OSCILLATORY INTEGRALS WITH NONHOMOGENEOUS PHASE FUNCTIONS RELATED TO SCHRÖDINGER EQUATIONS

LAWRENCE A. KOLASA

Abstract

In this paper we consider solutions to the free Schrödinger equation in $n+1$ dimensions. When we restrict the last variable to be a smooth function of the first n variables we find that the solution, so restricted, is locally in L^{2}, when the initial data is in an appropriate Sobolev space.

1. Introduction. Consider, for a fixed smooth function $t(x)$, the solution to the Schrödinger equation

$$
\left\{\begin{array}{l}
i \partial_{t} u(x, t)+\Delta_{x} u(x, t)=0 \quad(x, t) \in \mathbb{R}^{n+1} \\
u(x, 0)=f(x) \in L^{2}\left(\mathbb{R}^{n}\right)
\end{array}\right.
$$

at time $t=t(x)-u(x, t(x))$. We obtain results of the form

$$
\|u(\cdot, t(\cdot))\|_{L^{2}\left(\mathbb{D}^{n}\right)} \leq C\|f\|_{H^{s}},
$$

where s depends on the smoothness of t. Here $H^{s}\left(\mathbb{R}^{n}\right)$ denotes the L^{2}-Sobolev space,

$$
H^{s}\left(\mathbb{R}^{n}\right)=\left\{f \in L^{2}\left(\mathbb{R}^{n}\right):\|f\|_{H^{s}}=\left(\int_{\mathbb{R}^{n}}\left(1+|\xi|^{2}\right)^{s}|\hat{f}(\xi)|^{2} d \xi\right)^{1 / 2}<\infty\right\}
$$

and \mathbb{D}^{n} denotes the closed unit disk in \mathbb{R}^{n}.
This is motivated by a desire to understand the Schrödinger maximal operator,

$$
u^{*}(x)=\sup _{|t| \leq 1}|u(x, t)| .
$$

One would like to prove an estimate of the form

$$
\begin{equation*}
\left\|u^{*}\right\|_{L^{2}\left(\mathbb{D}^{n}\right)} \leq C\|f\|_{H^{s}} \tag{1.1}
\end{equation*}
$$

which in turn implies that $\lim _{t \rightarrow 0} u(x, t)=f(x)$ a.e., whenever $f \in H^{s}\left(\mathbb{R}^{n}\right)$. One way to prove an estimate as in (1.1) is to consider, for an arbitrary bounded measurable function $t(x)$, the operator $S_{t}: H^{s} \rightarrow L^{2}\left(\mathbb{D}^{n}\right)$ defined by

$$
S_{t} f(x)=(2 \pi)^{-n} \int_{\mathbb{R}^{n}} e^{i x \cdot \xi} e^{i t(x)|\xi|^{2}} \hat{f}(\xi) d \xi=u(x, t(x))
$$

Received by the editors April 9, 1997.
This work supported by an NSERC grant.
AMS subject classification: Primary: 42A25; secondary: 42B25.
(C)Canadian Mathematical Society 1998.
and show that

$$
\left\|S_{t} f\right\|=\|u(\cdot, t(\cdot))\|_{L^{2}\left(\mathbb{D}^{n}\right)} \leq C\|f\|_{H^{s}}
$$

where C is uniform over the family of operators S_{t}. When $n=1$ the definitive result is that (1.1) is satisfied for all $f \in H^{s}$ if and only if $s \geq 1 / 4$. There are no such sharp results when $n \geq 2 ; s \geq 1 / 4$ is always a necessary condition, while $s>1 / 2$ is a sufficient condition when $n \geq 3$, and $s>1 / 2-\epsilon$ for some positive ϵ is a sufficient condition when $n=2$. See [1], [2], [3], [8], [10] and [12].

When studying S_{t} one may first consider for $k=0,1, \ldots$ the family of operators $R_{k}: L^{2}\left(\mathbb{R}^{n}\right) \rightarrow L^{2}\left(\mathbb{D}^{n}\right)$ of the form,

$$
\begin{equation*}
R_{k} f(x)=\int_{\mathbb{R}^{n}} e^{i\left(x \cdot y+t(x)|y|^{2}\right)} \theta_{k}(y) f(y) d y \tag{1.2}
\end{equation*}
$$

so as to reduce H^{s} estimates to L^{2} estimates. Here $\left\{\theta_{k}\right\}_{k=0}^{\infty}$ is a partition of unity subordinate to dyadic intervals. This family of operators R_{k} is similar to another one-parameter family of operators, the so-called oscillatory integral operators, $T_{\lambda}: L^{2}\left(\mathbb{R}^{n}\right) \rightarrow L^{2}\left(\mathbb{R}^{n}\right)$, of the form

$$
\begin{equation*}
T_{\lambda} f(x)=\int_{\mathbb{R}^{n}} e^{i \lambda \phi(x, y)} a(x, y) f(y) d y \tag{1.3}
\end{equation*}
$$

These operators are typically studied when the phase function, $\phi(x, y)$, is smooth, and the amplitude $a(x, y)$ is a smooth, compactly supported function ([4], [6], [7], [9], and [11]) ${ }^{1}$. Strictly speaking, R_{k} is not an oscillatory integral operator, even if $t(x)$ is a smooth function, since the "phase function" $x \cdot y+t(x)|y|^{2}$ is not homogeneous. If we make the change of variables $y \rightarrow 2^{k} y, R_{k}$ cannot be put in the form T_{λ}. So even if we do assume that $t(x)$ is a smooth function, the fact that we will prove estimates of the form

$$
\left\|R_{k} f\right\|_{L^{2}\left(\mathbb{D}^{n}\right)} \leq C 2^{s_{0} k}\|f\|_{2}
$$

for R_{k} in Section 3 is novel. Here s_{0} is a number that depends on the smoothness of the function t.

