
J. Functional Programming 6 (2): 195-244, March 1996 © 1996 Cambridge University Press 195

Reference counting as a computational
interpretation of linear logic

JAWAHAR CHIRIMAR, CARL A. GUNTER
Department of Computer and Information Science

University of Pennsylvania, Philadelphia, PA 19104, USA

JON G. RIECKE
Bell Laboratories

700 Mountain Avenue, Murray Hill, NJ 07974, USA

Abstract

We develop an operational model for a language based on linear logic. Our semantics
is 'low-level' enough to express sharing and copying while still being 'high-level' enough
to abstract away from details of memory layout, and thus can be used to test potential
applications of linear logic for analysis of programs. In particular, we demonstrate a precise
relationship between type correctness for the linear-logic-based language and the correctness
of a reference-counting interpretation of the primitives, and formulate and prove a result
describing the possible run-time reference counts of values of linear type.

Capsule Review

A number of languages based on linear logic have been proposed, and for some of these it
has been claimed that 'values of linear type have exactly one pointer to them'. This claim is
reasonable for call-by-name implementations of linear logic, but less reasonable for call-by-
need implementations. Formalising a correct counterpart in the latter case turns out to be
somewhat tricky, and is the contribution of this paper.

The paper considers a language based on linear logic, with explicit store and fetch op-
erations. An operational semantics is presented, detailed enough to record sharing and
duplication of values stored in memory. The main result is a connection between linear logic
types for the functional language and reference counts to stored linear values.

1 Introduction

Many people have attempted to exploit type systems based on linear logic to discover
optimizations for programs. Linear logic (Girard, 1987), hereafter called LL, is a
resource-conscious logic in which proofs use hypotheses in very limited ways. An
LL-based type system thus may, or so the informal reasoning goes, have some
bearing on the way that resources are used in the evaluation of programs. Our goal
in this work is to figure out precisely what this connection is to the memory usage
of a program. We argue that an LL-based language yields fine-grained information
about how the memory graph - a graph (whose nodes represent memory cells and

https://doi.org/10.1017/S0956796800001660 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001660

196 J. Chirimar et al.

Table 1. Translating to a LL-Based Language.

let fun add x y =
if x = 0
then y
else add (x-1) (y+1)

in add 2 1
end

let fun add x y =
share w,z as x in
if fetch w = 0
then dispose z, add before y
else (fetch add)

(store ((fetch z)-l))
(y+D

in add (store 2) 1
end

edges represent pointers) together with a finite set of roots - evolves at run-time.
This information can be exploited in program analysis; in particular, we show that
LL primitives can be interpreted as manipulating the reference counts of nodes
in the memory graph, and thus given suitable restrictions, programs in our LL-
based language can be optimized using in-place updating or other memory-based
optimizations.

Attempts to study LL-based programming languages fall roughly into two groups.
The first group remains faithful to LL using some analog of the Curry-Howard
correspondence (Howard, 1980) as the basis (cf. (Abramsky, 1993; Holmstrom, 1988;
Lafont, 1988; Lincoln and Mitchell, 1992; Mackie, 1991)); the second group uses
systems more or less similar to LL for specific applications (for instance, Guzman
and Hudak (1990) and Wadler (1991) consider systems to detect single-threading).
The system presented in this paper falls into the first group.

It is helpful to begin with an example. Consider the program on the left of
Table 1, which implements an addition function from primitives for incrementing
and decrementing. The syntax is that of SML (Milner et al., 1990) using numerals,
recursive definition, conditionals, and local definition. Note the differences in the use
of the formal parameters x and y: first, variables may be used a different number of
times (y exactly once and x either once or twice) and, second, the value of a variable
(in this case x) may be shared between its two separate uses. More precisely, the
value of x is needed in the test of the conditional, which is always evaluated, and in
the else branch of the conditional, which may not be evaluated, but not in the then
branch of the conditional. On the other hand, the variable y is needed regardless of
whether the then or else branch of the conditional in the body is taken.

The program on the right of Table 1 is a version of the addition function written
in a program with LL annotations (using a slight simplification of the notation
that we will define precisely later). There are four new primitives used here: share,
dispose, s tore , and fetch. The share primitive indicates that x is needed twice:
the first use is bound to the variable w and the second to the variable z. These two
variables share the value to which x is bound. The dispose primitive indicates that
one of these sharing variables, z, is not used in the first branch of the conditional.
The primitive store creates a sharable value and fetch obtains a shared value. The
LL annotations thus make clear the distinctions in use between x and y from the
original SML program.

https://doi.org/10.1017/S0956796800001660 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001660

Reference counting interpretation of linear logic 197

In our interpretation, the LL-specific operations share and dispose explicitly
manage reference counts of the share'able and dispose'able created by store.
Reference counting has a long (Collins, 1960; Deutsch and Bobrow, 1976) and
controversial (Wise, et al., 1993; Baker, 1978; Appel, 1992) history as a garbage
collection methodology, but we use reference counting only for the sake of program
analysis; the implementer of the language is free to use any garbage-collection
technique. The share operation indicates that two pointers are needed for the value
associated with x, so the reference count of the associated value is incremented.
The dispose primitive has an analog (and namesake) in several programming
languages. In our LL language the primitive dispose will decrement a reference
count; deallocation only happens when this count falls to zero. The operation
dispose thus never creates dangling pointers which may happen in other languages
with dispose (like C). Analogs to the store and fetch operations are the delay
and force operations that appear in many functional programming languages. In
such languages, the delay primitive postpones the evaluation of a term until it is
supplied to the force primitive as an argument. When this happens, the value of the
delayed term is computed, returned, and memoized for any other applications of
force. Abramsky (1993) has argued that this is a natural way to view the operational
semantics of the store and fetch operations of LL.

One of the primary goals of this paper is to offer a framework for rigorously
expressing and proving optimizations obtained by analyzing an LL-based language.
For instance, we may test the claim that 'linear values have only one pointer to them'
or 'linear values can be updated in place'. Wadler (1990) has informally observed
that these claims must be stated with some care. For instance, Lafont (1988) has
developed an operational semantics maintaining the invariant that linear values
have only one pointer to them (and thus a reference count of one). Linear values
may therefore be overwritten - or subject to in-place updates - once they are used.
Lafont's operational interpretation maintains the invariant by copying linear values.
Lincoln and Mitchell (1992) take a slightly different approach. Their operational
semantics divides memory into two subspaces: the first contains objects with exactly
one pointer, the second contains objects with possibly many pointers. Non-linear
objects - those created by share - live in the second subspace, whereas linear
objects, when created, live in the first subspace. Objects from the first subspace that
fall within the scope of share get copied to the second subspace.

Our operational semantics fits more with the tradition of functional languages
and seems to formalize the model implicit in Wadler's work. Copying is never done;
instead, multiple pointers are created to objects, and in doing so we avoid the time
penalty of copying. In our semantics, we find that linear variables may fail to have a
count of one - in other words, a linear variable may not have a unique pointer to it
and thus may not be amenable to updating in place. This is reminiscent of (Lincoln
and Mitchell, 1992) when linear objects get copied to non-linear space when they
fall under the scope of share. On the other hand, all is not lost - we can state
a theorem stating precisely when a linear object maintains a reference count of at
most one, and thus may be subject to in-place updating. Such a theorem seems
difficult to state in a language without LL-like primitives, and thus the LL-based

https://doi.org/10.1017/S0956796800001660 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001660

198 J. Chirimar et al.

language may yield more opportunities for memory-based optimizations. A broader
theme of our investigation is developing a level of abstraction in the semantics of
programming languages that permits 'low-level' concepts to be formalized in a clear
and relevant way. There has been significant progress in formulating theorems about
programming languages and memory- Goldberg and Gloger (1992) and Wand and
Oliva (1992) are recent examples treating garbage collection and run-time storage
representation, respectively. It is our hope that we can contribute to a foundation
for further advances in this direction.

We will be concerned only with the question of a computational interpretation
of intuitionistic LL, the fragment of the language without negation and the 'par'
operation. In fact, we will restrict ourselves to the language obtained from the
linear implication (s —o t) and 'of course' (!s) operations, although our results can
be extended to all of intuitionistic LL. For the rest of the paper, read 'LL' to
mean the implicational fragment of intuitionistic LL. We present our language and
its properties in stages. The second section of the paper discusses the operational
semantics of memoization with the aim of putting in place the basic notation
and approach that will be used in subsequent sections. The third section describes
the syntax, typing rules, and 'high-level' operational semantics for our LL-based
language. The fourth section describes the 'low-level' operational semantics of the
language. The invariants that express the basic properties of the memory graph in
this semantics are precisely expressed and proved. The fifth section of the paper
demonstrates further basic properties of this semantics, including its correspondence
to the high-level semantics and its independence from the scheme used to allocate
new memory. The sixth section uses the operational semantics to prove a static
condition under which a linear value will always have a reference count of one; this
shows that the LL-based language is indeed amenable to analysis about memory
usage. The seventh section discusses various aspects of the technical results of the
paper and attempts to provide additional perspective. Some of the most technical
proofs have been deferred to an appendix.

2 Operational semantics with memory

Here we give a preview of the operational semantics of the LL-based language by
describing the familiar operational semantics of a simple functional language with
store (delay) and fetch (force) operations. We base this preliminary discussion on a
language with the grammar

M ::=x \{Xx.M) | (M M) |

n | true | false | (succ M) | (pred M) | (zero? M) |

(if M then M else M) | (fix M) |

(store M) | (fetch M)

where x and n are from primitive syntax classes of variables and numerals respec-
tively. This is a variant of PCF (Scott, 1993; Plotkin, 1977; Breazu-Tannen et al,

https://doi.org/10.1017/S0956796800001660 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001660

Reference counting interpretation of linear logic 199

1990) augmented by primitive operations for forcing and delaying evaluations. The
expression (fix M) is used for recursive definitions.

The key to providing a semantics for this language is to represent the memoization
used in computing the fetch primitive so that certain recomputation is avoided.
We aim to provide a semantics at a fairly high level of abstraction using what is
sometimes known as a natural semantics (Despeyroux, 1986; Kahn, 1987). Such a
semantics has been described in Purushothaman and Seaman (1991) using explicit
substitution and in Launchbury (1993) through the use of an intermediate repre-
sentation in which all function applications have variables as arguments. Both of
these approaches are appealingly simple but slightly more abstract than we would
like. Our approach, first described in a preliminary version (Chirimar et al., 1992),
uses the traditional distinction between an environment, which is an association of
variables with locations, and a store, which is an association of values with locations.
Sharing of computation results is achieved through creating multiple references to a
location that holds a delayed computation called a thunk. When the value delayed in
the thunk is needed, it is calculated and memoized for future reference. To define this
precisely we must begin with some notation and basic operations for environments,
stores, and memory allocation.

Fix an infinite set of locations Loc, with the letter / denoting elements of this set.
Let us say that a partial function is finite just in case its domain of definition is
finite.

• An environment is a finite partial function from variables to locations; p
denotes an environment, and Env denotes the set of all environments. The
notation p(x) returns the location associated with variable x in p, and to
update an environment, we use the notation

/ i f x = y
p(y) otherwise.

The symbol 0 denotes the empty environment; we also use [x >-» /] as shorthand
for 0[x H-> /].

• A value is a

— numeral k,
—- boolean b,
— pointer susp(/) or rec(/,/), or
— closure closure(Ax. M,p) or recclosure(2x. M,p).

The letter V denotes a value, and Value denotes the set of values.
• A storable object is either a value or a thunk thunk(M, p). We use Storable to

denote the set of storable objects.
• A store is a finite partial function a from Loc to Storable. The symbol a

denotes a store, 0 denotes the empty store, and Store denotes the set of stores.
We will use the same notation to update stores as for updating environments.

We also need a relation for allocating memory cells. A subset R of the product
(Storable x Store) x (Loc x Store) is an allocation relation if, for any store a and
storable object S, there is an /' and a' where (S, a) R (/', a') and

https://doi.org/10.1017/S0956796800001660 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001660

200 J. Chirimar et al.

susp(/,)

thunk(M,p)

Fig. 1. Structure generated by (store M).

• V $ dom(ff) and dom(a') = dom(<r) u {/'};
• for all locations / G dom(ff), a(l) = a'{I); and
. (T'(Z') = S.

This definition abstracts away from the issue of exactly how new locations are found.
For specificity, we choose an allocation relation new that is a function, and write
new(S, a) for the pair (/', a') such that (S, a) new (/', a'). Of course, our operational
semantics should be independent of the choice of allocation relation, a point we will
formalize after describing the semantics of our LL-based language below.

The operational rules for our language could be given using a natural semantics
with rules of the form (M,p, a) ty (l,<r') where the domain of p contains the set of
free variables of M, and / is a location in the domain of a' that holds the result
of evaluation. Writing the semantics in the form of rules (e.g., as in the appendix
of (Chirimar et al., 1992)) becomes somewhat cumbersome, so we use a kind of
primitive pseudo-code that can readily be translated into a natural semantics. As a
first example, consider how the store primitive is evaluated:

meminterp((store M), p, a) =
l e t (/o, (To) = new(thunk(M, p), a)
i n new(susp(/o), <7o)

Read this as follows. To evaluate (store M) in the environment p and store <J, first
allocate a new location holding a thunk composed of M and the environment p.
Let (Jo be the new store and IQ be the location in which the thunk is held. The result
of the evaluation is a store obtained from <TO by allocating a new location holding
the storable value susp(/o) paired with this new location. Note, in particular, that
M is not evaluated. The structure that has been added to the memory is depicted in
Figure 1.

The interesting part of the evaluator and the essence of memoization is given by
the way in which the fetch primitive is handled. The argument of fetch is evaluated
to return a storable value of the form susp(/i). The content of location /i is then
examined to determine whether the suspension has been evaluated to a value or
whether it has not yet been evaluated, in which case it has the form thunk(N, p).
If the content is a value, a pointer to the value is returned, otherwise the thunk is
evaluated and the susp is duly updated. A pointer to the value of the thunk is then
returned as the result. Here is the pseudo-code description:

https://doi.org/10.1017/S0956796800001660 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001660

Reference counting interpretation of linear logic 201

meminterp((fetch M), p, a) =
le t (/0, ffo) = memiaterp(Af, p, a)
in case oo(/o) o f susp('i) =>

case ffo('i)
of thunk(N, p') =>

l e t (h, o\) = meminterp(iV, p', er0)
in (/2) <ri[/oi->susp(/2)])

I _ => (h, ff0)

In the case that <xo('o) is not a suspension, we assume that the behavior of the
interpreter on (fetch M) is undefined. This assumption simplifies the rules, and
allows us to ignore what are, in effect, run-time type errors. The type systems we
will introduce later will prevent these run-time type errors.

There is another approach we might have taken to modeling memoization. The
interpretation of (store M) allocates a location k that holds a thunk, and returns
a location h that holds a pointer susp(/o) to this location. Could we instead have
returned 1$ as the value? That is, the rule could read

meminterp'((store M), p, a) = new(thunk(M, p), a)

The answer to this question is instructive, since it relates to the way in which we will
represent the distinction between copying and sharing in our model. If we choose
to return the location holding the thunk as the value of the store (as opposed to
returning a location holding the pointer to this thunk), then this would require a
change in the fetch command. In particular, when the location li is obtained there,
it would be essential to put the value a(l2) in the location where the value of the
thunk may be sought later:

meminterp'((fetch M), p, a) =
l e t (/o, ffo) = meminterp'(M, p, a)
in case cro(/o)

of thunk(AT, p') =>
l e t (h, C\) = meminterp'(iV, p', <To)
in (/o, ff|['o>-*ffi(W])

I _ => (/o, ffo)

Note that in the second line from the bottom of the program, the values of fo and h
in the store are the same and we will say that the value of the thunk has been copied
from location l2 to /0. In the case that (j\(l2) is a 'small' value, like an integer that
occupies only a word of storage, there is little difference between copying the value
from l2 to lo versus returning a pointer to h as we did in the earlier implementation.
If the value CTI(/2) is 'large', however, then copying may be expensive. In the language
we are considering, this might involve copying a closure, which would be a modest
expense, but in a fuller language it might involve copying a string or functional
array, which could be very expensive. (If oiili) is a mutable value, then the copying
is probably incorrect - but this is not a problem for the functional language at
hand.) Our semantics does not directly represent the cost associated with copying
because it abstracts away from a measure of the size of a value; instead, we will
treat copying as if it is something to be avoided in favor of sharing (indirection)
whenever this is feasible. This suggests yet a third approach to the semantics of

https://doi.org/10.1017/S0956796800001660 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001660

202 J. Chirimar et al.

fetch where store is implemented as with meminterp' but where the interpretation
of fetch uses an indirection for the returned value:

meminterp"((fetch M), p, a) =
l e t (IQ, Co) = meminterp"(Af, p, a)
in case <To(7o)

of thunk(iV, p') =>
l e t {li, O\) = meminterp"(N, p', <TQ)
in (Jo, <7,[/0>-+@/2])

I - => (k, ffo)

where @/2 is to be viewed as a boxed value. This is possibly closer to the way
memoization would be implemented in most compilers. However, this approach
complicates the approach to the LL-based semantics in the next section.

The implementation of memoization involves the idea of mutating a store. Even
the 'functional' parts of the language must respect the potential side effects to the
store that memoization may cause, and hence these operations must pass the store
along in an appropriate manner. Doing this correctly may save recomputation. Here,
for instance, is how the application operation is described:

meminterp((M N), p, a) =
l e t (/0, cr0) = meminterp(M, p, a)

(l\, <Ti) = meminterp(iV, p, CT0)
in case <7i(/o) of c\osure(Ax. N, p') =>

meminterp(N, p'[xt—>/i], a\)

The store resulting from evaluating M is used in evaluating N; similarly, the store
resulting from evaluating N is used in evaluating the application.

The general approach we are taking to the form of this semantic definition is
different in a significant way from the kind one finds elsewhere for the operational or
denotational semantics of a language like this one. In particular, even the immutable
values used in the semantics give rise to allocations in the store. For example, the
semantics of lambda abstractions:

meminterp(/foc. P, p, a) = new(closure(Ax. P, p), a)

allocates a new location where a closure is held. In our treatment, this way of
describing the meanings is crucial for the purposes of modelling sharing and copying
of run-time entities.

There are a variety of ways to implement recursion. A reasonably efficient ap-
proach is to create a circular structure. This approach is simplified by restricting the
interpreter to programs such that, in constructs of the form (fix N), the term N has
the form Xf. Ax. M. The restriction is not necessary, but it is typical for call-by-value
programming languages. The semantics for such recursions is given by

meminterp((fix A/. Ax. M), p, a) =
le t (/o, ff0) = new(0, a)

(/,, <TI) = new(recclosure(Ax.M, p[f >-* l0]), a0)
in (/0, ai[lQ>-^ rec(lt, /)])

which creates the circular structure in Figure 2. For this language we could create
a single cell holding the recclosure that looped back to itself; we use two cells,

https://doi.org/10.1017/S0956796800001660 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001660

Reference counting interpretation of linear logic 203

recclosure(Ax. M,p[f >-> /0J)

Fig. 2. Structure generated by (fix Xf. Ax. M).

though, since the additional cell holding rec will be used in the semantics of the
LL-based language to facilitate connections with the type system. We also need here
to change the semantics of applications so that if the operator evaluates to a rec, the
pointer is traced to a recclosure; in turn, if the operator evaluates to a recclosure,
the operator is used in the same way as a closure.

In the implementation of actual functional programming languages, a single
recursion such as the one above would probably make its recursive calls through
a jump instruction. This would be difficult to formalize with the source-code-
based approach we are using to describe the interpreter. The important thing, for
our purposes, is that recursive calls to / do not allocate further memory for the
recursive closure. This means that, as far as memory is concerned, there is little
difference between implementing the recursion with the jump and implementing it
with a circular structure. The cycle created in this way introduces extra complexity
into the structure of memory, of course, but the cycles must have precisely the form
pictured in Figure 2.

3 Programming language based on linear logic

3.1 Term assignment for linear logic

If a programming language L is to be based on LL, it seems reasonable to attempt
the completion of an analogy based on the Curry-Howard correspondence: intu-
itionistic logic is to traditional functional programming languages (such as ML or
Haskell) as LL is to L. Basing a language on the Curry-Howard correspondence
for LL immediately becomes problematic, as LL was originally described by Gi-
rard (1987) using a sequent calculus. Most programming languages have a syntax
and typing system like the natural deduction (hereafter called 'ND') formulation of
intuitionistic logic rather than its sequent calculus formulation, mostly because the
ND formulation leads to a familiar syntax for application of functions. Progress on
an ND form for intuitionistic LL has been gradual, in part because substitutivity
fails for the obvious formulations:

https://doi.org/10.1017/S0956796800001660 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001660

204 J. Chirimar et al.

Definition
A type system satisfies the substitutivity property if well-typed programs are closed
under substitution, i.e., ifT\~N : t and A, x : t\- M :u and all variables in T and A
are distinct, then T, A h M[x := N] : u.

Here M[x := N] denotes substitution of N for x in M with the bound variables of
M renamed to avoid capture of the free variables of N. SML (Milner et al, 1990;
Milner and Tofte, 1991) is a prototypical example of a language based on an ND
presentation that satisfies the substitutivity property.

Merely coming up with a ND presentation of LL that satisfies substitutivity
has been an outstanding problem. In the absence of such a system, Lincoln and
Mitchell (1992), Mackie (1991), Wadler (1993), and the authors of this paper in a
preceding work (Chirimar et al., 1992) employed approaches that obtain some of
the virtues of an ND system for LL. The system used in this paper is based on a
proposal of Benton, Bierman, de Paiva, and Hyland (1992; 1993) that does satisfy
the substitutivity property. We refer the reader to their paper for a fuller discussion.

The propositions of the fragment of linear logic we consider are given by the
grammar

s : := a \ (s —o s) \ Is

where a ranges over atomic propositions. The proofs of linear propositions are
encoded by terms in the grammar

M ::=x\ (Ax :s.M)\ (MM) \

(store M wherexi = M\,...,xn = Mn) | (fetch M) |

(share x,y as M in M) | (dispose M before M).

Our notation here essentially corresponds to that in Chirimar et al. (1992) and
Lincoln and Mitchell (1992) modulo incorporating adjustments from Benton et al.
(1992, 1993). The store operation,

(store M where xi = M\,...,xn = Mn),

binds the variables x\,...,xn in the expression M and the share operation

(share x,y as M in N)

binds the variables x and y in N. The notation for store can be somewhat unwieldy
when writing programs, but most programs involving store bind the variables in the
where clause to other variables. Thus, if the free variables of M are x\,...,xn, then
(store M) is shorthand for the expression (store M where x\ = x\,...,xn = xn).

The typing rules for the language appear in Table 2, where the symbols T and
A denote type assignments, which are lists of pairs xi : s\,...,xn : sn, where each
X, is a distinct variable and each s, is a type. Each of the rules is built on the
assumption that all left-hand sides of the I- symbol are legal type assignments, e.g.
in the rule for typing applications, the type assignments T and A, which appear
concatenated together in the conclusion of the rule, must have disjoint variables.
Each type-checking rule corresponds to a proof rule in the ND presentation of

https://doi.org/10.1017/S0956796800001660 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001660

Reference counting interpretation of linear logic 205

Table 2. Natural deduction rules and term assignment for linear logic.

r v
r h

r,A h

r

r,x : s
- {Xx : s.

M : !s
(dispose

i I" M,

r,,.

1- M
M) :i

A

: t

t-
! M before N)

: !s, ... r.
h (store

x : s h

r

: t

1- Mn : !sB

s N where;

r h M
r h (fetch

x : s

r h A

h M :
r,A h

Xi

c,=M,

: !s
M) :s

^ :(s^:
r,A h

!s A
(share

, . . . , xn •

(MN)
X ' ^S

x,y as
v- • I ,

= Mn):

A h N :
: t

V : Is h
M i n N)

\- N :t
It

s

N :t
: t

linear logic. For instance, the rules for share and dispose correspond to the proof
rules generally called contraction and weakening respectively, while those for store
and fetch correspond to the LL rules called promotion and dereliction. Due to the
presence of explicit rules for weakening and contraction - the rules for type-checking
dispose and share - one can easily see that the free variables of a well-typed term
are exactly those contained in the type assignment. A particular note should be
taken of the form of the rule for store; this operation puts the value of its body
with bindings for its free variables in a location that can be shared by different terms
during reduction - the type changes correspondingly from t to It. The construct
(fetch M) corresponds to reading the stored value - the type changes from \t to t.

There may be other ND presentations of LL on which one could base a type
system. It is our belief that results in this paper are robust with respect to the exact
choice of term assignment and type-checking rules. All of the results in this paper
- including negative results that say that values of linear type may have more than
one pointer to them - hold in the system described in Chirimar et al. (1992), and
we expect that they are true for the languages described in Lincoln and Mitchell
(1992) and Mackie (1991).

3.2 Programming language based on linear logic

To fully realize the ideas of LL as the basis for a programming language, it is essential
to go beyond the core language. First of all, the language could be extended to one
that includes the linear logic connectives for pairing and sums, namely tensor ®, plus
©, and with &. Suitable ND proof rules for these connectives and term assignments
for proofs using these rules are described in several places (Mackie, 1991; Lincoln
and Mitchell, 1992; Benton et al., 1992, 1993). A more challenging question is how
to extend the language to include constructs for which the use of the Curry-Howard
correspondence is less useful as a guide. Examples that fall in this category are arrays,
general recursive datatypes involving linear implication, and recursive definitions of

https://doi.org/10.1017/S0956796800001660 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001660

206 J. Chirimar et al.

Table 3. Typing rules for non-logical constructs.

\- n : Nat h true, false : Bool

r h M : Nat T I- M : Nat
T h (succ M) : Nat T h (pred M) : Nat

r I- M :Nat T \- M : !(!s-os)
T h (zero? M) : Bool T h (fix M) : s

T h L : Bool A \- M :s ^ \- N :s
r,A I- (if L then M else N) : s

functions. In this paper we treat only recursive function definitions; the question of
the proper treatment of recursive definitions in an LL-based language is likely to be
simpler than that of general recursive datatypes, and more fundamental than that
of arrays.

Our language is essentially a synthesis of PCF (Plotkin, 1977; Scott, 1993) and
the term language for encoding LL natural deduction proofs. The types are given
by the following grammar:

s : :=Nat | Bool | (s -o s) | !s

Types without leading !'s, e.g., Nat and (Nat -o Bool), are called linear and those of
the form !s are called non-linear. We use the letters s, t, u, and v to denote types.
The set of raw terms in the language is given by the grammar

M ::= x\ (/be : s. M) \ {MM) \

n | true | false | (succ M) | (pred M) | (zero? M) |

(if M then M else M) | (fix M) |

(store M where x\ = M\,...,xn = Mn) | (fetch M) |

(share x,y as M in M) \ (dispose M before M)

where the letter x denotes any variable, and n denotes a numeral in {0,1,2,,...}. The
last four operations correspond to the special rules of linear logic; the other term
constructors are those of PCF. The usual definitions of free and bound variables for
PCF also apply here for the first three lines of the grammar.

The typing rules for our language are given by combining Tables 2 and 3. Two
of these rules deserve special explanation. First, the rule for checking the expression
if L then M else N checks both branches in the same type assignment, i.e. the
terms M and N must contain the same free variables. This is the only type-checking
rule that allows variables to appear multiple times; it does not, however, violate
the intuition that variables are used once, since only one branch will be taken
during the execution of the program. (If we had the linear connective © in the
language, a similar type-checking rule would be needed.) Second, the typing rule for

https://doi.org/10.1017/S0956796800001660 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001660

Reference counting interpretation of linear logic 207

Table 4. Interpreting the linear core.

(M N)\ic

Mtyd Nile M$d P[x,y:=d]\ic
(dispose M before N) \$ c (share x,y as M in P) J) c

M i f l c i . . . M . f l c .
(store N where *i = M\,...,xn = Mn) ^ (store iV[xi := C!,. . . ,xn := cn])

M <| (store AQ N \j c
(fetch M) V c

recursions has a slightly mysterious form: the type of M must be a !'ed function
whose argument itself must be of ! type. Both !'s are needed because of a simple
observation: the formal parameter of a recursive definition must be share'd and
dispose'd if there is to be anything interesting about it. Consider, for example, the
rendering of the program of Table 1 into our language:

(fix (store (Xadd : !(!Nat-oNat-oNat). Xx : !Nat. Xy : Nat.
share w,z as x in

if zero? (fetch w)
then dispose z before dispose add before y
else (fetch add) (store (pred (fetch z))) (succ y))))

(store 2) 1

(where some liberties have been taken in dropping a few of the parentheses to
improve readability). The recursive function add, whose type is (!Nat—oNat—oNat),
gets used only in one of the branches; thus, the recursive call must have a non-linear
type, accounting for the second ! in the type of M. The first ! in the type of M is
needed because we will interpret recursion via a cycle as in Figure 2.

The definition of the addition function is a prototypical example of how one
programs recursive functions in this language. In fact, both the high-level and
low-level semantics will only interpret recursions (fix M) where M has the form

(store (A/ : !s -o t. Xx : s. M) where xi = M\,...,xn = Mn).

This restriction is closely connected to the restriction on interpreting recursion
mentioned in the previous section; the only difference here is the occurrence of the
store. As before, this restriction is not essential, but it does simplify the semantic
clause for the recursion without compromising the way programs are generally
written.

3.3 Natural semantics

Tables 4 and 5 give a high-level description of an interpreter for our language,
written using natural semantics. A natural semantics describes a partial function |(
via proof trees. The notation M § c, read 'the term M halts at the final result c\

https://doi.org/10.1017/S0956796800001660 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001660

208 J. Chirimar et al.

Table 5. Interpreting the PCF extensions.

true v true

M tyn
(succ M) § (« +

(zero? M)

L § true

1)

)
\i true

A* Vc
(if L then M else N)ii

false

(pred

c

M1

\i false « 0 n

(pred M) 11 0

(zero? M) V false

L V false N tyc
(if L then M else N) |> c

ci,...,xn :=cn]
(fix (store (Af.Ax. M) where xi = M\,...,xn = Mn))

0 (Ax. M')[/ := (store (fix (store Af. Ax. M')))]

is used when there is a proof from the rules with the conclusion being M § c. The
terms at which the interpreter function halts are called canonical forms; it is easy to
see from the form of the rules that the canonical forms are n, true, false, (kx. M),
and (store M).

The natural semantics in Tables 4 and 5 describes a call-by-value evaluation
strategy. That is, operands in applications are evaluated to canonical form before
the substitution takes place. A basic property of the semantics is that types are
preserved under evaluation:

Theorem 1 (Subject reduction)
If-\- M : s and M § c, then \- c : s.

The proof can be carried out by an easy induction on the height of the proof tree
ofMDc.

4 Semantics

The high-level natural semantics is useful as a specification for an interpreter for our
language, and for proving facts like Theorem 1. One would not want to implement
the semantics directly, however: explicit substitution into terms can be expensive,
and one would therefore use some standard representation of terms like closures or
graphs in order to perform substitution more efficiently. But there is another problem
with the high-level semantics: it does not go very far in providing a computational
intuition for the LL primitives in the language. For example, the dispose operation
is treated essentially as 'no-op'. As such, there is no apparent relationship between
these connectives and memory; indeed, the semantics entirely suppresses the concept
of memory.

In order to understand what the constructs of linear logic have to do with memory,
we construct a semantics that relates the LL primitives to reference counting. In this
semantics, the linear logic primitives dispose and share maintain reference counts.
The basic structure of the reference-counting interpreter is the same as the one

https://doi.org/10.1017/S0956796800001660 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001660

Reference counting interpretation of linear logic 209

outlined earlier. Environments, values, and storable objects have the same definition
as before. Because we now want to maintain reference counts, however, the definition
of stores must change. A store is now a function

a : Loc -> (N x Storable),

where the left part of the returned pair denotes a reference count. Abusing notation,
we use a(l) to denote the storable object associated with location /, and <J[1>—>S] to
denote a new store which is the same as a except at location /, which now holds the
storable object S with the reference count of / left unaffected. The reference count
of a cell is denoted by refcount(/, a). The domain of a store a is the set

dom(ff) = {/ € Loc : refcount(/,ff) > 1}.

The change in the definition of 'store' forces an adjustment in the definition of
'allocation relation'. A subset R of the product (Storable x Store) x (Loc x Store)
is an allocation relation if, for any store a and storable object S, there is an /' and
a' where (S, a) R (I', a') and

• /' ^ dom(ff) and dom(a') = dom(cr) U {/'};

• for all locations / G dom(a), a(l) = a'{I) and refcount(/, a) = refcount(/,a');
and

• <T'(/') = S and refcount(/',<r') = 1.

The basic structure underlying a store may be captured abstractly by a graph.
Formally, a graph is a tuple (V, E,s, t) where V and E are sets of vertices and edges
respectively and s, t are functions from E to V called the source and target functions
respectively. (Note that there may be more than one edge with the same source and
target; such 'multiple edge' graphs are sometimes called multigraphs.) Given v G V,
the in-degree of v is the number of elements e G E such that t(e) = v. A vertex v is
reachable from a vertex v' if v = v' or there is a path between them, that is, there
is a list of edges e\,...,en such that v' = s(e\), v = t{en) and t(et) = s(e,+i) for each
i < n.

A memory graph <§ is a tuple {V,E,s,t,[p\,...,pn]) where (V,E,s,t) is a graph
together with a list of functions p, such that each p, is a function whose domain is
a finite subset of variables and whose codomain is V. The functions p, are called
the root set of the memory graph. Given v € V and p,, let \p~\v)\ be the number of
elements x in the domain of p, such that p,(x) = v. The reference count of a vertex
v G V is the sum

n

in-degree(i;) J

A vertex in a memory graph is said to be reachable from p, if it is reachable from
an element in the range of p,.

A state is a triple (7, p, a) where 7 is a list of locations, p is a list of environments
and a is a store. It is assumed that the set of locations in 7 and the range of each
environment in p are contained in dom(o-).

https://doi.org/10.1017/S0956796800001660 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001660

210 J. Chirimar et al.

root set

Fig. 3. A memory graph.

Definition

If S = (7,p,a) is a state where 7 = [l\,...,ln] and p = [p\,...,pm], then the memory
graph ^(S) induced by S is defined as follows. The vertices of the graph are the

locations in dom(ff), and the edges are determined by the following definition.

• If I € dom(o-) is such that a{l) = susp(/ ') or a(l) = r ec (/ ' , /) , there is an edge

from I to I'.

• Suppose I G dom(o-) is such that a(l) = closure(iV, p), recclosure(A/', p) or

thunk(N,p). Then for every x € dom(p), there is an edge from I to p{x).

Let f : { x i , . . . , x n } —» V be given by f : x,-

graph is represented by the list [f,pi,...,pm

/,-. The root set of the induced memory

For instance, (l,p,(?) where dom(p) = {x}, p(x) = I", a{l) = thunk(M, [y,z !-»• /']),
<T(/') = 3, a(l") = susp(/'"), and <r(l'") = true induces the memory graph in Figure 3.
We will abuse notation and sometimes write ^(<r) for the graph induced by a alone
(with no root set).

We are primarily concerned with states that satisfy a collection of basic invariants.

Definition
A state S = {Up,a) is count-correct if, for each I € dom(<r), refcount(/,a) is equal to
the reference count of I in

Definition
A state S = (J,p,a) is called regular, written 9?(S), provided the following conditions
hold:

911 S is count-correct.
912 dom(ff) is finite.
9t3 For each I e dom(cr), if a {I) = thunk(M,p), then refcount(/,<r) = 1.
9J4 A cycle in the memory graph induced by S arises only in the form of a rec and

recclosure as in Figure 2: that is, it has two nodes /o and l\ such that O(IQ) =
rec(/i,/) and a(h) = recclosure(Ax. M,p[f <—>• k])for some f, x, M, and p.

https://doi.org/10.1017/S0956796800001660 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001660

Reference counting interpretation of linear logic 211

9?5 For each I e dom(o-), if a (I) = thunk(M,p), then the domain of p is the set of
free variables of M, and M is typable. Similarly, if a{1) = closure(/ix. M,p) or
recclosure(/bc. M,p), then the domain of p is the set of free variables of kx. M,
and kx. M is typable.

5R6 For each I in the list 1, a{l) is not a thunk. For each p in the list p and x S dom(p),
<r(p(x)) is not a thunk. Finally, if a (I) = closure(AT,p), recclosure(N,p), or
thunk(iV,p) and x G dom(p), <r(p(x)) is not a thunk.

Here, a term M is said to be typable if there is some type context T and type t
such that F h M : t. Most of the invariants are self-explanatory with the possible
exceptions of 9?3 and 9?4. The invariant *R3 allows us to perform an 'in-place
update' when evaluating a thunk, and thus allows for some simplification of the
operational semantics. The invariant 9?4 restricts the kind of cycles that may appear
in the store to be only those created by evaluating recursive function definitions.
Arbitrary cycles cause a problem in the definition of some of our primitives for
reference-counting (cf. dec-ptrs below), but fortunately the functional character of
the language prevents the programmer from creating arbitrary cycles.

It is convenient to abuse notation slightly in denoting states by writing locations,
environments, and store without grouping them as in the official definition. For
example, (/i,/2,p,cr,7,p) should be read as (/i :: fe :: 7,p :: p,<x) (where :: is the 'cons'
operation that puts a datum at the head of a list). There is no chance of confusion
so long as the lexical conventions distinguish the parts of the tuple, and the locations
and environments are properly ordered from left to right. However, the order of
these lists is irrelevant for regularity: if 9?(7,p, o) and 7',p' are permutations of 7 and
p respectively, then 9?(7', p', a). We will use this fact without explicit mention.

4.1 Basic reference-counting operations

Our interpreter will need four auxiliary functions to manipulate reference counts.
Two of these functions, inc and dec, increment and decrement reference counts. More
formally, inc(/, a) increments the reference count of/ and returns the resultant store,
while dec(/, <x) decrements the reference count of / and returns the resultant store.
The other two operations, inc-env(p, a) and dec-ptrs(/, a), increment or decrement
the reference counts of multiple cells. The formal definition of the first of these is

where the domain of p is {xi , . . . ,xn}, and
(T) = inc(p(xi),(j)

inc-env(p, a) =

an = inc(p(xn),crn_!)

In words, inc-env(p, a) increments the reference counts of the locations in the range
of p and returns the resultant store. Note that a location's reference count may be
incremented more than once by this operation, since two variables x,, xj may map
to the same location / according to p.

The operation dec-ptrs(/, a), which also returns an updated store, first decrements
the reference count of location /. If the reference count falls to zero, it then recursively

https://doi.org/10.1017/S0956796800001660 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001660

212 J. Chirimar et al.

Table 6. The Definition of dec-ptrs.

dec-ptrs(/, a) = <

'dec(/,<r)
dec-ptrs(/', dec(/, a))
dec-ptrs-env(p, dec(/, a))
dec-ptrs-env(p, dec(/, o))

dec-ptrs-env(p — / ,
dec(/',dec(/,dec(/,CT))))

dec-ptrs-env(p — / ,
dec(/',dec(/,dec(/,ff))))

if <J(/) = «, true, or false
if a(l) = susp(/'), refcount(/, a) = 1
if «•(/) = thunk(M,p), refcount(/,<r) = 1
if o(l) = closure(Ax. M,p),

refcount(/, a) = 1
if a{l) = recclosure(Ax. N,p),

() (/)
refcount(/, a) = 2, refcount(/',a) = 1

ifff(/) = rec(/'J),
<j(/') = recclosure(Ax. N,p),
refcount(/, a) = 2, refcount(/',«j) = 1

otherwise

dec-ptrs-env(p, a) =

where the domain of p is {x\,...,xn}, and
a\ = dec-ptrs(p(xi), a)

<jn = dec-ptrs(p(xn), (!„_,

1

1

2

1

0

0

1

1

Fig. 4. An example of the dec-ptrs operation.

decrements the reference counts of all cells pointed to by /. The formal definition
appears in Table 6; an example appears in Figure 4 where the left side of Figure 4
(assumed to be part of the graph of the store a) is transformed into the right side
by calling dec-ptrs(/, a). In the definition, p \ P is the restriction of the environment
p to the free variables of P, and p — f is the environment with domain dom(p) — {/}
such that p{x) = {p — f)(x) for all x € dom(p) — {/}. The operation dec-ptrs(/, a)
is the single most complex operation used in the interpreter. Other operations are
'local' to parts of the memory graph and do not require a recursive definition. A
key characteristic of our semantics is the fact that dec-ptrs(/, a) is only used in the
rule for evaluating (dispose M before N).

The basic laws that capture the relationships maintained by the allocation,
reference-counting, and update operations on states are given in Table 7. Most
of the laws are proven in the appendix, but we give the proof for the Attenuation
Law Al here to show how the proofs go. Suppose 9?(/,7, p,o), refcount(/, a) = 1
and a(l) = closure(N,p), recclosure(N,p), or thunk(N,p). Note first that the state
S' = (l,p,p,dec(l,a)) is count-correct: the environment p has been placed in the
root set, accounting for the edges coming out of the closure or thunk which has now
disappeared from the memory graph. Thus, property 9U holds of state S'. Since
dom(ff) 3 dom(dec(/, a)), each of the properties 9?2-5R5 follow directly from the

https://doi.org/10.1017/S0956796800001660 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001660

Reference counting interpretation of linear logic 213

Table 7. Memory graph laws.

Attenuation Laws Suppose 9J(/,7, p, a) and refcount(/, a) = 1.

Al If a(l) = closure(N,p), recclosure(iV,p), or thunk(N,p), then 9?(7,p, p, dec(/, a)).
A2 If a(l) = susp(/') and a(l') = thunk(N,p), then 9?(7,p,p,dec(/',dec(/,<T))).

Laws of Decrement
Dl If 95(/, 7, p, a) and a(l) is a constant, then 9?(7, p, dec(/, a)).
D2 If 9?(/,7,p,<r) and refcount(/,a) + 1, then 9?(7,p,dec(/,a)).
D3 If 9t(/, 7,p,<r), then <R(7, p, dec-ptrs(/, <r)).

Laws of Increment
11 If 9?(7, p, a), I e dom(o-), and a{l) is not a thunk, then <R(/,7,p, inc(/,<r)).
12 If 9?(/,p, a), p(x) e dom(iT) for all x e dom(p), and each a{p(x)) is not a thunk,

then 9?(7,p,p, inc-env(p,<r)).
Environment Law

E Suppose x <£ dom(p). Then 3{(lJ,p,p,a) iff 9?(7,p[jc>-» /],p,(j).
Allocation Laws

Nl If 9?(7, p,a) and (/',ff') = new(c,ff) for some constant c, then 9?(/', 7, p, <T')-
N2 If N is typable, 9?(/,p,p, cr), and (/', a') is equal to new(closure(iV,p), a) or

new(recclosure(iV, p), CT) where FV(N) = dom(p), then 9J(/',7,p, o1')-
N3 If JV is typable, 9?(7, p, p, <r), (/0,<T0) = new(thunk(iV,p),o-) where FV(N) = dom(p),

and (I, a') = new(susp(/0), a0), then 9?(/', l,p,a').
Update Laws

Ul Suppose S = (l'~l,p,a) and 9J(S) and a(l) is a constant. If a (I1) =
recclosure(/lx. N,p[f>-> /]), then 9?(/',7,p,inc(/', <;[/>-• rec(/',/)])). If / is not reach-
able from /' in <SS(S), then 5R(/',/,p,inc(/',ff[/i-> susp(/')])).

U2 If 9?_(/, /, p, a), refcount(/,<r) ^ 1, tr(/) = susp(/'), and a {I') = thunk(W,p), then
9?(p, 7, p, dec(/', dec(/, a [1 >-> c]))).

hypothesis. Finally, *R6 holds because, by hypothesis, for any x e 6om(p), a(p(x))
is not a thunk. Thus, 9f(S'). The property is called an 'attenuation law' because
pointers previously held inside the store are drawn out to the root set.

The next goal is to define an interpreter for the LL-based programming language.
To understand the interpreter it is essential to appreciate how the invariants influence
its design. We therefore describe the theorem that the interpreter is expected to
satisfy, and mingle the proof of the theorem with the definition of the interpreter
itself. The interpreter is a function i n t e rp which takes as its arguments a term M,
an environment p, and a store cr. It is assumed that the domain of p is the set of
free variables in M and that the range of p is contained in the domain of a. The
result of in terp(M, p, a) is a pair (/', a') where a' is a store and /' is a location in
the domain of a' such that o\l') is a value, which can be viewed as the result of
the computation. We use a binary infix @ for appending two lists. The theorem is
stated as follows:

Theorem 2
Let S = (p,a,l,p) be a state and suppose M is a typable term. If 9J(S) and
in te rp(M,p ,a) = (I', a'), then <Si(l',o'j,p).

Moreover, ifp = p\@p2, 7 = 7i@/2 and I e dom(o-) is not reachable from p :: p\ or
1\ in the memory graph induced by S, then the contents and reference count of I remain

https://doi.org/10.1017/S0956796800001660 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001660

214 J. Chirimar et al.

unchanged and I is not reachable from p\ or I' :: ~l\ in the memory graph induced by
(l',o'J,p).

The first part of the theorem says that regularity is preserved under execution of
typable terms. The second part of the theorem expresses what we will call the
reachability property. The special case of interest says that the evaluation of a
program M in environment p and store a does not affect locations in dom((j) that
are not reachable from p. The extra complexity of the statement is required to
maintain a usable inductive hypothesis in the proof of the property. A simplified
version of Theorem 2 can be expressed as follows:

Corollary 3
Suppose M is a closed, typable term. If interp(M, 0,0) = (/', a'), then 9?(/', a').

The assumption that M is typable is crucial in the proof of the theorem, because
untypable terms may not maintain reference counts correctly. For instance, the term

(Xx. (dispose x before x)) (store 1)

would cause a run-time error in the maintenance of reference counts - after the
dispose, we would try to access a portion of memory with reference count zero and
get a 'dangling pointer' error. This example shows that untypable terms may cause
premature deallocations. Another untypable term

{Xx. (share y,z as x in (dispose y before 2))) (store 1)

causes a 'space leak', i.e. the reference count of the cell holding (store 1) is still
greater than zero even though it is garbage at the end of the execution.

It is also worth noting, however, that 'typability' is a sufficient condition and not a
necessary condition. One can invent a 'syntactic linearity' condition from the typing
rules by simply considering only one type U and focusing only on variables. The
typing rule for application, for instance, would be

T \- M :U A \- N :U

T,A h {M N):U

and the term

Xx : U. (share M,casx in (u v))

would be typable. Of course, the resultant language would not be free from run-time
type errors, but one could prove Theorem 2 using this notion of 'syntactic linearity'.
The advantage of the LL-based type system over 'syntactic linearity' comes in the
avoidance of run-time type errors. Nevertheless, it may interesting to study 'syntactic
linearity' in its own right.

4.2 Interpreting the linear core

The proof of Theorem 2 is by induction on the number of calls to the interpreter.
The proof proceeds by considering each case for the program to be evaluated.

The interpretation of a variable is obtained by looking up the variable in the
environment:

https://doi.org/10.1017/S0956796800001660 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001660

interp((P
l e t (/„,

('.,

2), P,
ffo) =
O\) =

°) =
interp(P,
interp(Q,

P
P

P,
Q,

Reference counting interpretation of linear logic 215

(1) interp(x, p, a) = (p{x), a)

That the store (p(x),a'J,p) is regular is a consequence of the Environment Law E
because of the assumption that the domain of p is {x}. The reachability property is
clearly satisfied, since the output store is the same as the input store.

To evaluate an abstraction we create a new closure, place it in a new cell, and
return the location together with the updated store:

(2) interp(Ax. P, p, a) = new(closure(^x. P, p), a)

To show regularity of the new state, suppose (/', a') = new(closure(Ax. P,p),a); then
9?(/', a',I, p) by Allocation Law N2. The reachability property is satisfied because
the output store differs from the input store only by extending it.

The evaluation of an application is given as follows:

(3)
a)
a0)

in case <TI(/0) of closure(Ax. N, p') or recclosure(Ax. N, p') =>
i f refcount(/0, a{) = 1
then interp(JV, p'fxi-*/,], dec(/0, <Xi))
e l se interp(iV, p'[x *->/,], inc-env(p', dec(/0, <xi)))

The reader may compare this rule to the rule for application given above. The key
difference in the semantic clauses is the manipulation of reference counts: in the
rule here, a conditional breaks the evaluation of the function body into two cases
based on the reference count of the location that holds the value of the operator,
and each branch of the conditional performs some reference-counting arithmetic.
The resulting semantic clause looks similar to a denotational semantics such as that
given in Hudak (1987), where information about reference counts is included in
the semantic clauses. Note that the environment p has been split between the two
subterms P and Q. The fact that (P Q) is typable implies that p = (p | P)U(p | Q). In
various forms this sort of property will be used repeatedly in the semantic clauses.

To prove the preservation of regularity of the state for application, we start
with the assumption that 9?(p, a,7,p). This is equivalent to 9?(p | P,p \ Q,a,l,p).
Now 9?(/0, p | Q, oo,l,p) and yi(li,lo,aiJ,p) both hold by inductive hypothesis (let
us abbreviate 'inductive hypothesis' as 'IH'). Now, if refcount(/0,cri) = 1, then
9?(p',/i,dec(/o,ffi),7,p) holds by Al, so 9i(p'[x>-> /1])dec(/o,ffi),7,p) holds by E.
Hence regularity follows from IH. If, on the other hand, refcount(/o,<f\) =£ 1, then
9?(p'[xi—• /i],inc-env(p',dec(/o,ffi)),7,p) follows from D2, 12, and E, so we are done
by IH.

To see that the reachability property holds for the interpretation of application,
suppose / e dom(<r) is unreachable from p :: p\ where p = p\@p2 and unreachable
from 7i where 7 = 7i@72- If / is unreachable from {l\,p :: pi), then it is unreachable
from (l\,{p\P) :: (p\Q) ::pi), so, by IH, it is unreachable from (/0 ::li,(p\Q) - P i)
in the memory graph induced by the state resulting from the evaluation of P. A
second application of IH allows us to conclude that it is also unreachable from
(h '•'• /o :: 7i,pi) in the memory graph induced by (/i,/o,ffi,7,p). By the definition
of the memory graph, this implies that / is unreachable from p' as well, so it is

https://doi.org/10.1017/S0956796800001660 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001660

216 J. Chirimar et al.

unreachable from Ch,p'[x>—* ' i],pi) in the memory graphs induced by the states
(p'[xi-* /i],dec(/o,<Ti),7,j5) and (p'[xi-> /,],inc-env(p',dec(/0,o-i)),7,p). The desired
conclusion therefore follows from IH. The proof of the reachability is similar for all
of the remaining cases, so we will omit arguing it in the rest of the discussion.

The expression (store N where xi = M\,...,xn = Mn) is interpreted by first
evaluating the terms M\,...,Mn to locations l\,...,ln, building an environment that
maps x, to /, for all i, creating a thunk out of this environment and N, and finally
returning a location holding a suspension of this thunk:

(4) interp((store JV where xi = Mit...,xn = Mn), p, a) =
l e t (l\, <j\) = in terp(Mi, p\M\, a)

(L, on) = interp(M n , p\Mn, ffn_i)
p' = [xi , . . . ,xn >->/,,...,/„]
(/„+,, o-n+i) = new(thunk(N, p'), an)

in new(susp(/n+i), an+i)

To prove that the desired property is maintained, note that repeated application of
the inductive hypothesis allows us to conclude that SR(p',an,p,l). Let {U+i^n+i) =
new(susp(/n+i),ffn+i). Then ^(ln+2,an+2,p,l) by N3.

The fetch of a suspended object is the most complex of all the operations. It
must evaluate a thunk if the suspension holds one. The code is again similar to that
for the interpreter we examined earlier, but, in addition to the reference-counting
arithmetic, there is a clause dealing with recursion:

(5) interp((fetch P), p, a) =
l e t (/0, (To) = in te rp (P , p, a)
in case <To('o)

of susp(/i) =>
case ffo('i)

of thunk(R, p') =>
if refcount(/o, ffo) = 1
then interp(K, p', dec(/i, dec(/o, ffo)))
e l s e l e t (/2, O\) =

interp(/?, p', dec(/|, dec(/o, ffot'o •—* 0])))
in (l2, inc(/2) ffi[/0 i-» susp(/2)])))

=> i f refcount(/o, ffo) = 1
then (/,, dec(/0) a0))
else (/,, inc(/i, dec(/0, (r0)))

I rec(/,, /) => (/,, dec(/0, inc(/,, <70)))

By IH, we have 9?(/o> <TO,7, p)- Suppose <TO(/O) = susp(/i) and CTO('I) = thunk(/?,p').
If refcount(/o,cr0) = 1, then 9?(p',dec(/i,dec(/o,a^)),l,p) by A2 so we are done by
IH. Otherwise, refcount(/0,(7o) + 1, so by U2, <R(p',dec(/i,dec(/o,ffo[/o •->• 0])),7,p)
and so '•Rih, \nc(l2,o\[lo •—* susp(/2)])J,p) by IH and U l ; the reachability property
is used to ensure the applicability of Ul . More specifically for 5R4, in GQ the location
/o is not reachable from p' (because there are no loops of this form in a regular
state); thus, it is not reachable from h in o\ either, and so cri [/0'—>• susp(/2)] does
not create an illegal loop in the memory graph. The cases when oo(/i) is a value or
0o('o) = i-ec(/i,/) are left to the reader.

https://doi.org/10.1017/S0956796800001660 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001660

Reference counting interpretation of linear logic 217

The share command increments the reference count of a location:

(6) interp((share x,y as P in Q), p, a) =
le t (/o, ff0) = interp(P, p\P, a)
in interp(Q, (p\ Q)[x,y i-> /0], inc(/0, ffo))

Note first that 9?(/0, p | g, CT0, 7, p) by IH. By 9?6, a(/0) is not a thunk, so it follows
from II that 9?(/o, lo,p\ 6Jnc(/o, GO)J, P)- By the Environment Law E, it follows that
W((p | Q)[x,y t-» /o], inc(/o, <To),7,p), so the result follows from IH.

The dispose command decrements the reference count of a location. This requires
calculating the consequences of possibly removing a node from the memory graph
if the reference count of the disposed node falls to 0.

(7) interp((dispose P before Q), p, a) =
le t (l0, <70) = interp(P, p\P, a)
in interp(g, p \ Q, dec-ptrs(/0, ffo))

Now, Vl(lo,p\Q,ooJ,p) by IH, so 9?(p | 6,dec-ptrs(/0,ff0)J,p) by D3. The result
therefore follows from IH.

4.3 Interpreting PCF extensions

The interpreter evaluates a constant simply by creating a cell holding the value of
the constant.

(8) interp(n, p, a) = new(«, a)

(9) interp(true, p, a) = new(true, a)

(10) interp(false, p, a) = new(false, a)

That regularity is preserved for these cases follows immediately from Nl .
The rules for the arithmetic and boolean operations of PCF mimic the rules of

the high-level operational semantics.

(11) interp((succ P), p, <J) =
let (/o, <7o) = interp(P, p, a)
in new((To(/o) + 1, dec(/0) a0))

(12) interp((pred P), p, a) =
le t (/o, ffo) = interp(P, p, a)

n = ffo('o)
in if n = 0

then new(0, dec(/o, ffo))
else new(/i - 1, dec(/0, <TO))

(13) interp((zero? P), p, a) =
le t (/o, ffo) = interp(P, p, a)
in if ffo(/o) = 0

then new(true, dec(/o, ffo))
else new(false, dec(/o, ffo))

https://doi.org/10.1017/S0956796800001660 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001660

218 J. Chirimar et al.

To prove the desired property for the successor operation, note that 9?(/o, oo,7,/>)
follows from IH so we are done by Dl and Nl. Proofs for the other two cases are
similar.

The conditional statement has the expected form, but the reference count of the
condition must be decremented in each of the branches:

(14) interp(if JV then P else Q, p, a) =
le t (/0, (Jo) = interp(Af, p\N, a)
in if (To('o) = true

then interp(P, p \ P, dec(/o, Co))
else interp(g, p \ Q, dec(/0,

The IH implies 5t(/0, <JQ, I, p). Whether or not oo('o) = true, the desired conclusion
follows from Dl .

Finally, to interpret recursion, we will need a rule similar to the rule for interpreting
store.

(15) interp((fix (store (kf. kx. M) where X| = M\,...,xn = Mn)), p, a) =
l e t (/i, o\) = in terp(Mi , p\M\, a)

(L, On) = in terp(M n , p\Mn, <rn_,)
p' = [x, , . . . , *„>->• /],...,/„]
(/n+i, <7B+i) = new(0, an)
(ln+2, Gn+2) = new(recclosure(/lx. M, p'[f>-* ln+i]), ffn+i)

i n (ln+2, inc(/n + 2 , an+2[ln+i>-> rec (/ n + 2 , /)]))

As with the interpretation of store, repeated application of the IH and E implies
that 9?(p',an,l,p). By Nl, E, and N2, we therefore also have 9?(/n+2,on+2,1,p)- The
desired conclusion now follows from Ul.

5 Properties of the semantics

In order for the reference-counting interpreter to make sense, it must satisfy a
number of invariants and correctness criteria. In this section we describe these
precisely.

5./ No space leaks

As a short example of the kind of property one expects the semantics to satisfy, let
us consider how the idea that 'there are no space leaks' can be expressed in our
formalism. Given a state S = (7, p, a), we say that a location / is reachable from (7, p)
if it is reachable in ^(S) from some /, G 7 or from some pj G p. The desired property
can now be expressed as follows:

Theorem 4
Suppose (p, <T,7, p) is a regular state such that each I € dom(cr) is reachable from
(pj, p). If M is typable and in te rp(M, p, a) = (I1, a'), then every I € dom(a') is
reachable from (/', 7, p).

The theorem is proved by induction on the number of calls to the interpreter.

https://doi.org/10.1017/S0956796800001660 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001660

Reference counting interpretation of linear logic 219

5.2 Invariance under different allocation relations

If the design of the interpreter is correct, the exact memory usage pattern should
be unimportant to the final answers returned by the interpreter. Since the allocation
relation new completely determines memory usage (i.e. which cell (with reference
count 0) will be filled next), it should not matter which allocation relation is used.
We set this up formally as follows: if/ is an allocation relation, let interpy be the
partial interpreter function defined by using / in the place of new. Recall that the
environment and store with empty domains are denoted by 0. Then we would like
to prove something like the following statement by induction on the number of calls
to

If interp^(M,0,0) = (//,<?/), then interpg(M,0,0) = (lg,ag) for some lg,ag. Moreover, if
Oj(lf) = n, true, or false, then <?f(lf) = crg('g).

A naive induction runs afoul, though, since the interpreter can return intermediate
results that are neither numbers nor booleans. We therefore need to strengthen the
inductive hypothesis. If interpy returns a closure or suspension, the result returned
by interpg may not literally be the same: for instance, interp^ may return a
location holding susp(/o) and interpg may return a location holding susp(/i).
Nevertheless, these values should be the same up to a renaming of the locations in
the domain of the returned store GJ.

Formalizing the notion of when two stores are 'equivalent' up to renaming of
their locations can be done using the underlying graphs. Two stores are 'equivalent'
if their underlying graph representations are isomorphic via some function h, and
the values held at the cells are 'equivalent' under h. More formally,

Definition

Two states S = (Up,a) and S' = (l',p',a') are congruent if there is an isomorphism
h : ^(a) —> ^{a') such that for any I e dom(a), refcount(/, a) = refcount(h(/), a') and
for any I 6 dom(<r),

1. / / / = [/,,...,lm], then V = [h(h),...,h(lm)];

2. If p = [pi,...,pn], then p' = [p\,...,p'n] and for all 1 < i < n, dom(p,) =
dom(/9j) and for all x e dom(p,). h(Pi(x)) = p'i(x);

3. For all i, dom(p,) = dom(pj) and for all x e dom(p,). MPiM) — P;(x)-'
4. lfa(l) = n, true, or false, then a (I) = a'{h{l));

5. Ifa(l) = susp(/'), then a'(h(l)) = susp(/i(/'));

6. Ifa{l) = rec(/',/), then a'{h{l)) = rec(fc(/')J);
7. If a (I) = closure(/bc. P,p), then o'(h(l)) = closure(/tac. P,p'), dom(p) is equal

to dom(p'). and for any x € dom(p), p'(x) = h{p{x));
8. If a(l) = recclosure(lx. P,p), then o'{h(l)) = recclosure(2x. P,p'), dom(p) is

equal to dom(p'), and for any x S dom(p), p'(x) = h(p(x)); and
9. ifa(l) = tbunk(P,p), then a'(h(l)) = thunk(P,p'). dom(p) is equal to dom(p'),

and for any x G dom(p), p'(x) = h(p(x)).

https://doi.org/10.1017/S0956796800001660 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001660

220 J. Chirimar et al.

Then one may prove

Lemma 5
Suppose (/"', pf, p', Of) and [I", pg, p", erg) are congruent. If inter? f(M, pf, <rf) = (/£, a'f),
then i n t e rp JM,p g , a g) = (/' a') and the resultant states (l'f,I',p\cr'A and (/' /",p",a')
are congruent.

The proof is deferred to the appendix. From this lemma, the following theorem
follows directly:

Theorem 6
Suppose f and g are allocation relations. If interpy(M,0,0) == (//, oy), then
interpg(M,0,0) = (/g,crg). Moreover, ifof(lf) = n, true, or false, then oy(//) = cg(fg)-

5.5 Correctness of the interpreter

Finally, we need to verify that the reference-counting semantics implements the
natural semantics of Tables 4 and 5, i.e. evaluating a closed term of base type yields
the same result in either semantics. The proof proceeds by induction on the number
of steps in the evaluation (the height of the proof tree for the (=>) direction, and
the number of calls to interp for the (<=) direction). We again need an expanded
inductive hypothesis to carry out the proof, one in which we can relate the values
held in memory locations to terms. To this end, we define the extraction functions
valof(M,p,a) and valofcell(/,a). Intuitively, the function valofcell extracts a term
from the storable value held at location / in store a, and the function valof replaces
the free variables of M with the extracted versions of the cells bound to the free
variables according to p. The idea is easy to understand intuitively from an example.
Suppose, for instance, cell /0 holds thunk((dispose x before y), [x >-> li,y>->-1{[), l\
holds susp(/3), h holds 0, and l2 holds true in the store a. Then valofcell(/o,<r) =
(dispose (store 0) before true). A larger example appears in Figure 5 (where
reference counts have been ignored); if a is the store depicted there, then

valofcell(/, a) =
kf. {{(Xh. ly. (share h as huh2 in hi(h2 y))) f) (store ((Ax. x) true)))

Formal definitions for valof and valofcell are given by simultaneous induction in
Table 8 in the appendix. A similar definition is given in Plotkin (1975) for unwinding
a closure relative to an SECD machine state.

Since we will be interpreting terms of arbitrary type, the inductive hypothesis
must relate values returned by the natural semantics to values returned by the
reference-counting interpreter. The key definition missing here is the definition of
'related values'. One might attempt to prove that for closed terms M, M J) c iff
interp(M,0,0) = (I1,a') and valofcell(/',ff') = c. While this statement holds for
basic values, it does not hold for values of other types. The problem arises because
the reference-counting interpreter memoizes the results of evaluating under store's
whereas the natural semantics does not. For instance, evaluating the term

(Ax : !Nat. (share j i . zasx in if (zero? (fetch y)) then z else z)) (store (succ 5))

https://doi.org/10.1017/S0956796800001660 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001660

Reference counting interpretation of linear logic 221

c\osure(lh. Xy. (share h as hi,

closure^/, ((g /) x), [g H

susp(/i)

thunk((/true), [/

closure(Ax. x,

/12 in /ii

•*lt, x>-

- n)
0)

C12 >)), 0)

-U)

Fig. 5. Store for example of the valofcell operation.

in the natural semantics returns the value (store (succ 5)), whereas evaluating the
expression in the reference-counting semantics returns the value (after unwinding)
(store 6). The proof thus requires relating terms that are 'less evaluated' to terms
that are 'more evaluated'.

Definition
M > N, read 'N requires less evaluation than M', iff there is a context C[] such that
M = C[M'], N = C[c], M' is closed, and M' || c.

Here, C[] denotes a term with a missing subterm and C[M'] the term resulting
from using M' for that subterm. Let >* be the reflexive, transitive closure of >. This
relation is necessary in order to express the desired property:

Theorem 7
Suppose M is typable, dom(p) = FV{M), M' is closed, and M' >* valof(M,p,<r).
Suppose also that 9?(P, p, p', a).

1. If M' \i c, then there exist I', a' such that interp(M, p,<r) = (I1, a1) and c >'

2. If interp(M, p, a) = (/', a'), then there exists a c such that M' § c >'
valofcell(/>').

The extra assumptions about the state (l',p,p',a) - namely that it satisfies the
invariants above - are used in constructing an execution in the reference-counting
interpreter. The proof is deferred to the appendix.

6 Linear logic and memory

Let us now examine the question of the circumstances under which we are ensured
that a location holding a value of linear type will maintain a reference count of at
most one. In general, there is no guarantee that locations holding linear values will
always have a reference count of one during the evaluation of a program. Consider,
for example, the term

(Aw : !Nat. (share x,y as w in if (zero? (fetch y)) then x else x)) (store 5).

https://doi.org/10.1017/S0956796800001660 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001660

222 J. Chirimar et al.

During evaluation, a suspension is placed in a location /, which in turn holds a
pointer to a location /' holding a thunk containing the value 5. This location / is
then passed to w, and two pointers called x and y are then created by the share
which reference /. Pictorially,

msp(l')

1 thunk (5, [])

When the evaluation continues to the point of (fetch y), the contents of the location
/' are evaluated to a location /" holding 5, the suspension in / is updated to point to
/", and a pointer to I" is then passed to the evaluation of zero?. Pictorially,

1 susp (I")

I"

Thus, the cell containing 5 now has two pointers to it, even though it has linear
type, Nat.

Clearly the issue here is whether the location holding a linear value is accessible
from a location holding a non-linear one, like a susp. We would like a static
condition under which we know that this does not happen. This seems difficult
because, on the face of it, there are circumstances where a computation can alter
the memory graph so that a linear value is brought into a location that is referenced
by a non-linear value. Consider the term:

M = Xx : Nat. If : Nat-o!Nat. (store y where y = (/ x)) (1)

If N is a term of type Nat—o!Nat, then the evaluation of ((M 0) N) will create a
memory graph in which the location holding 0 has been brought into precisely the
circumstance above, so its reference count might be increased by pointers passed
through a susp. We need to know when this can happen if we are to have any way
to ensure that a linear value maintains a reference count of at most one.

There is some help on this point to be found in the proof theory of linear logic.
Note that the problem with term M in (1) relies on having a term N of type
Nat—o!Nat. From the standpoint of linear logic and its translation under the Curry-
Howard correspondence, this is a suspicious assumption, however. The proposition
A—o\A is not provable in LL, and the situation illustrated by M runs contrary to
proof-theoretic facts about what propositions are moved through 'boxes' in a proof

https://doi.org/10.1017/S0956796800001660 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001660

Reference counting interpretation of linear logic 223

net during cut elimination (Girard, 1987). This does not directly prove that a static
property exists for the LL-based programming language, but it does suggest that
there is hope.

To assert the desired property precisely, we will need some more terminology.
Let us say that a storable object is linear if it is a numeral, boolean, closure,
or recclosure and say that it is non-linear if it has the form susp(/), rec(/,/), or
thunk(M,p). We say that a location / is non-linear in store a if a(l) is a non-linear
object; similarly, a location / is linear in store a if a(l) is a linear object. The key
property concerns the nature of the path in the memory graph between a location
and the root set.

Definition
Suppose S = (l,a,l,p) is a regular state and I G dom((r). The location I is said to
be linear from / in S if there is a path p from I to I in ^(S) such that each /' on p
satisfies the following two properties:

1. o(V) is linear and
2. refcount(/', a) = 1.

Note that the two conditions satisfied by the path p could only be satisfied by a
unique path from / to /; if there were more than one such path, condition (2) could
not be satisfied. It will be convenient to say that a path satisfying these conditions
is linear. Given a regular state S = (p, a, I, p), we also say that / is linear from p in
S if there is an x in the domain of p such that there is a (unique) linear path from
p{x) to /.

To prove the desired property we will need to know some basic facts about
types and evaluation. For the high-level semantics we already expressed the Subject
Reduction Theorem 1 for the LL-based programming language. In conjunction with
the Correctness Theorem 7 we have a version of the result for the low-level semantics
as well:

Lemma 8
Suppose S = (l,aj,p) is a regular state, dom(p) = FV(M), h valof(M,/9,ff) : t, and
interp(M,p,a) = {l',(j'). Then h valofcell(/>') : t.

The theorem we wish to express says that if a program is evaluated in an
environment from which a location I is linear, then the value at the location is either
used and deallocated or not used and linear from the location returned as the result
of the evaluation. This statement is intended to formally capture the idea that a
location that is linear from an environment is used once or left untouched with a
reference count of one. Unfortunately, the assertion contains the term 'deallocate',
which needs to be made precise. If we assert instead that the reference count of the
location is 0 or linear from the result at the end of the computation, then there is a
problem in the case where reference count falls to 0 because the allocation relation
might reallocate the location / to hold a value that is unrelated to the one placed
there originally. This would make it impossible to assert anything interesting about
the outcome of the computation. To resolve this worry, we can make a restriction

https://doi.org/10.1017/S0956796800001660 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001660

224 J. Chirimar et al.

on the allocation relation insisting that / is not in its range. This assumption is
harmless in a sense made precise by Lemma 5. The result of interest can now be
asserted precisely as follows:

Theorem 9

Suppose S = {p,o,l,p) is regular, dom(p) = FV(M), and va\oi(M,p,a) is typable. If
I is linear from p in S, I is not in the range of new, and interp(M,p, a) = (/', a'),
then one of the following two properties holds of the regular state S' = (l',a'~l,p):

1. Either refcount(?, a') = 0, or
2. refcount(/, a') = 1 and I is linear from I' in S'.

Proof: The proof is by induction on the number of calls to interp. We exhibit
only a few of the key cases here and leave the others for the reader.

1. M = (P Q). The evaluation of M begins as "follows:

= closure(/bc. N,p') or recclosure(Ax. N,p').

The fact that / is linear from p means that it is reachable from exactly one of
p\P or p | Q. We consider the two cases separately.

(a) / is reachable from p\P. By the inductive hypothesis ('IH'), one of the
following two subcases applies:

i refcount(/, (To) = 0- By assumption, / is never reallocated by new, and
hence it follows that refcount(/, a') = 0.

ii refcount(/, co) = 1 and / is linear from IQ. Then in the memory graph,
there is a linear path

k = 'o>' i>- - -> '
(where we list only the locations associated with the path since the
fact the reference counts are all equal to one means that the edges
are uniquely determined). None of the locations /• can be reachable
from p | Q since that would imply that the reference count of at least
one of them is greater than one. By Theorem 2, the contents and
reference counts of the locations /• therefore do not change during the
evaluation of Q. Now, / is linear from IQ in (1\,IQ,G\,1,P) and <TI(/O)

has the form closure(lx. N,p') or recclosure(Ax. N,p'), so I must be
linear from p' in (p'[x H Zi],dec(/o,oi),l,p) as well. Since we know
that refcount(/o,o\) — 1, we conclude that

interp(N,p'[x~ /J,deepen)) = (I1,a')

and the desired conclusion follows from IH.

(b) / is reachable from p \ Q. By assumption, there is a linear path

https://doi.org/10.1017/S0956796800001660 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001660

Reference counting interpretation of linear logic 225

such that l'o is in the range of p | Q. None of the locations on this path
is reachable from p \ P because they all have reference count equal to
one. Thus, by Theorem 2, their values are unchanged by the evaluation
of P, and each /• is still unreachable from fo in <xo- By IH, there are
two possibilities regarding the regular state (/i,/o,ffi,7,p) obtained after
evaluating P and Q.

i refcount(/, <Ti) = 0. By assumption / is never reallocated by new, so
refcount(/,<r') = 0 as needed.

ii refcount(/, <Ti) = 1, In this case, the IH implies that there is a linear
path from h to I. There are now two subcases to consider: either
refcount(/o, CTO) = 1 or refcount(/o, 0o) > 1- We consider only the second
and leave the first to the reader. By laws D2, 12, and E, we know that
the state

S' = (p'[xi-> h],\nc-en\/(p',dec(lo,<Ti))~l,p)

is regular and it is not hard to check that / is linear from p'[x >-* h] in
S'. Since we must have

interp(N,p'[xi-> /t],inc-env(p',dec(/0,<7i))) = (/',<x')

we are done by IH.

2. M = (store N where xi = M\,...,xn — Mn). In this case, / is reachable from
exactly one of the environments p | M,. In the evaluation of M, we have

interpCMj, p \ Mx, a) = (h, o\)

interp(Mj, p \ Mt, a) = (/,-, at)

By IH, there are two possibilities for the regular state

(h,..., lh p | Afj+i, . ..,p\Mn, GU 7, p)

arising after the evaluation of M,: either the reference count of / is zero in <x,
or it is one and there is a linear path from /,- to /. If the first case holds, then
we are done, since / is not reallocated in the remainder of the computation,
and therefore the conclusion of the theorem is satisfied. On the other hand,
the second case is impossible: by Lemma 8, val of eel!(/,-, <T,-) has type \t and so,
since /, must be a value by Theorem 2, /, must be either susp(/") or rec(/",/).
This contradicts the assumption that / is linear from /,-. Therefore reference
count of / must be 0 in CT, and hence we are done, since new never reallocates
?.

3. M = (share x,y as P in Q). In the evaluation of M we compute

interp(P,p |P , f f) = (/O)ffo)
interp(Q,(p | Q)[x,y •-» l0], inc(/0,<r0)) = (/',o')

Now / is reachable for exactly one of the environments p\P or p\Q. We
consider the two cases separately.

https://doi.org/10.1017/S0956796800001660 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001660

226 J. Chirimar et al.

(a) / is reachable from p \ P. For the same reasons discussed in the case for
store above, IH implies that refcount(/, OQ) = 0, and thus we are done
since new never reallocates I.

(b) I is reachable from p \ Q. Then there is a linear path from p\Q to /
which, by Theorem 2, is unaffected by the evaluation of P. In particular,
/ is not reachable from fo, so it is linear from p \ Q in the regular state

y *-*• k], inc(/o,<TO),I,p) s o w e a r e d o n e by I H -

The remaining cases are treated similarly. •

To see an example of how the theorem can be applied to reasoning about proper-
ties that depend on the memory graph, suppose we want to evaluate add (store 2) 3
(where add is shorthand for the term in § 3) in the empty environment and empty
store. The key steps are

• add (store 2) evaluates to (/o,ffo) with oo(fo) = closure(/bc. N, p).
• 3 in (To evaluates to {l\,o\) such that <TI(/I) = 3.
• The body of add is evaluated with y mapped to l\.

At this point the conditions required for Theorem 9 are true. Hence we know that
the reference count of l\ does not exceed one (so long as it is not deallocated
and then reallocated). This implies that it is safe to update y in place during the
recursive call. