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OSCILLATORY INTEGRALSWITH NONHOMOGENEOUS PHASE
FUNCTIONS RELATED TO SCHRODINGER EQUATIONS

LAWRENCE A. KOLASA

ABSTRACT. In this paper we consider solutions to the free Schrodinger equation in
n+ 1 dimensions. When we restrict the last variable to be a smooth function of the first
n variables we find that the solution, so restricted, islocally in L2, when the initial data
isin an appropriate Sobolev space.

1. Introduction. Consider, for a fixed smooth function t(x), the solution to the
Schrodinger equation

{ iou(x.t) + Aux. ) =0 (x.t) € R™
u(x,0) = f(x) € L>(R")

attimet = t(x)—u(x. t(x)). We obtain results of the form
HU( ’ t( ’ )) HLZ(Dn) <C || f ||HS )

where s depends on the smoothness of t. Here HS(R") denotes the L2-Sobolev space,
A 1/2
HGRY) = [ € CED 1l = ( [ @+ 16P°1FOR de) T < oo

and D" denotesthe closed unit disk in R".
Thisis motivated by a desire to understand the Schrodinger maximal operator,

u*(x) = sup |u(x, t)].
<1

Onewould like to prove an estimate of the form
1.1 Ul 2omy < C Il -

whichin turnimplies that Iting u(x, t) = f(x) a.e., wheneverf € H(R"). Oneway to prove
an estimate asin (1.1) is to consider, for an arbitrary bounded measurable function t(x),
the operator S: HS — L?(D") defined by

Sf(X) = (2m) ™" /[R @I f(e) de = u(x.t(x)).
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and show that
ISFI = u(-tC)) ooy < Cl e

where C is uniform over the family of operators S. When n = 1 the definitive result is
that (1.1) issatisfied for al f € H%if and only if s > 1/4. Thereare no such sharp results
whenn > 2; s > 1/4 is aways a necessary condition, while s > 1/2 is a sufficient
condition whenn > 3, and s > 1/2 — e for some positive ¢ is a sufficient condition
whenn = 2. See[1], [2], [3], [8], [10] and [12].

When studying S one may first consider for k = 0,1, ... the family of operators
Re: L2(R™) — L2(D") of the form,

(1.2) R0 = [, &M (y)f(y) .

so astoreduce HS estimatesto L? estimates. Here { 6 } 22, isapartition of unity subordinate
to dyadicintervals. Thisfamily of operators R issimilar to another one-parameter family
of operators, the so-called oscillatory integral operators, Ty: L2(R") — L2(R"), of theform

(1.3) T = [ €0Da( ) (y)dy.

Theseoperators are typically studied when the phasefunction, ¢(x, y), is smooth, and the
amplitude a(x. y) isasmooth, compactly supported function ([4], [6], [7], [9], and [11])*.
Strictly speaking, Ry is not an oscillatory integral operator, even if t(x) is a smooth
function, since the “ phase function” x - y + t(x)|y|? is not homogeneous. If we make the
change of variablesy — 2y, R, cannot be put in the form T,. So even if we do assume
that t(x) is a smooth function, the fact that we will prove estimates of the form

IRl oy < C24| 7]l

for R¢ in Section 3 isnovel. Here s is a number that depends on the smoothness of the
function t.
We prove the following theoremsin this paper.

THEOREM 1. Supposet € C* issuch that Vt(x) does not vanish on D". Then for any
s> 0,

HU( ’ t( ’ )) HLZ(Dn) <C || f ||HS )
where C may depend on sand t.

THEOREM 2. Suppose that t has only non-degenerate critical points. Then for any
s> 0,

[u(- 1)) | oy < Cl Pl
whenn=1orn=2

1 See[1] for an example of anon-smooth phase function.
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THEOREM 3. Thereisa smooth function t(x) such that an estimate
Ju(- 1)) | oy < €Il

cannot hold for all f € H® whenever s < 1/4.

2. Preliminary Lemmas. Throughout this paper we shall let t(x) denote a fixed,
given C>(D") function. We will use a standard partition of unity subordinate to dyadic
intervals {6 }2y: 6o € C3(lyl < 2), bo(y) = 1 when |y] < 1; 6(y) = 60(27%y) —
6o(2*y), whenk > 1.

