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A CLASS OF TRANSLATION PLANES OF SQUARE ORDER

M.L. NARAYANA RAO, K. SATYANARAYANA

AND G. VlTHAL RAO

A class of translation planes of order p , where r is an

odd natural number and p is a prime, p £ 7, p ? 41 (mod 10)

is constructed. A salient feature shared by all these planes

is that one ideal point is fixed by the translation complement

and the remaining ideal points are divided into at least two

orbits, one of which is of length p .

1. Description of the class of translation planes

This class of translation planes is constructed through 1-spread

sets [7,p.220] over GF(q), q = p , where r is an odd natural number,

p is a prime, p > 7 and p ? ±1 (mod 10). It is well-known that 5

is a nonsquare in GF(p) if and only if p jf ±1 (mod 10). Since r is

odd, 5 is a nonsquare in GF(q).

Let M(a,b) £ GL(2,q) be defined by

a b

-—b a+b3M(a,b) = a,b £ GF(q).

Let C = {M(a,b)|a,b £ GF(q)}. The set C can also be written as

C = {M(0,b)+al|a,b £ GF(q)}, where I is the 2 ^ 2 identity matrix.

It is now claimed that C is a 1-spread set over GF(q). To

establish this claim, we have to verify that L-N is nonsingular, for all

L,N 6 C, L 7s N. An easy computation reveals that M(0,b) - M(0,d) has
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? 3 1 1 7 4 1 9 9 1 4
A - (b -d )A + -g(b-d) (b +b d+b d +bd +d )

as its characteristic polynomial. The discriminant of this polynomial is

i(b-d)2(b2+3bd+d2)2

which is a nonsquare in GF(q), if b f d, since 5 is a nonsquare in

GF(q). Thus M(0,b) - M(0,d) has an irreducible characteristic

polynomial for all b,d £ GF(q), b f d. Suppose L = M(a,b), N = M(c,d)

are two distinct matrices of C. Then L-N = (a-c)I + M(0,b) - M(0,d).

If b = d, then a # c and therefore L-N is nonsingular. If b ^ d,

then L-N is nonsingular, since M(0,b) - M(0,d) has irreducible

characteristic polynomial. This completes the proof of the claim that C

is a 1-spread set over GF(q).

Let

v(M(a,b)) = { (w,x,y,z)|w,x £ GF(q), (y,z) = (w,x)M(a,b),

M(a,b) £ C}

and

V(~) = {(0,0,y,z)|y,z £ GF(q)}

be 2-dimensional subspaces of V(4,q), the 4-dimensional vector space

over GF(q). The incidence structure with v(M(a,b)), M(a,b) £ C, V(«>)

and their cosets in the additive group of V(4,q) as lines and the

vectors of V(4,q) as points and inclusion as the incidence relation is

2
the translation (affine) plane ir of order q associated with the

1-spread set C. Since C is not a ring the plane IT is non-

Desarguesian. In what follows, the ideal point V(M(a,b)) denotes the

ideal point associated with the line v(M(a,b)) and by a collineation,

we mean a collineation of ir, which belongs to the translation

complement of n. It is well-known that any nonsingular linear trans-

formation on V(4,q) induces a collineation of ir if and only if it

permutes subspaces v(M(a,b)), M(a,b) £ C and V(°°) among themselves.

From this we get the following criterion:

A 4 x 4 matrix ^ , where P,Q,R and S are 2 x 2 matrices

over GF (q) induces a collineation of n if and only if the following

conditions are satisfied:
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(i) if R is nonsingular, then R S 6 C; if R is singular,

then R is the zero matrix and S is nonsingular;

(ii) for M E C, if (P+MR) is nonsingular, then

(P+MR)~ (Q+MS) € C;

if (P+MR) is singular, then (P+MR) is the zero matrix

and (Q+MS) is nonsingular.

The following is a useful lemma which has been used in the sequel:

LEMMA 1.1. Let C be a (n-l)-spread set defined over GF(q),

where q = p , p is a prime, p > 2, and s is a natural number. Let

IT' be a translation plane associated with C . Further suppose that C

satisfies the condition that:

(1.1) if M £ C , then -M £ C .

