a basis
X of decomposable tensors for a subspace G of H = (x$n=1Hm of finite codimension.
More specifically, we define k (in general indefinite) inner products, relative to which (i)
X is positive and orthogonal and (ii) G has a common orthocomplement F in H.
Bounds for dim F are given, and in particular if each Tm is nonnegative definite then

1. Introduction

Completeness and expansion theorems have formed a central part of multiparameter
spectral theory since early in this century. In particular, Hilbert's work [14; Chapter 21]
on a special pair of linked Sturm-Liouville equations has been successively generalised
to what is nowadays called the "left-definite" (LD) case of the eigenproblem (*) of
Section 0. Such problems include a number of systems of ordinary differential equations
arising from separation of variables of classical boundary value problems into various
coordinate systems—cf. [1; Chapter 1]. Indeed, early work on multiparameter theory
was generally motivated by such problems, in the Sturm-Liouville form

k

(Pmy'm)' + <lmym= £ ^mnVm, (1-1)
J = l
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216 P. A. BINDING AND K. SEDDIGHI

for eigenfunctions ym in suitable subspaces of L2[am,bm\. We remark that an alternative
"right definite" condition can also be used, but the present expansion theory [21]
cannot handle all such applications.

In the abstract framework used here, Kallstrom and Sleeman have given a
completeness theorem for the LD case—see [19: Chapter 5]. LD is the combination of
"ellipticity" of the Vmn and the "definiteness" of the Tm. Ellipticity is automatic when
fc = l, and involves two definiteness conditions on combinations of the Vmn when k = 2.
The latter are automatically satisfied, for example, for the equations (1.1) whenever they
arise from the plane Helmholtz equation in any of the four coordinate systems
permitting separation of variables. The other, "definiteness", condition can be a
drawback of LD, since effectively it requires positive definiteness of each Tm—for more
on this question, see Example 5.5 at the end. In the (elliptic) differential equation case, it
is frequently the case that the Tm are essentially positive definite (e.g. for (1.2), pm takes
one sign) but the "lower order" terms and boundary conditions give Tm a finite number
v(7 ,̂) of negative eigenvalues.

Even in the one parameter case

Tx = lVx (1.2)

(where we drop subscripts for simplicity and where LD simply means positive
definiteness of T), the results need modification when v(T)>0. In particular, complex
eigenvalues may occur, and the eigenvectors need not be dense in H, so root vectors
may be required for completeness. In the finite dimensional case, such results can be
found in Weierstrass's 1880's theory of canonical forms of pencils (see [17], §108 or
[12], Chapter 1.3 for modern accounts in the context of self-adjoint operators on
indefinite inner product spaces). In the Sturm-Liouville case, Richardson was aware
(apparently as a by-product of his 1910's work on two-parameter problems) of the need
for complex eigenvalues, and explicit examples requiring complex eigenvalues and/or
root vectors can be found in recent work of Fleckinger and Mingarelli—cf. [10]. The
abstract setting, which includes both the above cases, was investigated by Pontryagin in
the 1940's in the context of indefinite inner product spaces, and can be found in ([7],
Chapter IX). An infinite dimensional completeness result involving compact operators
was apparently treated first by Iohvidov in 1950, but without a published proof. We
recently proved a completeness result for (1.2) [6], and we shall use it in a fundamental
way in Section 3. Roughly, the LD result holds on a subspace G of codimension at most
3v(T), and the known finite dimensional result holds on a suitable complement of G. We
remark that one can also approach (1.2) via Langer's "spectral function", but this is
somewhat involved—see e.g. Daho and Langer [8] for the Sturm-Liouville case.
Incidentally, all the above references treat invertible T.