If a(x,y) isafunction of x € R" andy € R™, then denote by supp,(a) the projection
onto the x-coordinates of the support of a. Let Vya(x. y) denote the gradient of a as a
function of y with x held fixed.

The expression x < y means that there is a constant C whose particular value is
unimportant such that x < Cy.

Recalling the definition of Ry in (1.2), we begin with the following lemma whose
purpose, as noted earlier, is to reduce HS estimates to L? estimates. This approach is
foundin [1].

LEMMA 1. Supposethere are constants C and s, such that
IRl 2y < G251 ]I,
Then for any s > sy thereis a constant Cs depending on C and s such that
Hu( t()> HLZ(D") = Col[flly -

ProOF. Note that R f = Re(x[suppay T)- Hence

R 1/2
|f(y)|2dy)

_ . v2 -
S @O ([ vEFoPdy) T < cz e,

flly 2 < czsok(
IR | L2@my < ./supp(ek)

Then by Minkowski’s inequality,
Ju(- 1) e < 2 IR lony < €2 [ = Coll e
asdesired.
REMARK. Wemay multiply R by aCg° function o whichisunity onD", if necessary,

and all results about this “new” R¢ will be the same as for that in (1.2). By abuse of
notation R, will denote either one.

We shall also need the converse of Lemma 1.
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LEMMA 2. Suppose there are constants C and p, independent of k, such that, as an
operator form L2(R") — L2(D"),

(2.) IR(|| > C20%.
Then the map
(2.2) S(9) = u(x t(x))

is not a bounded map from H(R") — L?(D") for any s < p.

PROOF. The condition (2.1) meansthat for eachk = 1, 2, ... there exists a function
fu € L? such that || fy||2 = 1, supp(fi) € supp(dx) and for which

IR fil| Loqony > C2°%.

Choose g, € L? such that § = fi. Fix an s for which Sin (2.2) is a bounded map from
HS(R") — L2(D"). On the one hand, by (2.1),

1S9kl Lzny = [IRfillzony > C2.

On the other hand, by the choice of s,

1/2
c ([ 9P+ eax)
< C"2%|fyf|2 = C"2.

IS0 9llzey < Cll gl ve

Hence 20—9% < 1 for each k, which is only possiblewhen p < s.

Our proof of Theorem 1 exploits the similarities between R, and T, in (1.3). We use
the fact that when the mixed Hessian of ¢, the n x n matrix H(x, y) defined by

2
(Hoey)), = e ().

i axay,
is non-singular on the support of a, the decay of ||T, || is as rapid as possible.

LEMMA 3. Supposethat H, is non-singular on supp(a) and that the following quan-
tities are uniformly bounded on supp(a):

() H; x|
(il) [|VyDF e for all o with [a] =2

(iii) [VuD§o] ., for all o with|a] <n+2.
Thenif M = max{1, | supp,(a)| } and

nN\1/2
Ma = ||al|., (M|suppy(a)|{ > Sth|D§‘,’a(x,y)a(x,z)|}”*l) .

|o|<n+1 XYz
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then
T2 fll, < CMaA™2 £,

where C is bounded.

A proof of Lemma 3 may be found in [7]. See also [6], [11]. That the power of A
which appears in the conclusion of Lemma 3 is optimal is a consequence of the next
lemma. Theideafor thislemma, which we use to prove Theorem 3, isfound in [6].

LEMMA 4. LetT), beasin(1.3). Supposethat therearemeasurablesetsA C supp,(a)
and A C supp,(a) and measurable functions ¢; and ¢, such that

(2.3) A(x.y) — d1(x) — d2(y)| <1/2 when(x.y) € Ax A,

If |a(x, y)| > ¢ > 0when (x,y) € A x A and

(2.4 Aty dy =3/4 [ Jatcy)ldy
then thereis a positive constant C such that
Tl = C/IA[[A].
PROOF. Let f(y) = e 92y 4(y); then || f||, = |AY/2. When x € A,
TV )| = [eOT, f(0)|

‘ /A a(x. y) dy‘ _ l /A (EN0N=0:0=02(0) __ 1)a(x, y) dly
| +11.

v

By condition (2.3)
n| < 1/2/A|a(x.y)| dy.
Thus (2.4) guarantees that

/A|TAf(x)|2dx > CIA|A]%,

and dividing by || f Hg givestheresult.

