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Abstract

Fe and Cu could represent dietary risk factors for Alzheimer’s disease (AD), which has become a global health concern. To establish

the relationship between diets high in Cu and Fe and cognitive decline or AD, we have conducted a systematic review of the literature

(up to January 2011). We identified two meta-analyses, two systematic reviews, eleven placebo-controlled trials, five observational studies,

forty-five case–control studies, thirty autopsy and five uncontrolled studies, and one case report. There were eleven interventional trials

that tried to either supplement or deplete Fe and Cu, but none of them provided clear evidence of a beneficial effect on cognitive

performance in patients with AD. The prospective studies revealed an association between a diet simultaneously high in SFA and Cu

and cognitive decline. Case–control and autopsy studies showed elevated Fe levels in the brains of AD patients, whereas the evidence

was less consistent for Cu. In most of the studies, Cu concentrations were unchanged in the cerebrospinal fluid and the brain but increased

in the serum. In conclusion, the existing data suggest that diets excessive in Fe or Cu, together with a high intake of SFA, should be avoided

in the elderly who are not at risk of anaemia. Basic studies and, building on this, clinical investigations are needed to further elucidate in

which dietary patterns and in which patient groups an Fe- and Cu-rich diet might foster the risk of developing AD.
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Fe and Cu are essential to human life(1). Their chemical prop-

erties as transition metals make them crucial for a plethora of

important biological processes such as oxidative metabolism,

electron transport in mitochondria and cellular immune

response(2,3). On the other hand, both metals catalyse the

Fenton and the Haber–Weiss reactions, producing reactive

oxygen species(4), which can foster the pathological paths

of neurodegenerative disorders(5) and have been implicated

in age-associated diseases(6–9). In the brain, they are found

at high concentrations(10,11) that increase with age(12–15), and

increasing evidence suggests that the neuronal homeostases

of Cu, Fe and Zn are altered in Alzheimer’s disease (AD)(16).

Although Zn has multiple physiological roles in AD including

the aggregation and degradation of the amyloid b protein

(Ab)(17), it is redox silent and distinct from Cu and Fe in its

chemical properties, its age- and tissue-specific concentration

dynamics and its nutritional status in the elderly. Therefore,

the present review focuses on Cu and Fe only.

AD is a progressive brain disease that symptomatically

leads to an impairment of memory and diverse cognitive

functions(18). It accounts for up to 75 % of the 35·6 million

dementia cases, which are estimated to have occurred globally

in 2010(19). Its prevalence is forecasted to quadruple by 2050,

when it is anticipated that one in eighty-five persons will be

living with AD(20).

Whereas familial AD is inherited in an autosomal dominant

manner, a variety of risk factors influence the sporadic late-

onset AD that accounts for the vast majority of all cases(21).

Thus, a number of genetic risk factors have been identified,

such as mutations in genes of the apoE, the amyloid b precur-

sor protein (APP) or the presenilin 1 and 2, which participate

in the cleavage of APP(22). In addition, there is increasing
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evidence of the important roles of metals in the molecular

biology of AD(16) and lifestyle parameters – in particular

diet – as protective factors(23–25).

The characteristic neuropathological features of AD are

intracellular neurofibrillary tangles (brain regions: entorhinal

cortex, hippocampus, amygdala, limbic system and isocortex)

and extracellular plaques laden with the Ab (brain region:

isocortex)(26). The amyloid hypothesis suggests that the

amyloid precursor protein is processed in neurons into Ab,

which in turn triggers a cascade of events inducing oxidative

stress, neuronal dysfunction, impaired plasticity and neuro-

genesis, and finally leading to apoptosis(27). In this process,

it has been hypothesised that Ab passes through the

membrane and aggregates to amyloid plaques(28) in the pre-

sence of high concentrations of Cu, Fe and Zn(29). Fe and

Cu may also mediate the toxicity of Ab by hypermetallating

the peptide, leading to increased oxidative stress. Despite

the involvement of both metals in the molecular pathology

of AD, their homeostatic deviances in patients with AD are

still a matter of debate.

In the light of the importance of Cu and Fe for the develop-

ment of AD(30,31), we conducted a systematic review to address

the clinical relationship between Cu and Fe and AD and to

discuss the dietary implications.

Method

We searched for studies dealing with Fe and/or Cu and

AD. We used terms related to AD (e.g. dementia, cognitive

decline and cognitive impairment) and Fe or Cu. We searched

the following databases from their start date to January

2011: Medline; Embase; Cochrane Central Register of

Controlled Trials; Cochrane Database of Systematic Reviews;

Biosis; Science Citation Index; Publisher Database of Kluwer,

Karger, Springer, Thieme, Krause & Paschernegg; Toxibo;

Clinicaltrials.gov and the ALOIS register by the Cochrane

Dementia and Cognitive Improvement Group. We also

searched key authors’ names and reference lists in the most

recent and most cited published research and review articles.