Various generalisations of (1.2) can be treated via reduction to (*) (cf. Greenlee [13]
and Roach and Sleeman [18] who use k = 1 and k = 2 respectively to treat quadratic
eigenvalue problems). The only investigation we know of under ellipticity alone seems to
be by Faierman [9] for the Sturm-Liouville case (1.1) with k = 2. We are grateful to Dr.
Faierman for his preprints which have enabled us to give the following comparison
between his work and ours. Roughly, [9] takes advantage of a function space setting to
derive uniform convergence of double Fourier-type series, but at the cost of continuity
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ELLIPTIC MULTIPARAMETER EIGENVALUE PROBLEMS 217

conditions which can be checked only after rather detailed analysis of an elliptic partial
differential equation

Anx = AnAox (1.3)

for « = 2. Our work uses k abstract equations (1.3) on (X^,= 1 / / m for n = l . . . k to derive
completeness results in abstract (but strong) metrics under weak continuity conditions—
in fact Lx coefficients would suffice for (1.1). Faierman attacks (1.3), with An possibly
noninvertible, using an a posteriori nondegeneracy condition ([9], Assumption 6.1). We
use a more direct nondegeneracy condition, which we call "regularity", permitting
transformation to a case where An is invertible for each n=l...k. Incidentally, regularity
holds automatically if Ao is 1 — 1, and the latter can be checked on the original data
either in the finite dimensional case ([2], Theorem 8.5.1) or in the Sturm-Liouville case
(1.1) when Ao is 1 —lodet[rm n] vanishes on a (fc dimensional Lebesgue) null set. While
Faierman's nondegeneracy condition is removable (as he has informed us), he expands
only functions with a common compact support, Q say, on which det [rmn] £ 0. It seems,
then, that one could use a version of (1.3) where Ao is 1 — 1, defined via quadratic forms
restricted to Q.

Our plan is as follows. In Section 2 we state the assumptions, including definitions of
ellipticity and regularity, and we show how to transform the eigenvalues so that each
operator An is self-adjoint and bounded below with compact inverse. In particular, v(An)
is finite, and (1.3) is equivalent to

where Bn = An"
1A0 is compact. In Section 3 we prove that the Bn commute, and that

bases for joint eigenspaces of the Bn can be constructed out of the eigenvectors of (*). In
Section 4 we combine these results with those of [6] to give a general completeness
theorem. Roughly, the LD result holds on a subspace G s H of codimension at most
3 £ J = 1 v(An), and on a suitable complement of G the problem reduces to one studied by
Atkinson ([2], Chapter 6). We also show how to bound codim G in terms of the original
data (*). Finally in Section 5 we discuss the situation when each Tm is nonnegative
definite—in this case the bound on codim G improves to 2v where v = ]~[j|=1dimN(Tm).
In particular, if v = l (e.g. in the Sturm-Liouville case (1.1) with separated end
conditions) then codim G = 1 or 2, and we characterize both cases directly in terms of
the original data.

2. Transformations of the problem

Of the self-adjoint operators on a Hilbert space H, we shall distinguish by BS(H)
those which are bounded, by PI{H) those which have a bounded positive definite
inverse, and by CR(H) those which are bounded below with compact resolvent.
Necessarily

for large positive £. Recall the standing

Assumption 2.1. Tm e CR{HJ, V^ e BS(H J , 1 ^ m, n ^ k.
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218 P. A. BINDING AND K. SEDDIGHI

From now on, H will denote the (Hilbert) tensor product (x£= 1Hm. We start by
inducing Vmn into H, yielding an operator Vl,neBS(H), and we note that V^ and V]t

commute if mj=j. Thus we can define Ao as the k x k determinant det[Fj,n], with AOmiI as
the corresponding (m, n)th cofactor. If u = ul<g>-®uk is a decomposable tensor with
| |uj | = l, m=l...k, then the expression 5Oma(u)=(u,AOmnu) is a (k— 1) x(k — 1)
determinant with elements of the form (u,, Vj,Uj). The original definition of "ellipticity"
[15] requires k linear combinations of the 5Omn(u) to be positively bounded below, but
([4], P- 480) shows that this positivity may be assumed of each SOmn(u), after a
nonsingular linear transformation of the eigenvalues A. Then ([4], Theorem 3.1) shows
that we may assume "ellipticity" in the form:

Assumption 2.2. AOmnePI(H), l^m,n^k.

(If k = 1 then we write AOmn = /, so ellipticity is automatic). We emphasize that the
original assumption is on the original data (*).

We induce Tm similarly into H as a self-adjoint operator Tj,. Let D denote the
intersection f]m=I ̂ (̂ iL)> which is easily seen to be dense in H. For n = 1... k, An is then
defined as the closure in H of

An|f l= t AOmnTl (2.1)
m = l

Using the fact that AOmn and Tj, commute on D(Tr
m), one easily shows that An\D is

symmetric, and it will turn out that An is self-adjoint.
We are now in a position to state our "regularity" condition:

Assumption 2.3. For n=l...k, Aoy = 0£yeH implies

(y,Anxn)£0 for some xneN(AO)nD(An).