When the mixed Hessian is degenerate having rank n — 1, it may be beneficial
to split coordinates. If x,y € R", write x = (X, %,) and y = (Y, yn) where X,y €
R™, the idea being that (after perhaps a change of variables) the mixed Hessian is
nondegenerate in the X',y variables. To execute this line of thinking we must recall
the notion of frozen operators. For an operator of the form Tf(x) = JK(x,y)f(y)dy,
for each choice of x,, yn we define the frozen operator Ty, : L2(R"1) — L2(R™ 1) by
Ty FOX) = JTKX . X0, Y. yn) f(Y)dy'. Lemma 5 and Lemma 6 are the main technical
deviceregarding frozen operators that we make use of in the proof of Theorem 1. Their
proofs are elementary and may be found in [7].
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LEMMA 5. Let T be as above, T* the adjoint of T. Then as operatorsfrom L2(R"?)
to L2(R™1)

Ml < (10 eZ0vn) ™ ([ 1)

LEMMA 6. Supposethere exists a measurable function n(x,, yn) such that

[ Toya f HLZ(RH) < (%0, Yn) || f”LZ(R"’l) ’
| [ 6 yh(ym dya| < Clihluzge-

L2(R)

Then
[TH][ 2ny < CIIFll 2y -

Finally, our proofs rely on stationary phase estimates, which, while at times delicate,
are standard. The reader isreferred to [5], [7] or [11] for details.

3. A Proof of Theorem 1. Given Lemma 1 a proof of Theorem 1 follows from the
appropriate estimate for Ry.

ProPoSITION 1. Supposet € C® issuchthat Vt(x) # O for all x € D". Then thereis
a constant C, which isindependent of k, such that

IRz = CHIfll, -

PrROOF. Since V't does not vanish we may assume that supp,(a) is asmall neighbor-
hood of the origin of R" on which thereis a C* diffeomorphism p such that t o p(x) = Xy,
and for which Dp(0) = I, then x nidentity matrix. Let \ = 2. After making a change of
variables (x — p(x). y — Ay) it sufficesto show that

(3.1 IR Fllizny S A2l

where
RUF(¥) = () [ Oy, () £(y)dy.

Here o isacut off function to D". Write a(x, y) = a(x)81(y) and proceed. If
Kx.2) = [, exp(i{A(00) = p@) - ¥+ X200 = Z0)IyI2} ) alx. Yoz Y) .

then, letting S, = R\R;,

Xn — Zn
€

) dz+ [ F@K(x 2D (X"_z") dz

€

S f(x) = (/Rnf(z)K(x. z)¢(
= S0+ S,

where ) € C3 issuchthat v = 1 near Oand ) = 1 — 1.
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We find that the frozen operators (S})y,, havethe form

(3:2) (S F0) =0

% Z zn) (r?kr?’i)xnzn f(x).

For fixed x,, sincex,|y|2 isafunction of y only, we may consider (f{k)xnyn asan oscillatory
integral operator with phase function p(X'. xn) - (Y. yn). Clearly, by the construction of p,
the mixed Hessian of this phase function is non-degenerate on supp(a) . Consequently
by Lemma3

(3.3 1Ry f
By (3.2), (3.3) and Lemma5,
(St ozrsy S v ( )RRz, 0] ooy

Xn—2Zn\ \_(n—
S o (B AP ey

SATOE

L2(R"2) ez -

Xn — Zn
€

It follows then from Lemma 6 and the generalized Young's inequality that
(3.4) IS, S AT e fll = A1,

if we take ¢ = AL, In what follows we shall take e = A~%, and in doing so we may
assume, given the support properties of v, that A|x, — z,| 2 1.
Now we turn our attention to S. Note that

|p(x) — p(2)|?