No selection criteria were applied concerning the

research design or the type of work; thus all papers written

in English that dealt with Fe/Cu and AD in humans were

integrated.

Ethics statement

The studies included in the present review were conducted

according to the guidelines laid down in the Declaration of

Helsinki, and all procedures involving human subjects/

patients were approved by the respective ethics committee

(e.g. institutional review board of Rush University Medical

Center(32)). Written (or verbal) informed consent was obtained

from all subjects/patients. For animal studies, institutional

and national guidelines for the care and use of animals were

followed, and all experimental procedures involving animals

were approved by the respective ethics committee.

Results

In total, we integrated 101 studies in the present review. There

are two meta-analyses(33,34), two systematic reviews(35,36),

eleven randomised controlled trials(37–49), two prospective

studies(32,50), three cross-sectional studies(51–53), forty-five

case–control studies(54–98), thirty autopsy studies(65,98–126),

five uncontrolled studies(127–131) and one case study(132). A

total of two studies were published twice(37,38,46,47), one

study was both a case–control and an autopsy study(98).

Randomised-controlled trials

Supplementation of metals. There is only one study in

which Fe or Cu was supplemented as a single component in

patients with AD. Kessler et al.(37,38) conducted a prospective,

randomised, double-blind and placebo-controlled phase II

clinical trial with patients suffering from mild AD. They

received either 8 mg Cu daily (n 18) or placebo (n 17) as an

add-on to donepezil over 12 months. The treatment showed

no benefits to cognitive function measured by the Mini

Mental State Examination (MMSE) test and the AD assessment

scale-cognitive subscale (ADAS-cog)(37). Nevertheless, the Cu

treatment was associated with a stabilising effect on the cere-

brospinal fluid (CSF) levels of Ab42
(37), whose reduction is

used as a biomarker for AD(133). CSF-Ab42 declined by only

10 % in the Cu group compared with 30 % in the placebo

group(38).

In the Age-Related Eye Disease Study, 2166 participants

aged 65 years or older, whose cognitive status had not been

determined, received daily antioxidants, Zn and Cu, antioxi-

dants plus Zn and Cu or placebo for an average of almost

7 years, following which they completed a cognitive

battery(39). Compared with the placebo treatment, supplemen-

tation of antioxidants with or without Zn and Cu did not

show an effect on cognitive performance(39). However, since

a cognitive test at baseline was lacking, the results represent

only a cross-sectional comparison of treatment groups.

Further studies aimed to identify the effects of supplemen-

tation of multiple nutritional factors (including Cu and/or

Fe) on cognitive function in the elderly or on the development

of AD(40–44). The outcomes of these studies, however, do not

permit deciphering the effects that derive from single

components.

Depletion of metals. Contrary to the supplementation

of metals, four randomised, placebo-controlled studies(45–49)

and one uncontrolled study(134) tested different chelators in

AD based on the laboratory findings that the formation of

amyloid plaques and Ab neurotoxicity rely on interaction

with Cu, Fe and Zn.

There have been two Cochrane systematic reviews(35,36) that

dealt with the literature concerning the chelating agent

clioquinol (PBT-1, iodochlorhydroxyquin) and that concluded

an absence of evidence of a beneficial effect. Both the reviews

refer to the study of Ritchie et al.(45), a randomised, double-

blind phase II study in which eighteen donepezil-treated

patients with AD received placebo or clioquinol for 36 weeks.

No significant difference in cognition between the groups
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could be determined as measured on the ADAS-cog(45).

Initially, PBT-1 had been tested in twenty patients with mild-

to-moderate AD, who had received 20 or 80 mg clioquinol

for 21 d(134). Slight cognitive improvements were reported

only in the high-dose group, and there was no placebo-treated

control group(134).

PBT-2, a second-generation 8-OH quinoline metal protein-

attenuating compound, has been tested in a randomised,

double-blind study with seventy-eight patients with AD, who

were under treatment with acetylcholinesterase inhibitors(45).

The patients received 50 mg PBT-2, 250 mg PBT-2 or placebo

per day for 12 weeks. There was no improvement in MMSE

or ADAS-cog scores, though CSF-Ab42 level decreased in

a PBT-2-dose-dependent manner(46). In the 250 mg PBT-2

group, two tests on executive function showed improvement

over placebo. The primary outcome of the study (safety and

tolerability) was met(46,47).

The efficacy of the Cu chelating agent D-penicillamine was

tested in a randomised, double-blind and placebo-controlled

study with thirty-four AD patients over 6 months(48). Although

the extent of oxidative stress decreased, no significant

differences in change of cognitive functioning between the

intervention group and the placebo group could be deter-

mined(48).