We prove the following theorems in this paper.
THEOREM 1. Suppose $t \in C^{\infty}$ is such that $\nabla t(x)$ does not vanish on \mathbb{D}^{n}. Then for any $s>0$,

$$
\|u(\cdot, t(\cdot))\|_{L^{2}\left(\mathbb{D}^{n}\right)} \leq C\|f\|_{H^{s}}
$$

where C may depend on s and t.
THEOREM 2. Suppose that thas only non-degenerate critical points. Then for any $s>0$,

$$
\|u(\cdot, t(\cdot))\|_{L^{2}\left(\mathbb{D}^{n}\right)} \leq C\|f\|_{H^{s}}
$$

when $n=1$ or $n=2$.

[^0]THEOREM 3. There is a smooth function $t(x)$ such that an estimate

$$
\|u(\cdot, t(\cdot))\|_{L^{2}\left(\mathbb{D}^{n}\right)} \leq C\|f\|_{H^{s}}
$$

cannot hold for all $f \in H^{s}$ whenever $s<1 / 4$.
2. Preliminary Lemmas. Throughout this paper we shall let $t(x)$ denote a fixed, given $C^{\infty}\left(\mathbb{D}^{n}\right)$ function. We will use a standard partition of unity subordinate to dyadic intervals $\left\{\theta_{k}\right\}_{k=0}^{\infty}: \theta_{0} \in C_{0}^{\infty}(|y| \leq 2), \theta_{0}(y)=1$ when $|y| \leq 1 ; \theta_{k}(y)=\theta_{0}\left(2^{-k} y\right)-$ $\theta_{0}\left(2^{1-k} y\right)$, when $k \geq 1$.

If $a(x, y)$ is a function of $x \in \mathbb{R}^{n}$ and $y \in \mathbb{R}^{m}$, then denote by $\operatorname{supp}_{x}(a)$ the projection onto the x-coordinates of the support of a. Let $\nabla_{y} a(x, y)$ denote the gradient of a as a function of y with x held fixed.

The expression $x \lesssim y$ means that there is a constant C whose particular value is unimportant such that $x \leq C y$.

Recalling the definition of R_{k} in (1.2), we begin with the following lemma whose purpose, as noted earlier, is to reduce H^{s} estimates to L^{2} estimates. This approach is found in [1].

LEMMA 1. Suppose there are constants C and s_{0} such that

$$
\left\|R_{k} f\right\|_{L^{2}\left(\mathbb{D}^{n}\right)} \leq C 2^{s_{0} k}\|f\|_{2} .
$$

Then for any $s>s_{0}$ there is a constant C_{s} depending on C and such that

$$
\|u(\cdot, t(\cdot))\|_{L^{2}\left(\mathbb{D}^{n}\right)} \leq C_{s}\|f\|_{H^{s}}
$$

Proof. Note that $R_{k} \hat{f}=R_{k}\left(\chi_{\left[\operatorname{supp}\left(\theta_{k}\right)\right]} \hat{f}\right)$. Hence

$$
\begin{aligned}
\left\|R_{k} \hat{f}\right\|_{L^{2}\left(\mathbb{D}^{n}\right)} & \leq C 2^{s_{0} k}\left(\int_{\operatorname{supp}\left(\theta_{k}\right)}|\hat{f}(y)|^{2} d y\right)^{1 / 2} \\
& \lesssim\left(2^{-\left(s-s_{0}\right)}\right)^{k}\left(\int_{\mathbb{R}^{n}}|y|^{2 s}|\hat{f}(y)|^{2} d y\right)^{1 / 2} \leq C 2^{-\left(s-s_{0}\right) k}\|f\|_{H^{s}}
\end{aligned}
$$

Then by Minkowski's inequality,

$$
\|u(\cdot, t(\cdot))\|_{L^{2}\left(\mathbb{D}^{n}\right)} \leq \sum_{k=0}^{\infty}\left\|R_{k} \hat{f}\right\|_{L^{2}\left(\mathbb{D}^{n}\right)} \leq C \sum_{k=0}^{\infty} 2^{-\left(s-s_{0}\right) k}\|f\|_{H^{s}}=C_{s}\|f\|_{H^{s}}
$$

as desired.

REMARK. We may multiply R_{k} by a C_{0}^{∞} function α which is unity on \mathbb{D}^{n}, if necessary, and all results about this "new" R_{k} will be the same as for that in (1.2). By abuse of notation R_{k} will denote either one.

We shall also need the converse of Lemma 1.

Lemma 2. Suppose there are constants C and ρ, independent of k, such that, as an operator form $L^{2}\left(\mathbb{R}^{n}\right) \rightarrow L^{2}\left(\mathbb{D}^{n}\right)$,

$$
\begin{equation*}
\left\|R_{k}\right\| \geq C 2^{\rho k} \tag{2.1}
\end{equation*}
$$

Then the map

$$
\begin{equation*}
S_{t} f(x)=u(x, t(x)) \tag{2.2}
\end{equation*}
$$

is not a bounded map from $H^{s}\left(\mathbb{R}^{n}\right) \rightarrow L^{2}\left(\mathbb{D}^{n}\right)$ for any $s<\rho$.
Proof. The condition (2.1) means that for each $k=1,2, \ldots$ there exists a function $f_{k} \in L^{2}$ such that $\left\|f_{k}\right\|_{2}=1, \operatorname{supp}\left(f_{k}\right) \in \operatorname{supp}\left(\theta_{k}\right)$ and for which

$$
\left\|R_{k} f_{k}\right\|_{L^{2}\left(\mathbb{D}^{n}\right)} \geq C 2^{\rho k}
$$