Ap0) = p(@) -y *+ 300 = 2y = W00 — z)ly + F(x A = o=~

where F(x,2) = £X9=2@ | et A(x,zy) = a(x.y)az y) and p = A2(X, — Z,). Then the

20(%0—2)"
kernel of S is
~ (Xn— Zn 1p(x) — p(2)|2 ”
(I e ("H) @A 2 F(x.2) dy.
, .
Here we have that

./[R” eiulyle(X! z F(x, z)) dy
P -n/2 i A
_ (%) (A(2F0c2) + [ radilg[2/4e T A 2 —€) de ).

wherer is the remainder term in the first order Taylor expansion of €, and A denotes
the Fourier transform in the last variable. So (Sf)y,z, is the sum of two terms, (S?\);nZn and
(S§);’nzﬂ having kernels K’(x', Z') and K” (X', Z') respectively. Since

—n/2

K'(X.Z) = ('?“) ) (X“ Z Z“) exp(iX[p(9) — p(2)°)A(x. 2 F(x. 2)).
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where \' = ﬁ we may treat (§:\)§<nzn as an oscillatory integral operator with phase
function | p(X', ) — p(Z . z)|? and amplitude A(x. z, F(x. 2)) . And although this amplitude
function does depend on )\, because (A X, — z,|)~* < 1 we may uniformly bound finitely
many Z-derivatives of A. Moreover, since ||, |z < 2, then |supp, A| S 1. So by
Lemma3,

~ (Xn—Zn
(3.5 IS F sy S % (=

) A0 = 20l 72 [ oy
Also (S,\Z)ann may be treated as an oscillatory integral operator as
KIX.Z) = (im 221 (122 exp(in'] 09 — p(2)?)
x [ rail€?/An)e  FUDAK, 2 —€) e,

The phasefunction is the same asin the previous case, but the amplitude is different. To
apply Lemma 3 we must consider Z-derivatives and the volume of the Z-support of this
amplitude,

i [ ral[2/Ame  FEDAK 2 —€) e,

and find L> bounds on these quantities which are independent of A. Since |x|, |7 < 2
when this amplitude does vanish, and by consideration of stationary phase estimates it
sufficesto show that for s > n/2

S,

> |DED; (e FAANX Z —€) dE)| 4 S

|o|<2+s

foral |8| < n, andthisiseasily seento be so given that |\ (%, — zy)| > 1. ThenLemma3
showsthat

~ (Xn—Zn\ | _n— _
(36) H(Si);(:zanLZ(an) S/ ¢ (T) )\ n 2|Xn - Zn| 3/2 || f ||L2(Rn—1) .
Using (3.5) and (3.6) and the fact that |x, — z,|A 2 1 on supp ¢ we see that
(37) H(g)xnanLZ(Rn—l) S/ A7n|xn - Zn|71/2 || f ||L2(Rnfl) .
Then Lemma 6 and the generalized Young's inequality imply
||S/\f||2 S A" || f”z-,
and thisimplies (3.1).

4. Nondegenerate Critical Points. The case when Vt # 0 represents the easiest
to treat using the methods of Theorem 1. When Vt vanishes, the situation is more
complicated. However the case when the Hessian of t is non-singular whenever Vit
vanishes—i.e., t has non-degeneratecritical points—istreated below. Welimit ourselves
to the casewhenn = 1 or n = 2. Theorem 2 will follow from Lemma 1 once we prove
the following.
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PROPOSITION 2. Suppose that t(x) has only non-degeneratecritical points. Then
IRFI| < CKYZ| ]l
whenn=1orn=2.

Before giving the proof of Proposition 2, we state a technical lemma whose proof is
given at the end of this section.

LEMMA 7. Letn=1orn =2, and supposethat A isan n x n diagonal matrix whose
eigenvaluesare 1. If A(X) denotesthe quadratic form A X - x, then

dx In(A)\"
4.1 sup [ < .
\z|§1/'fD (1+,\2|A(x)—A(z)|)”/2 ( A )

PROOF OF PROPOSITION 2. We know that t only has finitely many isolated critical
points in D". Away from these critical points |[Vt| > ¢ > 0. Near a given critical point
we may change variables in such away that t is a quadratic form. After a partition of
unity, an application of Theorem 1 and a change of variables, we may assumethat Ry is
of theform

ReF09 = V2 [ exp(i[An0) -y + AKIYP])alx. y) F(y) d.

where \ = 2% A isasin Lemma7, p isaC* diffeomorphism and a € C3°(D" x D"). As
aways R(R;; hasakernel K of the form

K(x.2) = A" /R i exp(i [)\(p(x) — @) -y + (AN — A®D) |y|2])a(x. y)az y) dy.
—n/2
Ingeneral |K(x, 2)| < A", whileby stationary phase |K(x, 2)| S )\”(/\Z(A(x)—A(z))) "z
Then an application of the generalized Young'sinequality and Lemma7 yieldsthedesired
result.