In an earlier randomised, double-blind and placebo-

controlled study(49), desferrioxamine (DFO), a siderophore

(Greek: Fe carrier) with a chelating function and an affinity

for Cu2þ, Zn2þ, Fe3þ and Al3þ (135), had been tested in patients

with moderate AD. A total of forty-eight patients received

DFO once daily, five times a week for 24 months, placebo

or no treatment. Activities of daily living were assessed and

video-monitored, revealing a treatment-associated reduction

in the rate of decline of daily living skills(49). The no-treatment

group was reported to deteriorate twice as rapidly as the

DFO-treated group.

Prospective studies

In the study conducted by Morris et al.(32), in a community-

based prospective setting, 3718 elderly participants were

assessed for cognitive function via a home interview, which

included four cognitive tests. Daily diet was measured by a

FFQ at 3-year intervals for 6 years. It has been reported

that dietary intakes of Cu and Fe were not associated with

cognitive function after adjustment for confounders. However,

a diet high in Cu combined with a high dietary intake of satu-

rated fats was associated with a much faster rate of cognitive

decline, while this interaction was not apparent with intakes

of Fe or Zn or cholesterol. Those participants in the highest

fifth of Cu intake (derived from high Cu doses in vitamin

supplements), combined with a diet high in saturated fats,

lost cognition at a rate of 19 years in a period of 6 years.

Thus, the cognitive decline was three times higher than

expected(32). In contrast, Cu intake was not associated with

cognitive change when the diet was not high in saturated fats.

This is corroborated by an observational study on eighty-

one subjects with mild-to-moderate AD, clinically followed after

1 year(50). Consistent with the findings by Morris et al. (2006),

hyperlipidaemic patients with higher levels of Cu were more

prone to greater cognitive decline. In addition, free serum

Cu levels at baseline were associated with a more severe

cognitive decline in MMSE scores over time(50). This associ-

ation was independent of lipid serum levels.

Cross-sectional studies

A cross-sectional study with 800 community-dwelling

Australians found no significant association between serum

ferritin and cognitive function, measured by the Cambridge

Cognitive Test(51). In participants with (n 51) or without

(n 749) dementia, serum ferritin was not related to cognitive

function at either point of measurement(51).

In a Spanish study with 260 non-institutionalised elderly,

Ortega et al.(52) reported that better cognitive function

measured by MMSE was associated with greater dietary

intake of Fe and other nutrients including vitamin C, Zn and

thiamine, while it became worse when the amount of

energy supplied by fats and cholesterol increased.

The Rancho Bernardo study found in a sample of 1451

participants that both low and high plasma Fe concentrations

were associated with lower performance in certain cognitive

tests including total and long-term recall(53). In women,

Cu and Fe concentrations (n 849) inversely correlated with

scores in the long- and short-term recall of the Buschke and

Fuld Selective Reminding Test and with performance on the

Blessed Information-Memory-Concentration Test(53).

Autopsy studies

Studies analysing post-mortem brain tissue samples reveal

consistently increased levels of Fe in the brains of AD patients

compared with controls(99,102,103,105–110,124). Particularly, Fe

was found at elevated levels in the hippocampus, the amyg-

dala and in parts of the cortex. There is, moreover, a change

in the protein level involved in the Fe homeostasis: ferritin, an

intracellular Fe-storage-protein, is increased in microglia(111)

and senile plaques(112) with a fivefold increase in the cortical

ratio of its protein subunits, the heavy and the light

chain(123). The latter was disease and brain-region specific

and may provide evidence of a dysfunction of the Fe homeo-

stasis on the level of gene expression. Additionally, transferrin

(TF) is found in senile plaques at increased concentration(104),

and the Fe regulatory protein 2, a cytoplasmic mRNA binding

protein, was strongly increased in the AD brain and associated

with intraneuronal lesions, including neurofibrillary tangles,

senile plaque neurites and neuropil threads(113). Only a few

studies report unchanged or decreased Fe levels(114–116,125),

but they either did not use short post-mortem interval tissue

specimens from well-characterised AD brains(114–116) or

analysed the pituitary gland, which is a predictor of environ-

mental Hg exposure, but less relevant for the association

between AD and Fe(125).

In the senile plaques of AD patients, Fe and Cu as well as Zn

were found at highly elevated levels(100,101,121). In the plaque-

free neuropil of patients with AD, Cu and Fe concentrations

Copper and iron in Alzheimer’s disease 9
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were approximately two and four times higher, respectively,

than in the neuropil of healthy brains(121).

With respect to Cu, autopsy studies reported

decreased(99,116,117) or unchanged levels(98,99,114,115,118,136) in

the hippocampus, cerebellum, cortex or amygdala in patients

with AD compared with controls (Table 1). Loeffler et al.(119)

found that brain Cu levels tend to increase with age, whereas

a relative increase in AD brain tissue was significant only for

the frontal cortex and in comparison with young controls,

but not in other brain areas nor compared with age-matched

controls. In contrast, a relative increase in ceruloplasmin,

a Cu-carrying protein that is involved in Fe metabolism, was

reported in the CSF, hippocampus, entorhinal cortex, frontal

cortex and putamen of AD patients(65,119). The Cu attributable

to ceruloplasmin, however, was calculated to account for

,1 % of the regional brain Cu and may therefore represent

a compensatory effect due to oxidative stress rather than a

surrogate for brain Cu levels(119). Also, other research groups

found relatively decreased(126) or unchanged(98,120) levels of

ceruloplasmin.