Then

(1) if there exists a collineation which fixes V(-») and moves

V(0)} the n-dimensional subspace associated with the zero

matrix of C , onto V(N) or moves V(N) onto V(<») and

V(°°) onto V(0), where V(N) ? V(0) then M + N £ C, for

all M € C's

(2) if there exists a collineation which fixe.'; V(0) and moves

V(<») onto V(N) or moves V(N) onto V(0) and V(0) onto

V(°>), where V(N) ± V(«>), then (M~1+N~1)'1 e C, for all

nonzero matrices M of C.

Proof. See [6,Lemma 3.4].

2. Some coliineations of n

We now give some collineations of w and indicate their actions on

the ideal points. It is noticed that N + al £ C, for all a £ GF(q)

and -N £ C whenever N £ C. From this we obtain two collineations

a (x) and $ of TT , where

a(x) =
I xl

I
x £ GF(q) ,
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I o'
3 =

0 -I

The action of a (x) on the set of ideal points of ir is given by:

a(x) : V(») »• V(°>), V(M(a,b)) • v(M(a+x,b) ) .

Let H = < a (x) |x £ GF(q) >. The collineation group H is transitive on

the set {v(M(a,O))|a £ GF(q)} and it is of order q. The action of 3

on the set of ideal points is found to be

6 : V(») >-V(°°), v(M(a,b)) >• v(M(-a,-b) )

and it is of order 2.

Let y be the mapping from V(4,q) onto itself defined by:

y : (w,x,y,z) • (wP,xP,yP,zP).

This induces a collineation of ir which maps v(M(a,b)) onto

v(M(aP,bP)). It fixes V(°°), v(M(a,O)), a € GF(p) and it is of

order r.

3. Non-existence of certain types of collineations

The aim of this section is to prove that every collineation of ir

fixes V (») . To establish this result we need the following lemmas.

LEMMA 3.1. There is no collineation which fixes V(<») and moves

V(M(030)) onto V(M(aJb))J b £ 0.

Proof. By Lemma 1.1, a necessary condition for the existence of

such a collineation is N + M(a,b) £ C, for all N £ C. Taking

N = M(a,b), we get that 2b = (2b) implying 6 = 0 , which is not

the case.

LEMMA 3.2. There is no collineation which interchanges V(°>)

and V(M(0,0)).

Proof. If 6 is a collineation of IT interchanging V(°°) and

V(M(0,0)) then 6 is of the form 6 = , for some A,B £ GL(2,q) ,

satisfying the condition that for each M £ C there exists N £ C (and

vice versa) such that

(3.1) A M B = N.
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Taking M = M(a,O), a € GF(q), a ^ 0, we find that a A B € C. An

inspection of C reveals that this can happen only if A B = M(c ,0),

for some c £ GF(q) , c j4 0. Now (3.1) becomes

(3.2) A~ M" A = cN.

Since the matrix -N + I £ C for all N £ C, we replace N by -N + I

in (3.2) and obtain the existence of a matrix L £ C such that

(3.3) A ^ L ^ A = c(-N+I) .

Adding (3.2) and (3.3) we obtain

(3.4) L = (-M~1+cl)"1.

The relation (3.4) implies that (-M~1+cl)~1 £ C for all M £ C and

M / M(0,0). Using the fact that -M £ C whenever M £ C we get an

equivalent statement that (M~ +cl) £ C for all M £ C, M ? M(0,0).

Let the determinants of the matrices M(a,b) and (M (a,b) + cl) be k

and L respectively. After some straightforward computation we get that

k2l2 = 1 if (M~1(a,b) + cl)"1 £ C. Substituting in k I2 = 1 the

expressions of k and L we obtain that the determinant of (c I+M(a,b))

is ±c for all M(a,b) £ C. From this it follows that the determinant

of every matrix N £ C is ±c . This is a contradiction since the set

of matrices {M(-i,l) + al|a £ GF(q)} contains - ^ — matrices with

distinct determinants. Hence the lemma.

LEMMA 3.3. There is no collineation which fixes V(M(0:t0)) and

moves V(<»).

Proof. Suppose 6 is a collineation fixing V(M(0,0)) and

moving V(=°) onto v(M(a,b)). Then by Lemma 1.1, we have a necessary

condition that (N~ +M~ (a,b))~ £ C, for all N £ C, N ? M(0,0).