Choose $g_{k} \in L^{2}$ such that $\hat{g}_{k}=f_{k}$. Fix an s for which S in (2.2) is a bounded map from $H^{s}\left(\mathbb{R}^{n}\right) \longrightarrow L^{2}\left(\mathbb{D}^{n}\right)$. On the one hand, by (2.1),

$$
\left\|S_{t} g_{k}\right\|_{L^{2}\left(\mathbb{D}^{n}\right)}=\left\|R_{k} f_{k}\right\|_{L^{2}\left(\mathbb{D}^{n}\right)} \geq C 2^{\rho k}
$$

On the other hand, by the choice of s,

$$
\begin{aligned}
\left\|S_{t(x)} g_{k}\right\|_{L^{2}\left(\mathbb{D}^{n}\right)} \leq C^{\prime}\left\|g_{k}\right\|_{H^{s}} & =C^{\prime}\left(\int\left|f_{k}(x)\right|^{2}\left(1+|x|^{2}\right)^{s} d x\right)^{1 / 2} \\
& \leq C^{\prime \prime} 2^{s k}\left\|f_{k}\right\|_{2}=C^{\prime \prime} 2^{s k}
\end{aligned}
$$

Hence $2^{(\rho-s) k} \lesssim 1$ for each k, which is only possible when $\rho \leq s$.
Our proof of Theorem 1 exploits the similarities between R_{k} and T_{λ} in (1.3). We use the fact that when the mixed Hessian of ϕ, the $n \times n$ matrix $H_{\phi}(x, y)$ defined by

$$
\left(H_{\phi}(x, y)\right)_{i, j}=\frac{\partial^{2} \phi}{\partial x_{i} \partial y_{j}}(x, y)
$$

is non-singular on the support of a, the decay of $\left\|T_{\lambda}\right\|$ is as rapid as possible.
Lemma 3. Suppose that H_{ϕ} is non-singular on $\operatorname{supp}(a)$ and that the following quantities are uniformly bounded on $\operatorname{supp}(a)$:
(i) $\left\|H_{\phi}^{-1}(x, y)\right\|$
(ii) $\left\|\nabla_{y} D_{x}^{\alpha} \phi\right\|_{L^{\infty}(X)}$ for all α with $|\alpha|=2$
(iii) $\left\|\nabla_{x} D_{y}^{\alpha} \phi\right\|_{L^{\infty}(X)}$ for all α with $|\alpha| \leq n+2$.

Then if $M=\max \left\{1,\left|\operatorname{supp}_{x}(a)\right|\right\}$ and

$$
M_{a}=\|a\|_{\infty}\left(M\left|\operatorname{supp}_{y}(a)\right|\left\{\sum_{|\alpha| \leq n+1} \sup _{x y z}\left|D_{y}^{\alpha} a(x, y) \overline{a(x, z)}\right|\right\}^{\frac{n}{n+1}}\right)^{1 / 2}
$$

then

$$
\left\|T_{\lambda} f\right\|_{2} \leq C M_{a} \lambda^{-n / 2}\|f\|_{2}
$$

where C is bounded.
A proof of Lemma 3 may be found in [7]. See also [6], [11]. That the power of λ which appears in the conclusion of Lemma 3 is optimal is a consequence of the next lemma. The idea for this lemma, which we use to prove Theorem 3, is found in [6].

LEMMA 4. Let T_{λ} be as in (1.3). Suppose that there are measurable sets $A \subset \operatorname{supp}_{x}(a)$ and $\tilde{A} \subset \operatorname{supp}_{y}(a)$ and measurable functions ϕ_{1} and ϕ_{2} such that

$$
\begin{equation*}
\lambda\left|\phi(x, y)-\phi_{1}(x)-\phi_{2}(y)\right|<1 / 2 \quad \text { when }(x, y) \in A \times \tilde{A} \tag{2.3}
\end{equation*}
$$

If $|a(x, y)| \geq c>0$ when $(x, y) \in A \times \tilde{A}$, and

$$
\begin{equation*}
\left|\int_{\tilde{A}} a(x, y) d y\right| \geq 3 / 4 \int_{\tilde{A}}|a(x, y)| d y \tag{2.4}
\end{equation*}
$$

then there is a positive constant C such that

$$
\left\|T_{\lambda}\right\| \geq C \sqrt{|A||\tilde{A}|}
$$

PROOF. Let $f(y)=e^{-i \lambda \phi_{2}(y)} \chi_{\widetilde{A}}(y)$; then $\|f\|_{2}=|\tilde{A}|^{1 / 2}$. When $x \in A$,

$$
\begin{aligned}
\left|T_{\lambda} f(x)\right| & =\left|e^{-i \lambda \phi_{1}(x)} T_{\lambda} f(x)\right| \\
& \geq\left|\int_{\tilde{A}} a(x, y) d y\right|-\left|\int_{\tilde{A}}\left(e^{i \lambda\left(\phi(x, y)-\phi_{1}(x)-\phi_{2}(y)\right)}-1\right) a(x, y) d y\right| \\
& =I+I I .
\end{aligned}
$$