Case–control studies

Apart from post-mortem analysis, ferritin Fe can also be

measured non-invasively with MRI in living brains. MRI studies

revealed an increased level of Fe in the brains of patients with

AD, particularly in the three basal ganglia regions, putamen,

caudate and globus pallidus(54,56–59. In patients with an

early onset of AD, ferritin Fe was found to be particularly elev-

ated in the basal ganglia(57). Another non-invasive method,

phase imaging, enables differentiation of the severity of Fe

deposition in different brain regions. A case–control study

applying phase imaging found higher levels of Fe deposits

in the hippocampus of AD patients than in controls(60).

In addition, the phase values correlated with MMSE and the

duration of disease in patients with AD(60).

Reports on systemic levels of Fe in subjects with AD

are inconsistent; two studies found decreased plasma Fe

levels(61,62), whereas others found unchanged concentrations

in CSF and serum compared with controls(63,64,93). The CSF

level of TF has been reported to be normal in patients

with AD(65), whereas the CSF ferritin level was increased(66).

Another study revealed that the ratio of ceruloplasmin:TF

is increased in AD patients and correlated positively with

peroxide levels and negatively with serum Fe concen-

trations(97).

A number of further case–control studies investigated an

association of certain genes that are involved in Fe homeosta-

sis and the risk of developing AD. Mutations in the haemo-

chromatosis (HFE) gene (e.g. C282Y and H63D), which

cause an autosomal recessive disorder that is associated with

a deregulation of the Fe metabolism, haemochromatosis(137),

have been reported to be associated with an increased risk

of developing AD(67–69). Sampietro et al.(69), for example,

compared the HFE genotypes of 107 patients with late-onset

AD with that of ninety-nine healthy controls, and found that

the frequency of the HEF-H63D mutation was highest in

the patients with an early time of disease onset. This finding,

however, is not undisputed(70–72), and a recent meta-analysis

of eight(4) studies failed to find an association between

haemochromatosis genotypes and AD (mild cognitive

impairment)(34).

A second Fe-related genotype of current interest is subtype

C2 of TF (TF C2), a plasma glycoprotein transporting Fe(138).

TF C2 was demonstrated to occur at an increased frequency

in patients with AD(73,127,128). The study by Zambenedetti

et al.(73) involved 132 patients with a diagnosis of probable

AD, and two age-matched control subjects for each patient.

The report displayed that the risk of AD increases more than

five times in apoE 14/14 carriers and roughly 1·5 times

(P¼0·07) in TF C2 carriers with a significant interaction

between the two alleles. Moreover, comparative genotyping

of healthy controls and patients with AD or mild cognitive

impairment revealed that epistatic interaction between

the TF C2 gene and the C282Y mutation in HFE leads to an

increased risk of AD, which is exacerbated in carriers of

apoE 14/14(89,90).

Conversely, some studies found no association between TF

C2 and a higher risk of AD(85–88). For instance, in a study with

221 AD patients and 167 controls from a Basque region,

an association between apoE 14 allele and increased risk

of AD combined with a young age at onset was found,

but no association between TF C2 or HFE mutation and dis-

ease susceptibility(87). Another group reported that homozyg-

osity of the TF C1 allele, but not TF C2, has a role as a

potential risk factor(91).

In relation to Cu, a number of recent studies reported

increased serum Cu(74–80,82,83,95,96), plasma Cu(61,62,94) or

Table 1. Alterations of copper or iron in post-mortem brain tissue samples of patients with Alzheimer’s disease compared with samples of healthy
controls

Increased concentration Decreased concentration Unchanged concentration

Cu
Hippocampus, entorhinal cortex, frontal cortex, putamen(102,119)

and senile plaques(121)
Hippocampus, amygdala(99),

basal ganglia(116) and cortex(117)
Hippocampus, cerebellum,

cortex(98,99,118), amygdala(99,118)

and hippocampus(114)

Fe
Senile plaques(121), amygdala, piriform cortex, olfactory system(109),

hippocampus/amygdala(99,124), frontal cortex(102), grey motor
cortex(103,124), temporal cortex(105), hippocampus(106),
frontal/parietal/temporal lobe(107), putamen/thalamus/globus
pallidus/area occipitalis(108) and cortex(116)

Basal ganglia(116) and
hippocampus(114,115)

Pituitary gland(125)
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CSF(61) levels of Cu in patients with AD or mild cognitive

impairment(93) compared with healthy controls. In these

studies, total Cu(78,80,94,139–141), ceruloplasmin(140,141) as well

as ‘free’ Cu (ceruloplasmin non-bound Cu)(78,93,140,142,143)

have been found at increased rates. The free Cu fraction

correlated positively with CSF biomarkers of AD including

Ab and hyperphosphorylated t (143) and inversely with

MMSE(143). On the other hand, some researchers found

unchanged total Cu serum(61,63,81,82,96,144) and CSF(63,64,76)

concentrations, while only one Turkish study reported rela-

tively decreased Cu serum levels in AD subjects(62). A recent

meta-analysis has summarised the aforementioned case

studies and reported evidence of increased Cu levels in

serum and no difference between patients with AD and con-

trols in CSF Cu levels, whereas data regarding the plasma

levels did not allow conclusions to be drawn(33).