This is satisfied vacuously if Ao is 1 — 1. First we shall discuss the consequence for (1.2),
i.e. for k=l. Then A0 = V and Aj = 7̂  and the following result shows that "regularity"
gives the usual definition ([11], p. 25) for pencils in finite dimensions.

Theorem 2.4 Ifk=l then there is an open real interval J = ] — p,p[ such that T + eV
is 1 — 1 for all nonzero eeJ.

Proof. For each (eC, write T(0 = T+£K If no interval J exists as stated, then

0e<rp(r+C;K) 7 = 1,2,...

for a sequence of real £,-*() as y-^oo. From the properties of self-adjoint holomorphic
families ([16], p. 386) we conclude that the eigenvalues of T(£) are holomorphic at C=0,
and therefore Oec^,"T(0) f°r aU small |f|. In particular, we can find feH of unit norm
such that

(T+eiF) / = 0 for all small real e.
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Elementary manipulations now give

( / , Vy*)=(yf> Tyn)=0 for all small nonzero real e and f/.

In particular, if S is the linear span of such y", then

(y,7» = 0 for allyeS.

It follows from ([7], Lemma IX.1.1) that dimS is finite, so let y,=y", 1=1...m, be a
basis for S. Suppose

tw (2.2)
1=1

where en^eh I — 1...m. Then

It follows from (2.2) that Vy = 0, where

m

(2.3)

Now for any xeN(V)nD(T), we have

(y,, Tx) = ( - ejiKj;,, x) = (-B,iyb Vx) = 0

so it follows from (2.3) that (y, Tx) = 0. Thus y=0 by Assumption 2.3, and so each a, = 0
by (2.3). But then yn = 0 by (2.2) and we contradict |k,|| = 1. D

We now proceed to general k, and we shall repeatedly use a construction based on
translations of a(Tm). To motivate this, we note that

Tm + a/m e PI(H J for large positive a. (2.4)

Hence although Tl<£CR(H) in general, it is true that Tl+UePI(H) for large positive £.
Thus if Tm is replaced by Tm+£Im, then the analogue of An, which we denote by An(f),
belongs to P1(H). Specifically, we take An(0 as the closure of YX=i&Omn(Tm+U)>
so

£ AOmfl) n = l . . . f c . (2.5)
m = l
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220 P. A. BINDING AND K. SEDDIGHI

Theorem 2.5. After a possible translation of the eigenvalues, we may assume, in
addition to Assumptions 2.1-3, that An is 1 — 1 and belongs to CR(H), for n=l ...k.

Proof. Choose large enough positive a to satisfy (2.4). Throughout this proof, n will
denote an integer between 1 and k. Since D(Tm + aIm) = D(Tm), An(a)|D is essentially self-
adjoint by ([20], Lemma 4.4). Since I.neBS{H), An(a) is self-adjoint, so An(a)eCR(H) by
([4], Theorem 3.1). Thus An = An(a) - aZn £ CR(H) by ([5], Lemma 1).

If we replace k by X+e where eeUk, then we must replace Tm by Wm(e) in (*). Thus An

is replaced by the closure of

i.e. by An + 6nA0. Here we use standard identities ([15], equation 2.2)) and AoeBS(H).
Since AneCR(H), we may apply Theorem 2.4, with (T,V) replaced by (An,A0), to

conclude that An + enAo is 1 — 1 for all translations with en small and nonzero. Moreover
An + enAoe CR(H) by ([5], Lemma 1), and if Aoy=0=£ y then

(y,(An + enAo)x) = (y,Anx)^0 for some x e N(A0) n D(An + en Ao).

Thus Assumption 2.3 remains valid, and the other assumptions are unaffected by the
translation. •

3. The operators Bn

By Theorem 2.5, we may define compact operators

and as in [4], they will be the main tool for the completeness theorem when fc>l. In
this section we shall extend two crucial properties of the Bn from the LD case, by means
of analytic perturbation theory. The first property is as follows.

Theorem 3.1. The Bn are pairwise commutative.