By condition (2.3)

$$
|I I| \leq 1 / 2 \int_{\tilde{A}}|a(x, y)| d y
$$

Thus (2.4) guarantees that

$$
\int_{A}\left|T_{\lambda} f(x)\right|^{2} d x \geq C|A||\tilde{A}|^{2}
$$

and dividing by $\|f\|_{2}^{2}$ gives the result.
When the mixed Hessian is degenerate having rank $n-1$, it may be beneficial to split coordinates. If $x, y \in \mathbb{R}^{n}$, write $x=\left(x^{\prime}, x_{n}\right)$ and $y=\left(y^{\prime}, y_{n}\right)$ where $x^{\prime}, y^{\prime} \in$ \mathbb{R}^{n-1}, the idea being that (after perhaps a change of variables) the mixed Hessian is nondegenerate in the x^{\prime}, y^{\prime} variables. To execute this line of thinking we must recall the notion of frozen operators. For an operator of the form $T f(x)=\int K(x, y) f(y) d y$, for each choice of x_{n}, y_{n} we define the frozen operator $T_{x_{n} y_{n}}: L^{2}\left(\mathbb{R}^{n-1}\right) \rightarrow L^{2}\left(\mathbb{R}^{n-1}\right)$ by $T_{x_{n} y_{n}} f\left(x^{\prime}\right)=\int K\left(x^{\prime}, x_{n}, y^{\prime}, y_{n}\right) f\left(y^{\prime}\right) d y^{\prime}$. Lemma 5 and Lemma 6 are the main technical device regarding frozen operators that we make use of in the proof of Theorem 1. Their proofs are elementary and may be found in [7].

LEMMA 5. Let T be as above, T^{*} the adjoint of T. Then as operators from $L^{2}\left(\mathbb{R}^{n-1}\right)$ to $L^{2}\left(\mathbb{R}^{n-1}\right)$

$$
\left\|T_{x_{n} z_{n}}\right\| \leq\left(\int_{-\infty}^{\infty}\left\|\left(T^{*}\right)_{z_{n} y_{n}}\right\|^{2} d y_{n}\right)^{1 / 2}\left(\int_{-\infty}^{\infty}\left\|(T)_{x_{n} y_{n}}\right\|^{2} d y_{n}\right)^{1 / 2}
$$

LEMMA 6. Suppose there exists a measurable function $\eta\left(x_{n}, y_{n}\right)$ such that

$$
\begin{aligned}
& \left\|T_{x_{n} y_{n}} f\right\|_{L^{2}\left(\mathbb{R}^{n-1}\right)} \leq \eta\left(x_{n}, y_{n}\right)\|f\|_{L^{2}\left(\mathbb{R}^{n-1}\right)}, \\
& \left\|\int \eta\left(x_{n}, y_{n}\right) h\left(y_{n}\right) d y_{n}\right\|_{L^{2}(\mathbb{R})} \leq C\|h\|_{L^{2}(\mathbb{R})}
\end{aligned}
$$

Then

$$
\|T f\|_{L^{2}\left(\mathbb{R}^{n}\right)} \leq C\|f\|_{L^{2}\left(\mathbb{R}^{n}\right)}
$$

Finally, our proofs rely on stationary phase estimates, which, while at times delicate, are standard. The reader is referred to [5], [7] or [11] for details.
3. A Proof of Theorem 1. Given Lemma 1 a proof of Theorem 1 follows from the appropriate estimate for R_{k}.

Proposition 1. Suppose $t \in C^{\infty}$ is such that $\nabla t(x) \neq 0$ for all $x \in \mathbb{D}^{n}$. Then there is a constant C, which is independent of k, such that

$$
\left\|R_{k} f\right\|_{L^{2}\left(\mathbb{D}^{n}\right)} \leq C\|f\|_{2}
$$

PROOF. Since ∇t does not vanish we may assume that $\operatorname{supp}_{x}(a)$ is a small neighborhood of the origin of \mathbb{R}^{n} on which there is a C^{∞} diffeomorphism ρ such that $t \circ \rho(x)=x_{n}$, and for which $D \rho(0)=\mathrm{I}$, the $n \times n$ identity matrix. Let $\lambda=2^{k}$. After making a change of variables $(x \rightarrow \rho(x), y \rightarrow \lambda y)$ it suffices to show that

$$
\begin{equation*}
\left\|\tilde{R}_{\lambda} f\right\|_{L^{2}\left(\mathbb{D}^{n}\right)} \lesssim \lambda^{-n / 2}\|f\|_{2} \tag{3.1}
\end{equation*}
$$

where

$$
\tilde{R}_{\lambda} f(x)=\alpha(x) \int_{\mathbb{R}^{n}} e^{i\left(\lambda \rho(x) \cdot y+\lambda^{2} x_{n}|y|^{2}\right)} \theta_{1}(y) f(y) d y .
$$

Here α is a cut off function to \mathbb{D}^{n}. Write $a(x, y)=\alpha(x) \theta_{1}(y)$ and proceed. If

$$
K(x, z)=\int_{\mathbb{R}^{n}} \exp \left(i\left\{\lambda(\rho(x)-\rho(z)) \cdot y+\lambda^{2}\left(x_{n}-z_{n}\right)|y|^{2}\right\}\right) a(x, y) \overline{a(z, y)} d y
$$

then, letting $S_{\lambda}=\tilde{R}_{\lambda} \tilde{R}_{\lambda}^{*}$,

$$
\begin{aligned}
S_{\lambda} f(x) & =\int_{\mathbb{R}^{n}} f(z) K(x, z) \psi\left(\frac{x_{n}-z_{n}}{\epsilon}\right) d z+\int_{\mathbb{R}^{n}} f(z) K(x, z) \tilde{\psi}\left(\frac{x_{n}-z_{n}}{\epsilon}\right) d z \\
& =S_{\lambda}^{1} f(x)+S_{\lambda}^{2} f(x)
\end{aligned}
$$

where $\psi \in C_{0}^{\infty}$ is such that $\psi \equiv 1$ near 0 and $\tilde{\psi}=1-\psi$.