Taking N = M(a,b), b ^ 0, we get that 2 M(a,b) £ C. This can happen

only if 6 = 0 , a contradiction. The case b = 0 is dealt with as in

Lemma 3.2. This completes the proof of the lemma.
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LEMMA 3.4. There is no collineation which sends V(M(a,b)) onto

V(°°) and V(<°) onto V{M(0,0)), (a,b) £ (0,0).

Proof. Suppose a is a collineation mapping v(M(a,b)) onto

V(») and V(°°) onto V(M(O,O)), (a,b) ̂  (0,0). Then by Lemma 1.1 we

obtain a necessary condition that N + M(a,b) £ C, for all N £ C.

Taking b / 0 and N = M(a,b) we get that 2M(a,b) £ C, which is a

contradiction. Suppose b = 0. Then the collineation a a(x)a fixes

V(M(0,0)) and moves V(°°), a contradiction to Lemma 3.3. Thus the

lemma is proved.

Using Lemmas 3.1-3.4 we conclude that the ideal points corresponding

to v(M(0,0)) and V(°°) are not in the same orbit.

THEOREM 3.5. Every collineation of TT fixes V{<»).

Proof. Suppose 6 is a collineation of it which moves V(<»).

Then by Lemma 3.3, 6 moves V(M(0,0)). Let the images of V(°°),

v(M(0,0)) and V(M(1,0)) under 6 be v(M(a,b)), v(M(c,d)) and

v(M(e,f)) respectively. By Proposition 6 [4,p.491] we get that, for

each M £ C there exists N £ C (and vice versa) such that

[(M-M^b))"1 -(M(c,d)-M(a,b)f"l][(M(e,f)-M(a,b)T1- (M(c,d) -M(a,b) f 1 ] " 1

(3.5)
= A NA

for some A £ GL(2,q). Replacing N by -N in (3.5) we get the

existence of a matrix L in C such that

(3.6)
[(L-M(a,b)) 1 - (Mlcdl-Mla.b))"1] [(H(e,f )-M(a,b) f1- (M(c,d)-M(a,b)) V

= A~ (-N)A.

On adding (3.5) and (3.6) and simplifying we get that for each matrix

M £ C there exists a matrix L £ C such that

(3.7) (L-Mfa.b))"1 + (M-Mfa.b))"1 = 2(M(c,d)-M(a,b))~l.

The relation (3.7) implies that the mapping

(3.8) M • M(a,b) + [-(M-Mta,!,))"1 + 2(M(c,d)-M(a,b) )"1]"1
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is a collineation of n. The collineation given by (3.8) maps V(°>)

onto V (Q) where Q = 2 (M(a,b) + M(c,d)) E C . A necessary condition

for Q to be in C is that b = ±d. This implies that 6 moves V(°°)

onto v(M(a,b)) and V ( M ( O , O ) ) onto v(M(c,±b)). But the ideal points

v(M(a,b)) and v(M(c,±b)) are in the same orbit under <B,H> . This

forces V (<*>) and V ( M ( O , O ) ) to be in the same orbit, a contradiction.

Hence the lemma.

4. The translation complement of IT

It may be observed from sections 2 and 3 that the translation

complement fixes V(">) and is transitive on {v(M(a,O))|a £ GF(q)}. Let

J be the group of all collineations of IT that fix V («>) and V(M(O,O)),

A coset decomposition of the translation complement G is given by

U Jx
a6GF(q) a

where x is a collineation fixing V («>) and mapping V ( M ( O , O ) ) onto
3.

v(M(a,O)). We may take x to be a(a) and G = <J,H > . It is seen

that J 3 < Y , 0 > . Using Theorem 3.5 and Lemma 3.1 we get that G

divides the set of ideal points into at least three orbits, one containing

a single ideal point and the second containing q ideal points. This

orbit structure makes the plane IT distinct from the following known

square order planes:

(a) the generalized Andr£ planes (including Hall planes) [2],

(b) the flag transitive planes [5] ,

(c) the planes of Hering of order q , (q = -1 (mod 6)) [3],

(d) the planes of Walker of order q , (q = -1 (mod 6)) [8].

Further, the present construction defines planes for some primes covered

in (c) and (d), and some other primes not covered in (c) and (d).

One of the authors [71 computed G in the particular case q = 7

and established that G actually divides the set of ideal points into

3 orbits of lengths 1, 7 and 42 and G is of order 2016.
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