Proof. Using (2.5) for arbitrary £ e C, we define Rn as the resolvent set for

F — — E~1/2A 5T1/2

and w.e claim that Cei?n if and only if An(f) is 1 — 1. Indeed

Since both AB(() and En have purely point spectrum, our claim is established.
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Choose large enough <x>0 to satisfy (2.4). Then A,,(a) is positive definite, so by
Theorem 2.5, {0, a} <= Rn. Since En is self-adjoint, we find

(3.1)

is a connected and simply connected open subset of Rn for small enough e > 0.
Define Bn(0=--An(0~lK for CeKn. By ([4], Theorem 4.2),

Bm(QBn(Q = Bn(QBm(Q (3.2)

for each ( belonging to the real interval ] i , a + £ [ c R , . It follows that the holomorphic
operator valued functions on both sides of (3.2) agree for all ( e Z£ and in particular for
C=0-nrf. ([16], pp. 367-368). •

The second property we need expresses a connection between common eigenvectors
of the Bn and eigentensors x® = x1®---®xk where xm satisfy (*) for XeUk. The set of x
satisfying Bnx = nnx, n = l . . . k , is denoted by E(fi) whenever fieUk and the resulting
subspace is nontrivial. We define k +1 sesquilinear forms on E(p) by (x, y), = (x, A,y),

Theorem 3.2. Any eigentensor of (*), with keUk, belongs to E(fi) where fin = X~1,
n=l...k. Conversely if Oj=fieUk and, for some n, (x, x)n is of one sign for all nonzero
x 6 E(ft), then £(/i) has a (finite) basis of eigentensors which are ( , )rorthogonal for each
1 = 0...k.

Proof. The first sentence is standard—cf. ([4], Theorem 6.1). The converse is proved
via the technique of Theorem 3.1. Note that nn=fc0 for each n = l...k. By ([4], p. 485),
we have the identity

1 t vlnK t\
n = l 1=1, l±n

for keCk and ( e ] a , a + e[, the notation being as in (3.1) and (3.2).
Rearranging, we obtain

(/+((-a)(ri+«/)-1)fm,(0=(Ti + a/)-1 t VLK f\ WQ. (3.3)
1 = 1 n = l J = l , l # n

Since the homomorphic operator-valued functions on both sides of (3.3) agree for all
£e]a,<x + e[, and hence for all CeZe (3.1), we may set C=0, apply both sides to

x = XnBnx where kn = \i~x, n=\...k,

and rearrange to give
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Let Pm be the orthoprojector of Hm onto N(Wm(X)). Replacing Tm, Vmn by PmTm,PmVmn

restricted to N(Wm(X)), we obtain a finite dimensional version of (*) with one eigenvalue,
viz. A. The replacement for H is just £(/i), and so the conclusion follows directly from
([2], Theorem 7.9.1). •

4. Completeness in the general case

Although our results lead to fundamental sets of vectors in H, it is more convenient
to express them in terms of complete orthogonal bases of vectors in the subspaces
Dn = D(\An\

l/2), n= 1 ...k. We shall endow Dn with two sesquilinear forms,

(x, y)n = (x, Any) and [x, y]n = (x, \An\y)

for yeD(An), with completion for yeDn. For more on these constructions, see e.g. ([6],
§3). In particular Dn is a Hilbert space under [ , ]„, and topological concepts (e.g.
closure) will be understood in the [ , ]„ sense. Algebraic concepts (e.g. orthogonality)
will however be understood in the ( , )„ sense. Note that the number vn of negative
eigenvalues of An is finite by Theorem 2.5, so Dn is a Pontryagin space under ( , )„.

We shall give a preliminary completeness result for n fixed between 1 and k. If fi is an
eigenvalue of Bn then we write NJ

n(fi) = N(Bn—fiI)j. The case j=\ corresponds to the
eigenspace N(Bn — fiI), which we denote by £„(//). Given j^.2vn+ 1, it can be shown ([7],
p. 191) that NJ

n(n) = Ni+i(n), and we write

for such j .

L e m m a 4.1. Dn = N(A0)@Fn®Gn where N(Ao) = Fn(0), Fn is an ( , )n-orthogonal
direct sum of the Fn(/z) and d i m F n ^ 3 v B . Gn is the closed linear span of the remaining Fn(n)
and is a Hilbert space under ( , ) „ = [ . ] „ • The summands in Gn are ( , )n-orthogonal and
satisfy Fn(/j) = En(n) and fieU in each case.

Proof. The results follow from ([6], Corollaries 4 and 5). In particular, Fn(0) ='En(0) =
N(A0) follows from ([6], Corollary 1). •

We now remove some of the dependence on n by means of the constructions

E{n)= 0 Ett(iin) and F(/i)= f) Fn(/O
l l

for fj.neap(Bn), n=\...k. It will turn out that E(fi) is needed only when 0^/ielR*, as in
Theorem 3.2.

Lemma 4.2. For each n = 1... k, Dn = N(A0) © F © G, where N(A0) = F(0), F is a finite
direct sum of the F(ft), and G is the closed linear span of the remaining F(fi), for each of
which 0^peUk and F(ft) = E(p).
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Remark. It is an easy calculation to show that the [ , ]„ are topologically
equivalent, so G does not depend on „.

Proof. Set ; ^ 2 v B + l for each n=l...k. If xeFB(/O then x = y + z where yeNJ
n(nn)

and zeNJ
n(fin). By Theorem 3.1,

Bmx = Bmy + Bmz e N{(nn) + JVn(/IB) = Fn{nn)

so Fn(fin) is Bm-invariant for each m = 1.. . k. We now decompose the summands of
Lemma 4.1 into root subspaces of Bm for each m=/=n in turn. Evidently N(A0) = Fn{0)
remains unchanged, and Dn is decomposed into a direct sum of the F(/i)—cf. ([2],
Theorem 3.6.1).

We claim that F(/J) = E(p) and p e Rk hold for all but finitely many ft. Indeed if we
take a Jordan basis for any Bm in any finite sum of the F(fi) then the Jordan chain
lengths are prescribed by Lemma 4.1 with n replaced by m. In particular, all but finitely
many chains have length one and correspond to real eigenvalues. D

The main completeness result is a refinement of the above.

Theorem 4.3. The direct sums in Lemma 4.2 are ( , \-orthogona\for each l=0...k, as
are the summands in G for different /i. Moreover F can be chosen so that G is a Hilbert
space under ( , ) „ = [ , ] „ for each n=l...k, and a set of eigentensors for (*) exists
forming a complete orthogonal basis of G in all of these inner products.

Proof. Suppose xeiV(A0) and yeF(fi), 0=fc(ieCk. Then (x, j>)0 = 0 is trivial, and /in=/=0
implies (x,y)B = 0 by ([7], Theorem H.2.5). Now suppose ueE(p), 0^/ielR* and veF(p),
pi=fi. If pB=f Hn then (w,i;)n = 0, again by ([7], Theorem H.2.5). Thus for / = 1 ...k

(u, v), = (A,w, v) = nr HAo", v) = pnnr X(An", v) = nn\ii \u, v)a (4.1)

must vanish. The claims of the first sentence are now established.
If ( , )n

zh\- . L f° r some n for infinitely many E(p), then we contradict Lemma 4.1.
Thus F can be chosen to include all E(p) for which ( , )n^=[ , ]„ for some n, and so
( > )n = [ . L o n G for all n by the orthogonality already established. Theorem 3.2 now
completes the proof. " •

We shall now discuss some questions related to the dimension of F. One way of
reducing dim F is to include in G those E(n) for which ( , )„ is definite for some n (and
hence for all n by (4.1)). The price is that G need no longer be a Hilbert space, although
it will be a Pontryagin space, under each ( , )„. Another way of reducing dimF is to
remove subspaces of £(/i) from certain F(/i) £ E(ft). More precisely, we may decompose
Fdt) into Ln(/j) = FB(/i)nFn and Mn(fi) = Fn{fi)nGncEn(fin) for \i + 0 by Lemma 4.1. Let
M(n) = f)n=i M,(/i) and let L((i) be the ( , ),-orthogomplement of M(it) in F(/i) for some
/ (and hence for all / = 1.. .k by (4.1)). By the rules of dimension (cf. ([17], p. 51)J,

k

dim Lift) = dim F(/i) - dim M{fi) g X dim LB(/i). (4.2)
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We now sum the L{/t) and M(/i) over those fi for which F(/t)zF, yielding subspaces L
and M of F. By Lemma 4.1, ( , )„ = [ , ]„ on M, and by (4.2) and Lemma 4.1,

dimL^ £ 3vn. (4.3)
n = l

Thus dimF can be reduced to dimL, and G remains a Hilbert space in each inner
product ( , )„, n = \...k. The price is that we cannot assert the existence of a
decomposable basis for M.