We found two studies that revealed that carriers of the apoE

14 allele, which has been described as a genetic risk factor for

AD(145), demonstrate higher levels of circulating Cu than non-

carriers(83,84). In addition, the temporal a-1 electroencephalo-

graphy activity is more strongly associated with free serum Cu

in apoE 14 carriers than in non-carriers(77), while the Cu, Zn

superoxide dismutase activity in erythrocytes is not correlated

with the apoE genotype in AD patients(55). AD patients treated

with D-penicillamine for 24 weeks had reduced superoxide

dismutase activity in erythrocytes(55).

Further studies

Further studies of relevance encompass uncontrolled studies

and case reports; two uncontrolled studies revealed an associ-

ation between higher levels of free Cu in serum and worse

performance in MMSE, both in AD patients (n 81)(50) and in

healthy subjects (n 64)(131), respectively. Other studies with

AD patients revealed an association between reduced total

plasma Cu levels and worse cognitive performance (ADAS-

cog scores)(130) or CSF biomarker levels characteristic for AD

(Ab42 .375 pg/ml, total t ,445 pg/ml and phosphorylated t

,61 pg/ml)(129). In a case study with a pair of elderly mono-

zygotic twins that were discordant for AD but with very similar

habits and lifestyle, serum Cu and total peroxide levels were

44 % higher in the twin with AD(132).

Discussion

Randomised-controlled trials

In the placebo-controlled, randomised trials, there is no clear

evidence that supplementation or depletion of Cu or Fe brings

beneficial effects on the cognitive performance of patients

with AD. All supplementation trials administered Cu as an

add-on to normal medication or in combination with other

nutrients, which would hamper drawing of any conclusion

even if there was a beneficial effect. The depletion studies

were small-sampled (n 20–78) and ran over short periods

(3–24 months). The trial by Squitti et al.(48) was conducted

over 24 weeks; this was not sufficient time to detect a cognitive

decline in the placebo group. Implicitly, no final conclusion

is possible on the clinical benefit of D-penicillamine without

a longer study period. This also applies to the PBT-2 trial

over 12 weeks in which MMSE and ADAS-cog scores diverged

for the placebo and intervention groups, but effects remained

insignificant(46). The early (1993) DFO trial included AD

patients diagnosed by ADAS-cog and ran over 2 years. Unfor-

tunately, the dropout rate for performing different cognitive

tests (e.g. Wechsler Memory Scale) was too high to

analyse anything but the video-recorded behaviour over

time, which could be biased by the scoring procedure and

behaviour changes induced by the method itself. Furthermore,

it is worth noting that DFO is a charged molecule that is

rapidly metabolised and does not easily pass the blood–

brain barrier, which may limit its applicability; it also is unclear

whether the beneficial effects of DFO relied on the chelation

of Fe, Al or other metals. In summary, the current evidence

arising from randomised controlled trials on the association

between Cu or Fe and AD is inconclusive and awaits longer

studies with larger samples.

Prospective studies

The paucity of clinical data regarding nutritional trials is coun-

tered by a longitudinal study by Morris et al.(32). The study had

a large sample (n 3718), a median follow-up of 5·5 years and

deduced cognitive scores from four different tests, but may

be limited since the mixed effect models were not adjusted

for the apoE genotype that influences both lipid(146) and

Cu(77) metabolism in AD. In addition, dietary Cu intake was

calculated by multiplying the daily intake of food with the

Cu content of foods, which depends on the soil and can

vary regionally. However, it is unlikely that this analytical

step heavily biased the results, as the findings of the study

were strongest for supplementary Cu intake. While no associ-

ation was found for cognitive decline and Cu and dietary

cholesterol(32), a trial with the cholesterol-lowering drug

atorvastatin found that AD patients treated with atorvastatin

(n 32) over 1 year showed significant improvements in cogni-

tive performance compared with placebo, and that the

treatment was also associated with a reduction in circulating

Cu levels in blood(147). The second prospective study(50) was

small-sampled (n 81), with a short follow-up and explored

the predictability of cognitive decline in relationship with Cu

levels. It provided no information on the size of the effect

that simultaneous hyperlipidaemia and high Cu levels have

on cognitive impairment or whether apoE influences the

association. In summary, the prospective studies suggest that

a diet that is rich in both Cu and saturated fats fosters cognitive

decline in elderly subjects.