We find that the frozen operators $\left(S_{\lambda}^{1}\right)_{x_{n} z_{n}}$ have the form

$$
\begin{equation*}
\left(S_{\lambda}^{1}\right)_{x_{n} z_{n}} f\left(x^{\prime}\right)=\psi\left(\frac{x_{n}-z_{n}}{\epsilon}\right)\left(\tilde{R}_{\lambda} \tilde{R}_{\lambda}^{*}\right)_{x_{n} z_{n}} f\left(x^{\prime}\right) \tag{3.2}
\end{equation*}
$$

For fixed x_{n}, since $x_{n}|y|^{2}$ is a function of y only, we may consider $\left(\tilde{R}_{\lambda}\right)_{x_{n} y_{n}}$ as an oscillatory integral operator with phase function $\rho\left(x^{\prime}, x_{n}\right) \cdot\left(y^{\prime}, y_{n}\right)$. Clearly, by the construction of ρ, the mixed Hessian of this phase function is non-degenerate on $\operatorname{supp}(a)$. Consequently by Lemma 3

$$
\begin{equation*}
\left\|\left(\tilde{R}_{\lambda}\right)_{x_{n} y_{n}} f\right\|_{L^{2}\left(\mathbb{R}^{n-1}\right)} \lesssim \lambda^{-(n-1) / 2}\|f\|_{L^{2}\left(\mathbb{R}^{n-1}\right)} \tag{3.3}
\end{equation*}
$$

By (3.2), (3.3) and Lemma 5,

$$
\begin{aligned}
\left\|\left(S_{\lambda}^{1}\right)_{x_{n} z_{n}} f\right\|_{L^{2}\left(\mathbb{R}^{n-1}\right)} & \lesssim \psi\left(\frac{x_{n}-z_{n}}{\epsilon}\right)\left\|\left(\tilde{R}_{\lambda} \tilde{R}_{\lambda}^{*}\right)_{x_{n} z_{n}} f\left(x^{\prime}\right)\right\|_{L^{2}\left(\mathbb{R}^{n-1}\right)} \\
& \lesssim \psi\left(\frac{x_{n}-z_{n}}{\epsilon}\right) \lambda^{-(n-1)}\|f\|_{L^{2}\left(\mathbb{R}^{n-1}\right)}
\end{aligned}
$$

It follows then from Lemma 6 and the generalized Young's inequality that

$$
\begin{equation*}
\left\|S_{\lambda}^{1} f\right\|_{2} \lesssim \lambda^{-n+1} \epsilon\|f\|_{2}=\lambda^{-n}\|f\|_{2} \tag{3.4}
\end{equation*}
$$

if we take $\epsilon=\lambda^{-1}$. In what follows we shall take $\epsilon=\lambda^{-1}$, and in doing so we may assume, given the support properties of $\tilde{\psi}$, that $\lambda\left|x_{n}-z_{n}\right| \gtrsim 1$.

Now we turn our attention to S_{λ}^{2}. Note that

$$
\lambda(\rho(x)-\rho(z)) \cdot y+\lambda^{2}\left(x_{n}-z_{n}\right)|y|^{2}=\lambda^{2}\left(x_{n}-z_{n}\right)|y+F(x, z)|^{2}-\frac{|\rho(x)-\rho(z)|^{2}}{4\left(x_{n}-z_{n}\right)}
$$

where $F(x, z)=\frac{\rho(x)-\rho(z)}{2 \lambda\left(x_{n}-z_{n}\right)}$. Let $A(x, z, y)=a(x, y) \overline{a(z, y)}$ and $\mu=\lambda^{2}\left(x_{n}-z_{n}\right)$. Then the kernel of S_{λ}^{2} is

$$
\tilde{\psi}\left(\frac{x_{n}-z_{n}}{\epsilon}\right) \exp \left(-i \frac{|\rho(x)-\rho(z)|^{2}}{4\left(x_{n}-z_{n}\right)}\right) \int_{\mathbb{R}^{n}} e^{i \mu|y|^{2}} A(x, z, F(x, z)) d y .
$$

Here we have that

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}} e^{i \mu|y|^{2}} A(x, z, F(x, z)) d y \\
& \quad=\left(\frac{i \mu}{\pi}\right)^{-n / 2}\left(A(x, z, F(x, z))+\int_{\mathbb{R}^{n}} r_{1}\left(i|\xi|^{2} / 4 \mu\right) e^{-i \xi \cdot F(x, z)} \hat{A}(x, z,-\xi) d \xi\right),
\end{aligned}
$$

where r_{1} is the remainder term in the first order Taylor expansion of e^{x}, and \hat{A} denotes the Fourier transform in the last variable. So $\left(S_{\lambda}^{2}\right)_{x_{n} z_{n}}$ is the sum of two terms, $\left(S_{\lambda}^{2}\right)_{x_{n} z_{n}}^{\prime}$ and $\left(S_{\lambda}^{2}\right)_{x_{n} z_{n}}^{\prime \prime}$ having kernels $K^{\prime}\left(x^{\prime}, z^{\prime}\right)$ and $K^{\prime \prime}\left(x^{\prime}, z^{\prime}\right)$ respectively. Since

$$
K^{\prime}\left(x^{\prime}, z^{\prime}\right)=\left(\frac{i \mu}{\pi}\right)^{-n / 2} \tilde{\psi}\left(\frac{x_{n}-z_{n}}{\epsilon}\right) \exp \left(i \lambda^{\prime}|\rho(x)-\rho(z)|^{2}\right) A(x, z, F(x, z))
$$