Finally let us consider bounds for dim F in terms of the original data (*). Since the
various possibilities for dim F (e.g. (4.3)) can all be expressed in terms of the vn, it will
suffice to estimate the latter. For simplicity we shall bound vt in the case k = 2—the
general case is analogous but involves extra terms. By Assumptions 2.1-2, we have

where S2 = V\2 and St = — V\2 eSP(H) and H+,H~ are the positive and negative
spectral subspace of Tm. In particular, dimH" =v(Tm)<oo. We seek an upper bound for
the dimension of a ( , )t-negative subspace in H^®H2. Suppose T ^ a / ^ V^^pi^
and V22^.yl2 with a,y<0 and /?>0. Let T2 possess 6 eigenvalues (repeated according to
multiplicity) in the interval [0, ay//?]. Any subspace K of Hi®H2 of dimension
>Sv(T1) must contain an element x satisfying

(x,T2x)>ay{x,x)/p.

Thus S2
l/2K contains y=S2

v/2x satisfying

(y, TlS2y)>oLy(y,ymy, T\Siy)

i.e. {y,y)i>0. Since S2 is an isomorphism, we have 5v(Tt) as our required bound. A
similar bound (say ev(T2)) can be found for the maximal dimension of ( , )t-negative
subspaces of Hj" ®H2, and so our final bound for vt is

5. The nonnegative definite case

Throughout this section we shall employ:

Assumption 5.1. Tm is nonnegative definite for each m=l...k,

in addition to Assumptions 2.1-3. It is convenient to discuss the one parameter case
(1.2) first. By Theorem 2.5 we may replace X by A+e, where eeU is small, so that T is
replaced by an invertible operator T' = T + eV. Then we may define a compact operator
B' = (T')~1V and associated subspaces E'(fi) and F'(n) for fi4a^B'), as in the prelude to
Lemma 4.1. It is convenient to write tj=e~i.
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Lemma 5.2.

(i) The eigenvalues X of (1.2) and \i of B' are all real.

(ii) F(|i) = £'(jx) for all n + n.

(iii) E\n) = N(B' -nl) = N(T) and F\n) = N(B'- nl)2).

Proof, (i) B'x = fix is equivalent to

nTx=(l-eti)Vx (5.1)

so if /i = 0 then fieU and xeN(V). From now on we assume ni=Q. Then (5.1) shows
that (1.2) is satisfied with X = n~l — E. Conversely, (1.2) implies

x=(X + e)B'x

so if x=/=0 then again we have n = (X + e)~i^0, i.e. X = n~l—e.
If (x, Tx)^=0 then (x, Vx)£O so X is a ratio of reals, whence X and n are both real. If

(x, Tx) = 0 then Tx=O by Assumption 5.1 so \i = r\ and X = 0 are both real.
(ii) It suffices to prove

y e N((B' - nl)2) => y e N{B' - fil).

The left side can be written (B'—fiI)y = x, i.e.

[il-ep)V-rr\y=rx (5.2)

where x satisfies (5.1), i.e. [(1— en)V—fiT\x = 0. Using (5.2) we obtain

0=(x,T'x). (5.3)

On the other hand, (5.1) can also be written (iT'x=Vx, so

{x,Vx) = fi(x,T'x).

Using (5.3) twice, we have (x, Vx) = 0 and (x, Tx)=0 in turn, and so Tx = O by
Assumption 5.1. As in (i) x=/=0 forces \i = n, and so in fact x=0, i.e. yeN(B'-fil).

(iii) The first contention is immediate from (5.1). For the second, we shall prove

z e N({B' -»;/)3)=>ze N((B' - nl)2).

The left side can be written ( F — nl)z = y, i.e.

-nTz=T'y (5.4)

where y and x satisfy (5.2) and (5.1) for n = n, viz.

-nTy = T'x and Tx=0. (5.5)
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Thus

O = (x,Tz)=-E(x,T'y) = (y,Ty)

whence Ty = O. Comparing (5.4) and 7> = 0 with (5.5) we see that yeN(B' — r]I) and so
indeed zeN((B'-f//)2). •

By setting T=An and V=A0 we obtain an improvement of Lemma 4.1 that
nevertheless still depends on n. To remove that dependence we need one more result.