Cross-sectional studies

The findings by Ortega et al.(52) are based on comparing

groups with MMSE scores $28 and ,28. The association of

Fe intake and MMSE scores was not adjusted for age, which

lowered the scores. Also, the conventional cut-off point for

dementia is 24(148), so it is difficult to deduce what the findings

mean for the association of dietary Fe with AD. In contrast,
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another study found systemic Fe and Cu levels to be associ-

ated with scores of certain cognitive tests but measured

neither MMSE scores nor the prevalence of AD(53). The third

cross-sectional study(51) did not find an association between

dementia and serum ferritin levels. However, serum ferritin

may not be a reliable proxy for brain Fe(149). In summary,

the current evidence of cross-sectional studies between an

association of AD and Cu or Fe levels is inconclusive.

Autopsy studies

In general, the heterogeneous outcomes of the autopsy studies

might have been influenced by several factors. First, there may

be differences in the underlying tissue samples according

to non-matched differences in the patients including age, sex

and genetic or environmental factors such as exposure to

toxic elements. Second, the small sample sizes of the studies

(nine to twenty-one AD patients; ten to seventeen controls)

come with increased variability. Third, it is possible that fixation

of brain tissue samples with formalin(29,109,150) influences the

results(151). Fourth, the trace elements were measured by differ-

ent methods such as inductively coupled MS(114), instrumental

neutron activation analyses(99,116) or radiochemical neutron

activation analysis(118). Fifth, there are dissimilarities in the

preparation of the post-mortem tissues. For instance, some

studies used short-term post-mortem interval tissue specimens

and samples from AD cases confirmed by histology(116,150),

while a few did not(114), some measured Cu as mg Cu/g dry

brain weight(99,117), others referred to wet weight(118,136). Any

conclusion reached should take these methodological hetero-

geneities into account. It may nonetheless be summarised that

the autopsy studies almost consistently revealed that Fe is

increased and that homeostatic Fe regulation is disrupted in

the brains of patients with AD. The high levels of Cu, Fe and

Zn in the amyloid plaques indicate the central roles of the

metals in the formation of the central histological features of

AD (for details, see Bush(16)). The situation with Cu levels in

brains of AD patients is less clear. Most studies found no signifi-

cant differences in Cu concentrations between AD patients and

controls. Some of those that suggest otherwise compared AD

patients with young controls(119) and used formalin fixation

and no short-term post-mortem interval samples (.48 h)(116).

However, definitive answers on whether Cu is unchanged in

the brain during AD remain a matter of scientific debate.

Case–control studies

The presented case–control studies provide four lines of evi-

dence. First, they confirm the findings of autopsy studies that

Fe is increased in the brains of AD patients in comparison with

controls by applying phase imaging or MRI. Second, seven

case–control studies compared Fe, TF and ferritin levels in

plasma, serum and CSF of patients with AD with controls.

The studies’ heterogeneity may arise from differences in the

sample collection and preparation, in the methods used for

Fe measurement, in the diagnosis of AD, in the characteristics

of the study populations and in the limited number of studies.

These all hinder drawing general conclusions on systemic

Fe levels in AD. Third, genes associated with Fe metabolism

(HFE, TF C2) were analysed for an association with AD.

For HFE, a meta-analysis negates such an association; for TF

C2, the results are inconsistent and necessitate additional scru-

tiny. Fourth, case–control studies analysed alterations in Cu

levels in plasma, serum and CSF of AD patients in comparison

with controls. A current meta-analysis reported increased

Cu levels in the serum of AD patients and unchanged CSF

levels. The apoE 14 genotype was associated with higher Cu

levels than in non-carriers and altered brain activities,

suggesting that the increased risk of apoE 14 carriers for AD

may partly be based on a role in the effects induced by the

dyshomeostasis of Cu.

Further studies

Apart from general limitations that are associated with uncon-

trolled studies and case reports, the interesting study by

Pajonk et al.(130) may be further limited by its short follow-up

of 8 weeks, and the fact that the analysis excluded all patients

in the highest tertile of plasma Cu levels. The results of further

studies(129,131) highlight the current scientific debate on

whether it is more appropriate to address total Cu or free

Cu levels in the study of mental decline(131).

Summary

In conclusion, the current trials provide no conclusive

evidence that depletion or supplementation of Cu or Fe

is beneficial for AD; prospective studies found that a diet

concurrently high in Cu and saturated fats may foster cognitive

decline in age; Fe has been consistently found at elevated

levels in the brains of AD sufferers by both autopsy and

case–control studies. The specific outcomes for Cu are more

conflicting; while evidence suggests that the systemic Cu

level is increased in patients with AD, further research is

needed to define the alterations of Cu in the brain during

AD. Also, the relevance of certain genes including TF C2 or

apoE awaits further investigation.

