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WHEN DOES RANK(^+£) = RANK04) + RANKCB)? 

BY 

G. MARSAGLIA AND G. P. H. STYAN 

In a recent note in the Bulletin, Murphy [5] gave a short proof that for complex 
mxn matrices A and B, r(A+B)=r(A)+r(B) if the rows of A are orthogonal to 
the rows of J? and the columns of A are orthogonal to the columns of B. His proof 
was elegant and simple, an improvement on an earlier proof of the same result by 
Meyer [4]. 

While there is no dispute now with the proofs of this result, we would like to 
suggest that the orthogonality condition is far too strong and is, in fact, mis­
leading. Additivity of rank is related in a simple way to the intersection of the row 
and column spaces of A and B, as we will now show. 

Let ^ and ^ 2 be the column spaces of A and B, let 0lx and < 2̂ be their row 
spaces. Let 

c = d imens ion^ n ^ 2 ) , d = dimension(^1 n ^ 2 ) . 

THEOREM. r(A+B)=r(A)+r(B) if and only ifc=d=0, that is, 

dimension(<£1 C\ ^ 2 ) = dimension(^1 n 3$2) = 0. 

This theorem appears as a corollary to a more general result of Marsaglia [2] 
who proved that 

r(A) + r(B)-c-d < r(A+B) < r(A) + r(B)-meix(c, d). 

Khatri [1] also gives a theorem from which this inequality may be derived. 
Simpler proofs and related inequalities are given by Marsaglia and Styan [3]. But 
the importance of the particular case r(A +B)=r(A)+r(B) merits special attention, 
and so we provide a short proof that the conditions are c=d=0. 

Proof of Theorem. First, the condition c=d=0 is necessary, as these two strings 
of inequalities show : 

r(A+B) < r[(A, B)] = r(A) + r(B)-c < r(A)+r(B) 

r(A+B) < r\(^j] = r(A)+r(B)-d < r(A) + r(B). 

To show c=d=0 is sufficient, we use full rank decompositions of A and B: 

A = C-Jli, r(A) = r{C^) = r{R^) = a; A is mxn, Cx is mxa, Rx is aXn; 
B = CZR2; r(B) = r(C2) = r(R2) = b; B is mxn, C2 is mxb, R2 isbxn. 
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Such representations exist since, for example, i?x can be any matrix whose rows 
are a basis of the row space of A and then A = C1RX for some Q and r(A)= 
rCCi/y^minfKCx), r(Rl)]<a=r(A). We now write 

A+B = C.R.+C.R, = ( Q , C 2 ) ( ^ = CR, 

say. Then c = 0 implies that all the a+b columns of C are linearly independent and 
so C has a left inverse such that LC=I. Thus when c=0 , 

r(4+fl) = r(CR) > r(LCR) = r(£) = r (4) + r(J3)-d > r ( X + 5 ) - d . 

If in addition d=0 the whole string collapses and r(A+B)=r(A) + r(R). 
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