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Abstract

We generalise the approximation theory described in Mahler's paper "Perfect Systems" to linked
simultaneous approximations and prove the existence of nonsingular approximation and of
transfer matrices by generalising Coates' normality zig-zag theorem. The theory sketched here
may have application to constructions important in the theory of diophantine approximation.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 11 J 61.

In 1934, at the University of Groningen, Kurt Mahler gave a course in which
he generalised the approximation theory for the exponential function pre-
sented in Hermite's fundamental papers [2], [3]. It had seemed that Her-
mite's theory was unique to the exponential function, but Mahler showed
that the theory is quite general and has broad application in the theory of
diophantine approximation as well as providing a generalisation of the Pade
theory now well known to applied mathematicians; cf. [5]. Mahler's lectures
were not published until many years later [7]. However, in the meantime the
manuscript provided a basis for the thesis of Henk Jager [4] and the honours
essay (and immediately subsequent work) of John Coates [1].

The present note generalises remarks in [6], which themselves use the ideas
of Coates [ 1 ] (particularly his notion of normality) as their starting point. The
principal innovation of that joint paper [6] was that it provides an explicit
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2] Generalised simultaneous approximation of functions 51

ipplication of the formal inexplicit general theory to a problem in transcen-
ience theory.

We do not consider the axiomatic theory provided by Coates [1]; however,
)ur relatively formal treatment readily allows its restoration. Our purpose is
o develop the generalised theory to a stage that demonstrates the existence
)f transfer matrices that, in principle, permit a sequential construction of
he approximating polynomials. The author recalls conversations with Kurt
tlahler in which Mahler expressed confidence in those notions and regret at
he neglect of that aspect of his investigations.

The motivation for the present generalisation of Mahler's theory is the
>roblem of constructing a polynomial in several variables with prescribed
vanishing. As shown in the concluding section, that construction can lead
o a linked approximation problem of the kind about to be described. The
:entral result below, the normality zig-zag theorem shows that, conveniently,
he approximation systems often are unique.

1. Formal series

Let F be a field and, for j = 0 , 1 , . . . , n, let w = (wlj, w2j,...) be
equences of points of F ; write w = (w0,... ,wn) . We say that / is a
ormal series over F with respect to w if / belongs to some ring containing
7[z] such that, for j = 0, 1 , . . . , « , and each integer h > 1, / can be
vritten uniquely as

r U ) = C0j + Clj(Z - Wlj) + C2j(Z ~ Wlj)(Z ~ W2j)

+ --' + ch-i ,AZ ~ w\j) • • • (z ~ wh-x j) + (z~ wij) • • • (z ~ whj)Shj'

vhere gh • belongs to the same ring and the elements c0 , c, , . . . belong
o F . In the sequel w is fixed. We write, for j = 0, ... , n,

OTdj f = Oj

f % = axj = • • • = ca-x,j< = 0 and cOjJ*0.
In applications in the theory of diophantine approximation one seems,

nvariably, to take all the wtj equal to 0 . This motivates the terminology
nd notation used here and below. Nevertheless, the apparent generality of
iur setting is not spurious since it facilitates seeing various results that are
itherwise more difficult to notice.

https://doi.org/10.1017/S1446788700033292 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700033292


52 A. J. van der Poorten [3]

2. Simultaneous approximation

Let F be an (n + 1) x (n + 1) matrix of formal series F = (fu) . We
describe F as generic if the series comprising each row of F are linearly
independent over the ring F[z] of polynomials with coefficients in F and if
there is a a permutation n of { 0 , . . . , n} so that

does not vanish for any selection of elements wk . respectively from the
sequences Wj .

One says that a vector a = (a0,... , an) of polynomials ai is an ap-
proximation to F at p = (p0,..., pn) of order a — (aQ,..., an) if for

.1=0 /

and for i = 0, \, ... ,n,
dega, < / > , - 1 .

Existence is a matter of J2pt free coefficients which are to satisfy
ZX0,- ~ \j) = M - 1 linear conditions. Set \p\ = Y,Pt • The n F has
an approximation at p of order a whenever \p\ > |a| - 1 . In the sequel
we always take |<r| = \p\ .