Molecular basis

Is the prospective studies’ finding biologically plausible? The

molecular effects of dietary Cu found in cells and animals

are complex and understood only in part. They appear

to depend on whether only Cu or Cu and further nutritional

factors are experimentally altered.

In the case of a single elevation in Cu levels, the amyloido-

genic pathway is inhibited(152,153). One possible explanation

for this is a Cu-induced change in APP processing. APP

is an integral membrane protein with two Cu binding

domains(154), which is cut by endonucleases(27) into lipid

rafts, membrane microdomains enriched in cholesterol and

sphingolipids(155,156). When Cu binds to APP, a conformational

change is induced that is thought to affect the clustering

of APP in the cell membrane, which, in turn, alters the rate

at which APP is processed(157). In consequence, the concen-

tration of Ab decreases, which would be in line with the
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findings of some clinical studies(38,129,130), but in contradic-

tion to others(74,76). Moreover, the processing of the APP

depends on the flotillin-2-related endocytosis of APP(158,159),

which depends on cholesterol(159) and Cu(155). Increased

Cu levels attenuate Ab synthesis via the inhibition of APP

endocytosis(155).

On the other hand, Cu overload has been reported to result in

the overexpression of APP(160), lipid peroxidation, generation

of the reactive aldehyde 4-hydrox-2-nonenal and oxidative

stress(161), thus aggravating the vicious circle of AD pathogen-

esis. A comprehensive understanding of how Cu is involved

in AD awaits further research. However, if – in addition to

increased Cu intake – further nutritional parameters such as

intake of cholesterol or SFA are experimentally altered, the mol-

ecular effects appear to be distinct. Hence, the addition of

trace amounts (0·12 parts per million) of Cu in distilled

water to cholesterol-fed rabbits can induce a reduction in

cognitive abilities and increased levels of amyloid plaques(162).

In vitro experiments have shown that Ab can form cation

channels in the lipid bilayer membrane(163). Enrichment of

cholesterol reduces membrane fluidity and results in the desta-

bilisation of the Ab channels and an exclusion of Ab in

a metal- and pH-dependent manner(164). In the light of the

aforementioned pathogenic effects of Cu overload, additional

presence of Cu may further foster neurotoxicity via soluble Ab

and lipid oxidation. Furthermore, hypercholesterolaemia is

thought to simultaneously heighten the brain levels of Ab

and Fe(165), which exacerbates oxidative stress(31). Hence,

the membrane integrity and stability of Ab in the membrane

are delicately balanced, and even small changes in the con-

centrations of metals, cholesterol or saturated fats may be

able to influence the pathogenesis of AD. This conclusion

might be limited since brain Fe and Cu homeostases depend

on a multitude of molecular players and processes (see for

reviews, Hung et al.(30); Zecca et al.(31)) that have not all

been taken into account in the present review. With regard

to clinical evidence, the cholesterol-promoting effect of a

high dietary intake ratio of SFA:PUFA should be kept in

mind(166–168). Fig. 1 provides an integration of the effects of

Cu and cholesterol into the pathology of AD.

However, we are missing a lot of information that could

help us see the complete picture. For instance, the complex

homeostases of brain Fe and Cu and the relationship of

systemic to brain levels are only understood incompletely.

Also, the relevance of apoE in the interplay of Fe, Cu

and lipid metabolism during AD is unclear. Supplementary

experiments in mural AD models at different life stages

could give answers to questions of whether the temporal pat-

tern of dietary combinations are relevant to the development

of AD and could lay the ground for additional clinical trials.

Practical implications

In a recent prospective study with elderly people, Gu et al.(169)

identified a dietary pattern that was strongly associated

with a lower risk of developing AD. It included higher intakes

of salad dressing, nuts, fish, tomatoes, poultry, cruciferous

vegetables, fruits, and dark and green leafy vegetables and
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Fig. 1. Effects of cholesterol and Cu on the amyloid b pathology. Considering, in step (1), that cholesterol and Cu levels rise, cholesterol will be integrated into the

membrane whose fluidity, in turn, is reduced. The membrane-bound Ab protein dissociates (2)(164) to form extracellular amyloid plaques at which Fe2þ and Cuþ

generate H2O2, which results in lipid peroxidation and the subsequent generation of 4-hydroxynonenal (4HNE), a neurotoxic aldehyde. In the cell, the free Ab

exhibits diverse pathogenic mechanisms (3) including mitochondrial oxidative stress, decreased production of ATP, production of H2O2 in the mitochondria, the

Fe- and Cu-catalysed generation of the hydroxyl radical, that induces oxidative stress in the endoplasmic reticulum(27). Finally (4), the cholesterol-enriched diet

can lead to apoptosis, DNA damage, blood–brain barrier disruption, as well as dysregulation at the level of Fe regulatory proteins(165).
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a lower intake of high-fat dairy products, red meat and

butter(169). The identified dietary pattern contains few SFA

and is likely to be associated with a low intake of Fe(170,171).