We restrict ourselves to the case n = 1, 2 because the estimate in (4.1) is no longer
valid for larger n. The estimate that one does get for n > 3 is not good enough to prove
results that are better than those already found in [10] and [12].

PROOF OF LEMMA 6. We consider the cases of when n =1 and n = 2 separately.
Casel n=1.
After achange of variables, x — x/ \ it sufficesto show that

o < In(\).

A
o @rie -2y s

12<A
We calculate, for fixed |z| < A, that

A dx _ 4 dx . /A dx
/o 1+ 2 — 2[)Y/2 - /0 AL+2—x)2  Jlid (1+x2 — 2)1/2

I z [A+V1I—2+22\ _
—arcsm(m)ﬂn\ +1 )Nln(A).
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Case2. n=2andA=+]| (sayA=1).
Again we change variables as before, so it sufficesto show that

A rdr
5.3.2 — —  _ <In\)A.
(5.32) ;28/0 (1+’r2— |z|2’) ~ It

We make afurther change of variables, s = r? sothat the left-hand side of (5.3.2) isequal
to (modulo a constant factor)

% dr _ /\zl2 dr /kz dr
o 1+[r—z2  Jo 1+|z2—r Jpp 1+r —|Z2
= In(1+|Z?) +In(1+ X% — |Z?) S In()).

_ _ 1 0
Case3.n—2andA—i(O _1).

We must consider, wherec = Az- z,

/ dxdy
JBOY) 1+ A[X2 —y2—c|

After the change of variablesu = x +y, v = x — y and a dilation, we may consider

dxd
L 1+|§yy g 4=

In fact it is clear that we only have to consider

//1+dXdy o] < A%

By changing variables the aboveis equal to

[ 1 ( ;y L) dy < In(V2,

Juy\ly 1+|x—c|

and this completes the proof.

5. Lower Bounds. It is not possible that we may always get estimates as in The-
orems 1 and 2 for all s > 0, as Theorem 3 shows. Lemma 2 tells us that we need
to find a lower bound for R¢. Here again we take advantage of the similarity be-
tween R¢ and the general oscillatory integral operator T,: we let our phase function
be o(x. y) = X -y + At(X)|y[?; the fact that it depends on the parameter A does not worry
usinthiscase, asLemmad4 is still applicable.

Theorem 3 follows from Lemma 2 and the next resullt.

PROPOSITION 3. Thereis a smooth function t(x) such that for any e > 0 we may find
a constant C, such that
IRl > C 244
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PrROOF. We define a function, 7, of a single variable, r, locally and extend using a
standard construction. For j = 1,2, ... let r; = 1/j and notice that the distance between
two consecutive pointsin this sequenceis

PTG
Define _
7 =27(r = ry).
Let ¢ be a sequence of C3° functions with 0 < ¢; < 1 such that i; = 1 when
[Ir=rj|l < (20j)~?, and supp $iNsupp ¢; isempty when [i—j| > 2. Then(r) = 5 ¢;(r)7(r)
and t(x) = 7(Xn).
Make the change of variablesy — 2Xy. We have to show that

” ﬁk“ > szk(—n/2+1/4—s)

where _
RA() = [ €209 (y)f(y)d.
and
B(x.y) =X y+ 24(x)|y[%.
Letxc=(0,...,0,r),andy, = (0...., 0. —1/2) and define

DX, Y) = 9% Y) — ¢ Y) — A(X, Y) + (X Yk)-

In the language of Lemma4, ¢1(X) = ¢(X, Yk) + &% y~k) and ¢2(y) = #(X. y). Let A be
the rectangle x| < C27%/2, |x, — ry| < Ck=2 and let A be the rectangle |y'| < C27%/2,
lyn +1/2| < C27%/2, where Cis asmall (absolute) constant. In this region we have that

DY) =X Y + (X0 — ) (Yn + 1/2)2-

We see on A x A that 2¢|®(x,y)| < 1/2 for a proper choice of C. An application of
Lemma 4 shows that

||Rk|| 2 \/|A||A| 2 27n/2+1/4k72 > szk(fn/2+l/4fe).
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