where $\lambda^{\prime}=\frac{1}{4\left(x_{n}-z_{n}\right)}$, we may treat $\left(S_{\lambda}^{2}\right)_{x_{n} z_{n}}^{\prime}$ as an oscillatory integral operator with phase function $\left|\rho\left(x^{\prime}, x_{n}\right)-\rho\left(z^{\prime}, z_{n}\right)\right|^{2}$ and amplitude $A(x, z, F(x, z))$. And although this amplitude function does depend on λ, because $\left(\lambda\left|x_{n}-z_{n}\right|\right)^{-1} \lesssim 1$ we may uniformly bound finitely many z^{\prime}-derivatives of A. Moreover, since $|x|,|z| \leq 2$, then $\left|\operatorname{supp}_{z^{\prime}} A\right| \lesssim 1$. So by Lemma 3,

$$
\begin{equation*}
\left\|\left(S_{\lambda}^{2}\right)_{x_{n} z_{n}}^{\prime} f\right\|_{L^{2}\left(\mathbb{R}^{n-1}\right)} \lesssim \tilde{\psi}\left(\frac{x_{n}-z_{n}}{\epsilon}\right) \lambda^{-n}\left|x_{n}-z_{n}\right|^{-1 / 2}\|f\|_{L^{2}\left(\mathbb{R}^{n-1}\right)} \tag{3.5}
\end{equation*}
$$

Also $\left(S_{\lambda}^{2}\right)_{x_{n} z_{n}}^{\prime \prime}$ may be treated as an oscillatory integral operator as

$$
\begin{gathered}
K^{\prime \prime}\left(x^{\prime}, z^{\prime}\right)=(-i \pi)^{n / 2} \mu^{-n / 2-1} \tilde{\psi}\left(\frac{x_{n}-z_{n}}{\epsilon}\right) \exp \left(i \lambda^{\prime}|\rho(x)-\rho(z)|^{2}\right) \\
\times \mu \int_{\mathbb{R}^{n}} r_{1}\left(i|\xi|^{2} / 4 \mu\right) e^{-i \xi \cdot F(x, z)} \hat{A}(x, z,-\xi) d \xi
\end{gathered}
$$

The phase function is the same as in the previous case, but the amplitude is different. To apply Lemma 3 we must consider z^{\prime}-derivatives and the volume of the z^{\prime}-support of this amplitude,

$$
\mu \int_{\mathbb{R}^{n}} r_{1}\left(i|\xi|^{2} / 4 \mu\right) e^{-i \xi \cdot F(x, z)} \hat{A}(x, z,-\xi) d \xi
$$

and find L^{∞} bounds on these quantities which are independent of λ. Since $|x|,|z| \leq 2$ when this amplitude does vanish, and by consideration of stationary phase estimates it suffices to show that for $s>n / 2$

$$
\sum_{|\alpha| \leq 2+s}\left|D_{\xi}^{\alpha} D_{z^{\prime}}^{\beta}\left(e^{-i \xi \cdot F(x, z)} \hat{A}(x, z,-\xi) d \xi\right)\right|_{L^{2}(d \xi)} \lesssim 1
$$

for all $|\beta| \leq n$, and this is easily seen to be so given that $\left|\lambda\left(x_{n}-z_{n}\right)\right| \geq 1$. Then Lemma 3 shows that

$$
\begin{equation*}
\left\|\left(S_{\lambda}^{2}\right)_{x_{n} z_{n}}^{\prime \prime} f\right\|_{L^{2}\left(\mathbb{R}^{n-1}\right)} \lesssim \tilde{\psi}\left(\frac{x_{n}-z_{n}}{\epsilon}\right) \lambda^{-n-2}\left|x_{n}-z_{n}\right|^{-3 / 2}\|f\|_{L^{2}\left(\mathbb{R}^{n-1}\right)} \tag{3.6}
\end{equation*}
$$

Using (3.5) and (3.6) and the fact that $\left|x_{n}-z_{n}\right| \lambda \gtrsim 1$ on supp $\tilde{\psi}$ we see that

$$
\begin{equation*}
\left\|\left(S_{\lambda}^{2}\right)_{x_{n} z_{n}}\right\|_{L^{2}\left(\mathbb{R}^{n-1}\right)} \lesssim \lambda^{-n}\left|x_{n}-z_{n}\right|^{-1 / 2}\|f\|_{L^{2}\left(\mathbb{R}^{n-1}\right)} \tag{3.7}
\end{equation*}
$$

Then Lemma 6 and the generalized Young's inequality imply

$$
\left\|S_{\lambda} f\right\|_{2} \lesssim \lambda^{-n}\|f\|_{2}
$$

and this implies (3.1).
4. Nondegenerate Critical Points. The case when $\nabla t \neq 0$ represents the easiest to treat using the methods of Theorem 1. When ∇t vanishes, the situation is more complicated. However the case when the Hessian of t is non-singular whenever ∇t vanishes-i.e., t has non-degenerate critical points-is treated below. We limit ourselves to the case when $n=1$ or $n=2$. Theorem 2 will follow from Lemma 1 once we prove the following.

Proposition 2. Suppose that $t(x)$ has only non-degenerate critical points. Then

$$
\left\|R_{k} f\right\| \leq C k^{n / 2}\|f\|_{2}
$$

when $n=1$ or $n=2$.
Before giving the proof of Proposition 2, we state a technical lemma whose proof is given at the end of this section.