It will be convenient to write

and

Then ^(Z|<T) is a monic polynomial in z of degree \a\ - 1 = |/>| - 1 .

3. Approximation matrices

In the sequel J denotes some nonempty subset of {0, 1 , . . . , n} .
Suppose that a and a are approximations to F at p of order a ; or,

for brevity, at (p, a) . We say that the approximation a lies /-above the
approximation a if, for each j e J ,
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This definition induces a partial ordering on the approximations at (p, a) .
We say that a is a /-best approximation to F at (p, a) if it is a maximal
element with respect to this ordering.

In the present spirit we also say that an (n + l)-tuple <f>' = (<f>'Q,... , 4>n)
lies above a n (n + l ) - t u p l e <j> = (<j>0,..., <j>n) i f <f>'j ><j>j for all j = 0 , . . . ,
n ; <f> lies /-above (j> if the inequalities hold at least for each j e / . Note
that this entails that <j> lies /-above itself for all / .

Suppose that every approximation a at (p, a) satisfies

for each j € / . Then we say that F has J-normal approximation at
[p, a) . Up to normalisation by multiplication by an element of F* , the
J-normal approximation a at (p, a) is unique. To see that, note that some
inear combination of essentially distinct approximations yields an approxi-
nation strictly /-above a .

Fix some / e / and for each h = 0 , . . . , n consider approximations
ah0 '•••' ahn) t 0 F W1111 O r d e r a + Sl = (°0 + Sl' • • • ' °n + Sl) a t P +
h = (Po + Kh' • • • > Pn + ^nh> • Because \p\ + 1 > \a\ , the existence of
such approximations is guaranteed. Moreover, for each h , we must have
iegaAA = ph since otherwise there is an approximation at (p, a) strictly
/-above the unique /-best approximation. Accordingly we may normalise
Jie approximations by multiplication by appropriate elements of F x . We
ienote the normalised approximations, with the coefficient of z"k of ahh

jqualto l ,by (AhQ,..., Ahn) .
We call the (n + 1) x (« + 1) matrix

A(z) = A(z\p,(j;l) = (Ahi(z\p,a;l))

he approximation matrix to F at (p, a; /) .

THEOREM (Normality zig-zag theorem for matrices of formal series). Let
F be a generic matrix of formal series. Then F has nonsingular approxima-
tion matrices

A(z\p(k),a(k);l(k))

it infinite sequences of pairs

(p(0), a(0)) = (0, 0 ) , (/>(1), <T(1)), (/>(2), a ( 2 ) ) , . . .

vith p(k+ 1) lying above p{k) , a{k+ 1) lying above a{k) , and \p{k)\ =
a{k)\ = k for all k . Indeed, every nonsingular approximation matrix
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A{z\p,a;l) has (p, a) on such a generalised normality zig-zag. More-
over, there are generalised normality zig-zags with min0<1<n pt(k) —• oo as
fc-»oo. Furthermore, for each k we have

det A(z\p(k), a{k), l(k)) = *¥(z\o + Sl{k)).

Our proof is contained in the remarks below; they continue the discussion
preceding the statement of the Theorem.

Consider the determinant det A(z) . Each column has a unique entry Ahh

of maximal degree ph , and that entry is monic. Hence

det A(z) — z + lower order terms in z .

In particular, the determinant does not vanish. For h, j = 0 , . . . , n , set

Then for any permutation n of {0, . . . , « } we obtain

But for each j = 0 , . . . , n we have

-^00 "^01 • " R0n

Rn0 Rnl " • Rnn

At this point we obtain some advantage from our general definition of the
sequences w . For it is immediately evident that *F(z|ff + 3/) divides the
determinant in the sense that the hypotheses on the matrix F entail that
^(zla + dt) divides det A(z\p, a; /) in the ring F[z] of polynomials. Be-
cause both polynomials are monic polynomials of degree |<r| = \p\ it follows
that

detA{z\p, a; I) = "¥{z\a+ 5,).

Moreover, the coincidence of degrees makes it plain that for each j = 0,
..., n there is a nonempty subset H(j) C { 0 , . . . , n} so that

for each h e H{j) . Conversely, set J{h) = {; : h e H(j)} . Our observa-
tions amount to F having /(Abnormal approximation at (p + Sh, a + S,) .
Whenever J(h) is nonempty this is a nontrivial remark and since \JhJ{h) =
{0,... , n} our observation is indeed nontrivial for some h . Then, as above,
we may select an / ' e J{h) and construct a nonsingular approximation ma-
trix at (p + dh,a + d,; /') ; and so upwards.
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The claim that every nonsingular approximation matrix lies on a normal-
ity zig-zag encompasses the fact just demonstrated, namely that, with / and
/ ' both nonempty, above every /-normal point (p, a) there is a /'-normal
point (p + dh, a + dt) . Moreover, because the matrix F is generic, some
permutation matrix yields a nonsingular approximation matrix at (0,0) .
Finally, in the next section, we shall prove that if F has /-normal ap-
proximation at (p, a) then, for some pair {h, 1) , there is a nonsingular
approximation matrix at {p -6h, a - 5{) . We shall also show that there are
generalised normal points above every point.

4. Excess

Let a be an approximation at (p, a) . We define its excess to be the
vector K = (K0, ... , Kn) of nonnegative integers AC. given by

Its /-excess K(J) is the |/|-tuple of Kj , with j e J . We set J2jejKj =

\K(J)\ .
Suppose that there are essentially distinct /-best approximations at (p, a)

each with /-excess K(J) . Then, either all K, j 6 / , are infinite or a non-
trivial linear combination of the approximations yields an approximation at
[p, a) with /-excess strictly above K{J) . In the generic case the series of
my row of F are linearly independent over the ring of polynomials, so the
5rst possibility is excluded; the second possibility contradicts the maximality
af a /-best approximation. Thus, up to normalisation, a /-best approxima-
tion at a point (p, a) is unique, regardless of its /-excess.

Let a be a /-best approximation at (p, a) and with /-excess K{J) .
Fix some I e J and suppose that for h = 0, ... ,n there are approxi-
mations to F with order a + 8t at p + 8h and with /-excess above «( / ) .
3iven existence, we may select normalised /-best such approximations Ah =
AhQ,... , Ahn) , with the Ahh monic. We denote the («+1) x (« +1) matrix
)f the approximations by

A ( z ) = A { z \ p , a ; / , / ) = ( A h i ( z \ p , a ; / , / ) ) .

iVe note that (once again since \K\ # oo , because the functions in each row
)f F are linearly independent over F[z]) we have d e g ^ = ph for each
i . For if not, we would have an approximation to F of order a at p with
7-excess strictly /-above K{J) .
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We now study the determinants detA(z\p, a; J, I) and find, as in the
section above, that ^(zla + d/ + «( / ) ) divides det^(z) in the ring of poly-
nomials. But det A(z) is a monic polynomial of degree \p\ , so this is a
contradiction unless \K(J)\ = 0 . Hence, if \K(J)\ ^ 0 , there cannot be, for
every h , a /-best approximation to F at (p + 8h, a + 8t) with /-excess
/-above « ( / ) . Thus, either the /-excess ie(p, a; J) at (p, a) is zero or,
for some h , the /-excess K{p + 8h,a + 8,; / ) of a /-best approximation
to F at (p + Sh, a + <57) is not /-above K(J) . For such h , and provided
that K{ ̂  0 , the approximation a at (p, a) with excess K , is already an
approximation at (p + dh,a + Sl) with excess K-8, .

Suppose now that K(P, a; J) ^ 0 . Choose / from amongst those y e /
for which K • > 0 . Then our argument, conducted with « ( / ) replaced
by K(J) - 8t , entails that, for some h , a /-best approximation to F at
(p + 8h , a + 8t) is already given by the /-best approximation a at (p, a)
and has /-excess K(J) - 8t .

Repeating this argument |/c(/)| times, we find a point p with \p'\ =
\p\ + \K(J)\ above p and a corresponding order a' = a + * ( / ) above er at
which the /-best approximation has zero /-excess. Thus {p , a1) is a point
above {p, a) at which F has /-normal approximation. It follows that, as
alleged, there are generalised normal points p with pmin = min0<1</1 pt as
large as we wish.

Conversely, suppose F does not have generalised normal approximation
above some point p . Recall that we described F as generic if the series com-
prising each row of F are linearly independent over the ring F[z] of polyno-
mials with coefficients in F and if there is a permutation n of {0,... , n]
so that / c m ^ . o l / u d i K . j l - ^ w K , , , ) does not vanish for any
selection of elements wk, .> respectively from the sequences to . The sec-
ond condition is the less interesting; if it does not hold for a given F , we
can always restore as much of it as we need by replacing F by a matrix
with entries obtained by dividing the ftj by appropriate polynomials. Thus
assume the second condition on F . Then if F does not have generalised
normal approximation above p , it follows from the preceding arguments
that there is an approximation a at p with

i(z)fij(z) = ° f o r s o m e ;' e { 0 , . . . , « } .

Finally, suppose that F has /-normal approximation at (p, a) ^ (0, 0)
but there is no nonsingular approximation matrix at {p - 8h, a - 8t) , for
any pair (h, I) . This entails, for each pair (h, I) , that all entries of the
excess vector K at (p - 8h, a - 8t) are positive. Thus approximations at
(p - 8h, a - 8t) are approximations at (p, a) . Hence, there is an approx-
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imation a at (p, a) with dega, < pt,- 1 for i = 0,... , n. But then for
each pair {h1, /') , the polynomials (z - whill)ai yield an approximation at
(p + S'h, a + S't) with deg(z - whni)ahl(z) < ph, . This is impossible for all
pairs (h', I') because F has /-normal approximation at (p, a) . Of course,
we assume all conventions necessary to maintain the validity of these claims
when entries of p or a are zero.

These remarks complete the proof of the normality zig-zag theorem.

S. Dual approximation

Suppose that F is /-normal at (p, a) and that A(z) denotes the ap-
proximation matrix at (p, a; I) , for some / e / . For each entry Ahi of A
denote by 2tA( its cofactor. That is, for each pair h, k we have the identities

i=0

It is easy to compute that

degafcl < \a\ - />,•- 1 if k ^ / , and deg2lfefc = \a\ - pk ,

and to verify this against the identities. Furthermore, we see that the 2tfcfc
are monic.

Using the terminology in which the author first learned the subject, we call
the matrix

%(z\p,<j;l) = (Zhi(z\p,a;l))

the German approximation matrix at (p, a; / ) ; We now refer to the approx-
imation matrix A(z\p, a; I) as the Latin approximation matrix.

Indeed, the German polynomials do solve an approximation problem: we
say that a vector b = ( b 0 , . . . , bn) of polynomials 6, is an /-German ap-
proximation to F at p of order a if for each j and i, s = 0, I,... , n,

ord/b,./,,. - bsftJ) > cj + 8U

and
degb,. <|CT| -p..

Existence is a matter of £(|ff| +1 - />,-) = (n +1 )(|ff| +1) - M free coefficients
which are to satisfy n £(CT,: +£O,-) = n(\a\ +1) independent linear conditions.
So F has an /-German approximation at p of order a whenever \p\ >
\a| - 1 . Since we always take \a\ = \p\ , the /-German approximation exists.

We will see that the rows of the German approximation matrix consist of
the normalised /-German approximations at (p - Sh, a — So) . To see this,
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let ak = (ak0,... , akn) be an /-German approximation at {p-5k,a-So),
set

and consider sums

hjsj =

1=0 i=0

1=0
n

1=0

But, for each j a n d / , s, k = 0 , ! , . . . , « ,

and

Given that the matrix F is generic, there is a choice s = s(j) for each
j = 0, 1 , . . . , n so that we may collect these inequalities and conclude that
the polynomial ^(zlcr + J,) divides the polynomial Z)"=o^A/(z)°fej(z) m t n e

ring F[z] of polynomials.
However,

deg^^,.(z)Qf c, .(z) < max(|<r| + 8ki - 1 + Shi - 1).
i=0

It follows that

XX(z)afc/(z) = 0
i=0

unless both h = k and akk(z) attains its degree \a\- pk . In the latter case
we may suppose that we have normalised so that each ahh(z) is monic. We
obtain

i=0

Notice that our decision to distinguish aQ in the definition of the Latin
approximations forces the present definition of the dual approximations.
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6. Transfer matrices

PROPOSITION. Suppose {p , a') lies above (p, a; I) on a J-normality zig-
zag. Then the quotient

A(z\p',a';l')A(z\p,a;iyl

is a matrix with polynomial entries.

PROOF. By duality we have

A(z\p , a ; l')A(z\p, a; Z)"1 = A{z\p , a'; /') '*{z\p, a; l){^/{z\a + <?,))"'.

The rest of the argument has much the same shape as that of the previous
section, namely,

^fsj(z)^Ahi{z\p,a;l)fikl(z\p,a;l)
i=0

i=0

%s(z\p, a; l)^2Ahi(z\p, a; l')fu(z)
i=0

1=0

+ nks(z\p,a;l)Rhj(z\p',0';l');

and for each choice of the subscripts

ord, 5Ht i,Az\p, a; /) > a,; + d,,, — <Jn,
j ft , lAj - ' • ' j ij \jj

and
ordy Rhj(z\p , a ; /') > a) - dOj + 6(j.

Given that the matrix F is generic, there is a choice s = s(j) for each j =
3, 1 , . . . , « allowing us to conclude that the polynomial *F(z|t7 + ̂ ) indeed

iivides the polynomial Y1"=OAIH(Z\P' > a>'•> l')%ki(z\P> <*> 0 m t h e ^ng F[z]
jf polynomials.

Moreover,
n

l eg^A h i ( z \p ' , a'; /')2L,.(z|/>, a; I) < max(|o-| + / ? ' -p . + <J,.- 1 +<5A,- 1).
i-O '

It follows that the (A, fc) entry of the matrix

A{z\p,o'\t)A(z\p,o\l)-x
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is a polynomial of degree at most

max(p) - p, + 8ki - 1+ 8hi - 1).

Special cases of these transfer matrices are explored in extenso by Mahler
[7]. We note, without ado, that if maxf.(^. - p() is at most 1 then the trans-
fer matrix has constant entries other than on its diagonal where the entries
may be constant or monic of degree 1. Thus it seems feasible to construct
approximation matrices as products of transfer matrices of relatively simple
shape. However, even in the special case ax = • • • = an = 0 when only aQ

is different from 0, the author is not aware of any constructions effected or
estimations made in this manner.

7. Motivation for the present study

Consider the problem of constructing a polynomial P(x, y) in two vari-
ables with prescribed vanishing at each of three points (ar , a), (a' , a')

x y x y

and (a", a'y). The prescription will be of the following shape: P is given
to be of bi-degree (m, n) and we require that

and similarly for the other two points. There is a solution provided that

3 $ > ; . < ( m + l ) ( * + l) .

It is always appropriate to take

To decrease data clutter it is convenient to apply linear fractional trans-
formations to each variable transforming the data points to (1, 1), (oo, oo)
and (0,0). The construction problem then acquires the shape

= 0, 1, . . . , n,

with polynomials Ai satisfying

deg^(x) <m-Tt- Tn_t for i = 0, 1 , . . . , n.

One sees directly that

i=0
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has the prescribed vanishing at (1 , 1), whilst the conditions on the degree of
the Ai are the prescribed vanishing at (00,00). The remaining problem is
that of constructing the At to provide the required vanishing at ( 0 ,0 ) . That
last problem is J2 x • linear conditions on £ m + 1 - xt - xn_i coefficients
and is feasible provided that

as at the beginning.
The required construction thus becomes a generalised simultaneous ap-

proximation problem of the shape

( j - x ) r ' = O(xr') for ; = 0 , 1 , . . . , « ,
1=0 w

exactly as discussed in the body of this paper. It is of course a misfortune
that, with y. = xi the given matrix, consisting of the functions

is quite degenerate. We have written yi for x( to provide a more generic
appearance and to suggest that the construction might well be attacked by
viewing it as a limiting case of a generic approximation problem. In the case
n = 1 this approach does yield the construction.
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