Lemma 5.3. N{An) = N: = (gfm = 1 N(Tm), for each n = \...k.

Proof, (x, Anx) = YX = l(x, Tj,AOmnx) for all xeD so An is nonnegative definite. Thus if
xeN(An) then there is a sequence x}eD such that x,—>x and

(xp AnXj)->(x, Anx) = 0 as /-> oo.

In particular, the nonnegative sequence

WK&OmrA'm) Xj\\ — (XjA^Omny'm) ) Xj)

= (Xj,&omnTlxj)->0 as j^co.

Thus (Tj,)1/2Xj->0, and since (Tj,)1/2 is closed we have Tj,x = O for m = l...k. Thus
xeN—see ([4], p. 485), and so JV(An)£JV. The reverse implication is obvious. •

We are now ready for the main completeness result. It improves Theorem 4.3
sufficiently to make the subsequent remarks in Section 4 unnecessary in this case. Using
Theorem 2.5, we translate the eigenvalues k by e and we write

t]n = e;\ B; = (An + £nA0)"1A0, n=l...k,

with associated subspaces F'n(nn), E'(fi) etc. It is convenient to write v = dimIV—see
Lemma 5.3.

Theorem 5.4. It is possible to choose F = F\tj) in Theorem 4.3, with dim F ̂  2v.

Proof. By Lemma 5.2, it is possible to choose Fn = F'n(rin) in Lemma 4.1. Now choose
a Jordan basis for B'm, mj=n, in the 2^-invariant subspace F'n(fin). Any Jordan chain for
B'm of length 2 must correspond to eigenvalue r\m by Lemma 4.1 with n replaced by m.
By Lemmas 5.2 and 5.3, the first element of such a chain belongs to N<=F'n(rjn), and so
F'(tj)-Fn(rin) and F'(p) = E\p) whenever \im±r\m for any m=l...k. Finally d i m F ^ 2 v
because each Jordan chain for Bm\F starts in N and has length at most two. •

One can specify dim F precisely in terms of the behaviour of ( , )0 on N. Let Mo be
the (Gram) matrix with (m,n)th element (um,u")0 for a suitable basis ul,...,uv of N.
Appealing to the canonical form ([12], Theorem 1.3.3) far B'm an N, in the ( , )'m inner

https://doi.org/10.1017/S0013091500028297 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500028297


ELLIPTIC MULTIPARAMETER EIGENVALUE PROBLEMS 227

product, we see that there is a Jordan basis for B'm relative to which Mo is diagonal with
nonzero (resp. zero) elements corresponding to 1 x 1 (resp. 2x2) Jordan blocks for B'm.
Thus

dim F = v + v0

where v0 denotes the number of ztro eigenvalues of Mo. On the other hand, we note
that decomposable bases of N also exist ([2], Theorem 4.3.1) and the elements of Mo

are then determinants with elements of the form (xj, V^xj). By the law of inertia ([17],
§92), we can determine v0, and hence dimF, by means of these simpler matrices,
expressible directly in terms of the original data (*).

Finally, let us illustrate some of the above with a special case.

Example 5.5. Suppose the eigenspace corresponding to the minimal eigenvalue of
each Tm has dimension one. In particular, this is the case for the Sturm-Liouville case
(1.1) with separated end conditions—cf. [9] for fc = 2.

Three cases can arise. First, if Tm is positive definite for some m, then v = 0 and so
dim F = 0. The eigentensors are complete in H, and we have the situation of LD—in fact
the problem is transformable to one satisfying LD ([3], Corollary 2.2 and subsequent
references).

Assume now that Tmxm = 0 for some nonzero xmeHm, m=l,...,k. Then N is spanned
by x® = xi (g)---® xk. Evidently v = l, so dimF depends on v0. We note that (x®,x®)0 is
a determinant d0 with (m, n)th entry (xm,Vmnxm). If (50=f0 then vo = 0, so d i m F = l , i.e.
F = N and again the eigentensors are complete.

The third case arises when do = 0, and then vo = l, so dimF = 2 and the eigentensors
are not complete. F is spanned by x® and a common root vector y, say, for the B'm.
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