LEMMA 7. Let $n=1$ or $n=2$, and suppose that A is an $n \times n$ diagonal matrix whose eigenvalues are ± 1. If $\mathrm{A}(x)$ denotes the quadratic form $\mathrm{A} x \cdot x$, then

$$
\begin{equation*}
\sup _{|z| \leq 1} \int_{\mathbb{D}^{n}} \frac{d x}{\left(1+\lambda^{2}|\mathrm{~A}(x)-\mathrm{A}(z)|\right)^{n / 2}} \lesssim\left(\frac{\ln (\lambda)}{\lambda}\right)^{n} \tag{4.1}
\end{equation*}
$$

Proof of Proposition 2. We know that t only has finitely many isolated critical points in \mathbb{D}^{n}. Away from these critical points $|\nabla t| \geq c>0$. Near a given critical point we may change variables in such a way that t is a quadratic form. After a partition of unity, an application of Theorem 1 and a change of variables, we may assume that R_{k} is of the form

$$
R_{k} f(x)=\lambda^{n / 2} \int_{\mathbb{R}^{n}} \exp \left(i\left[\lambda \rho(x) \cdot y+\lambda^{2} A(x)|y|^{2}\right]\right) a(x, y) f(y) d y,
$$

where $\lambda=2^{k}$, A is as in Lemma 7, ρ is a C^{∞} diffeomorphism and $a \in C_{0}^{\infty}\left(\mathbb{D}^{n} \times \mathbb{D}^{n}\right)$. As always $R_{k} R_{k}^{*}$ has a kernel K of the form

$$
K(x, z)=\lambda^{n} \int_{\mathbb{R}^{n}} \exp \left(i\left[\lambda(\rho(x)-\rho(z)) \cdot y+\lambda^{2}(\mathrm{~A}(x)-\mathrm{A}(z))|y|^{2}\right]\right) a(x, y) \overline{a(z, y)} d y
$$

In general $|K(x, z)| \lesssim \lambda^{n}$, while by stationary phase $|K(x, z)| \lesssim \lambda^{n}\left(\lambda^{2}(\mathrm{~A}(x)-\mathrm{A}(z))\right)^{-n / 2}$. Then an application of the generalized Young's inequality and Lemma 7 yields the desired result.

We restrict ourselves to the case $n=1,2$ because the estimate in (4.1) is no longer valid for larger n. The estimate that one does get for $n \geq 3$ is not good enough to prove results that are better than those already found in [10] and [12].

Proof of Lemma 6. We consider the cases of when $n=1$ and $n=2$ separately.
Case 1. $n=1$.
After a change of variables, $x \mapsto x / \lambda$ it suffices to show that

$$
\sup _{|z| \leq \lambda} \int_{0}^{\lambda} \frac{d x}{\left(1+\left|x^{2}-z^{2}\right|\right)^{1 / 2}} \lesssim \ln (\lambda)
$$

We calculate, for fixed $|z| \leq \lambda$, that

$$
\begin{aligned}
\int_{0}^{\lambda} \frac{d x}{\left(1+\left|x^{2}-z^{2}\right|\right)^{1 / 2}} & =\int_{0}^{|z|} \frac{d x}{\left(1+z^{2}-x^{2}\right)^{1 / 2}}+\int_{|z|}^{\lambda} \frac{d x}{\left(1+x^{2}-z^{2}\right)^{1 / 2}} \\
& =\arcsin \left(\frac{z}{\sqrt{1+z^{2}}}\right)+\ln \left(\frac{\lambda+\sqrt{1-z^{2}+\lambda^{2}}}{|z|+1}\right) \lesssim \ln (\lambda)
\end{aligned}
$$

Case 2. $n=2$ and $A= \pm \mathrm{I}($ say $A=\mathrm{I})$.
Again we change variables as before, so it suffices to show that

$$
\begin{equation*}
\sup _{|z| \leq \lambda} \int_{0}^{\lambda} \frac{r d r}{\left(1+\left|r^{2}-|z|^{2}\right|\right)} \lesssim \ln (\lambda)^{2} \tag{5.3.2}
\end{equation*}
$$

We make a further change of variables, $s=r^{2}$ so that the left-hand side of (5.3.2) is equal to (modulo a constant factor)

$$
\begin{aligned}
\int_{0}^{\lambda^{2}} \frac{d r}{1+\left|r-|z|^{2}\right|} & =\int_{0}^{|z|^{2}} \frac{d r}{1+|z|^{2}-r}+\int_{|z|^{2}}^{\lambda^{2}} \frac{d r}{1+r-|z|^{2}} \\
& =\ln \left(1+|z|^{2}\right)+\ln \left(1+\lambda^{2}-|z|^{2}\right) \lesssim \ln (\lambda)
\end{aligned}
$$

Case 3. $n=2$ and $A= \pm\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$.
We must consider, where $c=A z \cdot z$,

$$
\int_{B(0,1)} \frac{d x d y}{1+\lambda\left|x^{2}-y^{2}-c\right|}
$$

After the change of variables $u=x+y, v=x-y$ and a dilation, we may consider

$$
\int_{-\lambda}^{\lambda} \int_{-\lambda}^{\lambda} \frac{d x d y}{1+|x y-c|} \quad|c| \leq \lambda^{2}
$$

In fact it is clear that we only have to consider

$$
\int_{1}^{\lambda} \int_{1}^{\lambda} \frac{d x d y}{1+|x y-c|} \quad|c| \leq \lambda^{2}
$$

By changing variables the above is equal to

$$
\int_{1}^{\lambda} \frac{1}{y}\left(\int_{y}^{\lambda y} \frac{d x}{1+|x-c|}\right) d y \lesssim \ln (\lambda)^{2}
$$

and this completes the proof.
5. Lower Bounds. It is not possible that we may always get estimates as in Theorems 1 and 2 for all $s>0$, as Theorem 3 shows. Lemma 2 tells us that we need to find a lower bound for R_{k}. Here again we take advantage of the similarity between R_{k} and the general oscillatory integral operator T_{λ} : we let our phase function be $\phi(x, y)=x \cdot y+\lambda t(x)|y|^{2}$; the fact that it depends on the parameter λ does not worry us in this case, as Lemma 4 is still applicable.

Theorem 3 follows from Lemma 2 and the next result.
Proposition 3. There is a smooth function $t(x)$ such that for any $\epsilon>0$ we may find a constant C_{ϵ} such that

$$
\left\|R_{k}\right\| \geq C_{\epsilon} 2^{k / 4-\epsilon}
$$

Proof. We define a function, τ, of a single variable, r, locally and extend using a standard construction. For $j=1,2, \ldots$ let $r_{j}=1 / j$ and notice that the distance between two consecutive points in this sequence is

$$
r_{j}-r_{j-1}=\frac{1}{j(j+1)} \sim \frac{1}{j^{2}}
$$

Define

$$
\tau_{j}(r)=2^{-j}\left(r-r_{j}\right)
$$

Let ψ_{j} be a sequence of C_{0}^{∞} functions with $0 \leq \psi_{j} \leq 1$ such that $\psi_{j} \equiv 1$ when $\left\|r-r_{j}\right\| \leq(10 j)^{-2}$, and supp $\phi_{i} \cap \operatorname{supp} \phi_{j}$ is empty when $|i-j| \geq 2$. Then $\tau(r)=\sum \psi_{j}(r) \tau_{j}(r)$ and $t(x)=\tau\left(x_{n}\right)$.

Make the change of variables $y \rightarrow 2^{k} y$. We have to show that

$$
\left\|\tilde{R}_{k}\right\| \geq C_{\epsilon} 2^{k(-n / 2+1 / 4-\epsilon)}
$$

where

$$
\tilde{R}_{k} f(x)=\int_{\mathbb{R}^{n}} e^{i 2^{k} \phi(x, y)} \theta_{1}(y) f(y) d y,
$$

and

$$
\phi(x, y)=x \cdot y+2^{k} t(x)|y|^{2} .
$$

Let $x_{k}=\left(0, \ldots, 0, r_{k}\right)$, and $y_{k}=(0, \ldots, 0,-1 / 2)$ and define

$$
\Phi(x, y)=\phi(x, y)-\phi\left(x_{k}, y\right)-\phi\left(x, y_{k}\right)+\phi\left(x_{k}, y_{k}\right) .
$$

In the language of Lemma $4, \phi_{1}(x)=\phi\left(x, y_{k}\right)+\phi\left(x_{k}, y_{k}\right)$ and $\phi_{2}(y)=\phi\left(x_{k}, y\right)$. Let A be the rectangle $\left|x^{\prime}\right| \leq C 2^{-k / 2},\left|x_{n}-r_{k}\right| \leq C k^{-2}$ and let \tilde{A} be the rectangle $\left|y^{\prime}\right| \leq C 2^{-k / 2}$, $\left|y_{n}+1 / 2\right| \leq C 2^{-k / 2}$, where C is a small (absolute) constant. In this region we have that

$$
\Phi(x, y)=x^{\prime} \cdot y^{\prime}+\left(x_{n}-r_{k}\right)\left(y_{n}+1 / 2\right)^{2} .
$$

We see on $A \times \tilde{A}$ that $2^{k}|\Phi(x, y)|<1 / 2$ for a proper choice of C. An application of Lemma 4 shows that

$$
\left\|R_{k}\right\| \gtrsim \sqrt{|A||\tilde{A}|} \gtrsim 2^{-n / 2+1 / 4} k^{-2} \geq C_{\epsilon} 2^{k(-n / 2+1 / 4-\epsilon)}
$$

REFERENCES

1. J. Bourgain, A Remark on Schrödinger Operators. Israel J. Math. 77(1992), 1-16.
2. L. Carleson, Some Analytical Problems Related to Statistical Mechanics. In: Euclidean Harmonic Analysis. Lecture Notes in Math. 779(1979), 5-45.
3. B. Dahlberg and C. Kenig, A Note on the Almost Everywhere Convergence of Solutions of the Schrödinger Equation. In: Harmonic Analysis. Lecture Notes in Math. 908(1982), 205-209.
4. A. Greenleaf and A. Seeger, Fourier Integral Operators With Fold Singularities. J. Reine Angew. Math. 455(1994), 35-56.
5. L. Hörmander, The Analysis of Linear Partial Differential Operators I. Grundlehren Math. Wiss. 256, Springer-Verlag, Berlin-New York, 1990.
6. L. Hörmander, Oscillatory Integrals and Multipliers on $F L^{p}$. Ark. Mat. 11(1971), 1-11.
7. L. Kolasa, Oscillatory Integrals and Schrödinger Maximal Operators. Pacific J. Math. 177(1997), 77102.
8. C. Kenig and A. Ruiz, A Strong Type (2,2) Estimate for a Maximal Operator Associated to the Schrödinger Equation. Trans. Amer. Math. Soc. 280(1983), 239-246.
9. Y. Pan and C. Sogge, Oscillatory Integrals Associated to Folding Canonical Relations. Colloq. Math. 60(1990), 413-419.
10. P. Sjölin, Regularity of Solutions to the Schrödinger Equation. Duke Math. J. 55(1987), 669-715.
11. E. M. Stein, Harmonic Analysis. Princeton University Press, Princeton, NJ, 1993.
12. L. Vega, Schrödinger Equations: Pointwise Convergence to the Initial Data. Proc. Amer. Math. Soc. 102(1988), 874-878.

Ryerson Polytechnic University
email: lkolasa@acs.ryerson.ca

[^0]: ${ }^{1}$ See [1] for an example of a non-smooth phase function.