The same could be true for a Mediterranean diet (high

intake of vegetables, legumes, fruits, fish, nuts and cereals,

but a low intake of saturated lipids, meat and poultry, and

a moderate intake of ethanol(172)), which has been reported

to be associated with a reduced risk of AD(24). Against the

clear clinical evidence of elevated Fe levels in AD, it is tempt-

ing to assume that the benefits of a Mediterranean diet

on AD do not exclusively rely on a distinct lipid intake but

also on a lower level of Fe intake. In contrast, the foods

with the highest contents of Cu (beef liver, oysters, molluscs,

certain nuts, almonds and cocoa(173,174)) are neither typical

nor atypical for a Mediterranean diet. Its benefits for AD(24)

therefore are probably not based on differences in the

intake of Cu.

Although circulating Cu relates to the nutritional status

of Cu(175), the origin of the free Cu fraction is still under

discussion, potentially relying on inflammation(176) or an

increased efflux from cortical cells(16). The alteration of

systemic and brain Cu level in AD therefore depends on diet

to a degree that is not yet known. However, it is startling

that the participants on the highest quintile of Cu intake

in the Morris Study took Cu in vitamin or mineral sup-

plements(32). This gives significance to the dietary intake

of Cu in the elderly regardless of the current status of

understanding.

In this light, it is of note that dietary intakes of different

metals and their physiological levels in the body are not inde-

pendent of each other and other factors. Thus, an elevation in

Fe levels can be secondary to a high-Cu diet as Cu facilitates

Fe intake(177), and hypercholesterolaemia might be induced

by misbalancing dietary metal intake(97). Moreover, the inverse

correlation of the blood ceruloplasmin:TF ratio(97) may also

suggest that brain Fe accumulation is related to systemic

alterations, which in turn depend on diet.

Therefore, the practical implications could be to avoid

Cu-containing supplements and a high intake of SFA or

excessive diet of Fe. Fe deficiency in developed countries

is most common in certain subgroups of the population

including toddlers and women of childbearing age(178).

Data from the nutritional survey 2007–2008, National

Health and Nutrition Examination Survey III, showed that

the average nutritional intake of Cu is between 1·3 and

1·6 mg/d (1·1–1·3 mg/d) for adult men (women) in different

age cohorts(179), whereas the dietary reference intake is

0·9 mg/d of Cu for adults(180). For Fe, the dietary reference

intake recommended by the National Academy of Sciences

is 8 (15–18) mg/d for adults (women aged 14–50

years)(180), while the actual intake is 15·6–18·1 mg/d for

adult men and 12·6–13·2 mg/d for adult women at different

ages(179). That means that the intake of Cu and Fe is up to

100 % higher than recommended. All efforts to reduce Fe

or Cu levels should target the metals’ physiological windows

in order to avoid deficiency but achieve levels that are below

the threshold levels critical for AD. What these thresholds

look like with regard to AD is speculative with respect

to the heterogeneity of different case–control studies. For

instance, some studies found total Cu serum levels of

.13mg/l for the controls(79,80), while others reported levels

of ,10mg/l both, for controls and AD patients(63,77). Also,

AD is characterised by multiple aetiology and therapeutic

ranges of metal reduction may not be generalised without

considering further (dietary) parameters.

Despite the eschewal of high dietary intakes of Fe and Cu,

various alternative approaches to lowering metal levels in

the brain are under investigation. Several molecules acting

as chelating agents are currently being developed(181–183),

while some nutritional constituents have also been examined

in relation to their metal-chelating activities.

The green tea polyphenol (2)-epigallocatechin-3 gallate

is being discussed as entailing protective effects on the

progression of AD by different mechanisms, including an Fe-

chelating function(184). Curcumin, a polyphenolic diketone

responsible for the yellow colour of turmeric, is also suggested

to exert a protective effect against AD by binding Fe2þ and

Cu2þ though the binding affinity for Zn2þ is small(185,186).

There are more chelating agents being discussed for the

treatment of AD. For instance, ethylenediaminetetraacetic

acid has been reported to induce improvement in patients

with AD(182). Pharmaceutical compounds that exert their

anti-inflammatory effects by interaction with Cu-, Fe- or Zn-

dependent proteins have also been found to lower the risk

for developing AD(187), and a number of other molecules

that act as chelating agents are currently being developed(188).

An alternative approach of reducing the level of stored Fe in

patients with AD has been hypothesised recently with the

use of calibrated phlebotomy that could reduce stored

Fe without causing anaemia(189). All practical implications,

however, should be taken cautiously in light of the limited

clinical evidence and the multiple causality of AD.

Conclusion

In conclusion, the present systematic review suggests that

a diet rich in Cu and Fe might aggravate the detrimental

effects of a high intake of cholesterol and SFA on the risk of

developing AD. The association is biologically plausible.

However, since the relationship between dietary metal and

fat intake and dementia is clinically not well examined,

additional studies are necessary to further address which

nutritional patterns best fit to certain risk groups in the

population.
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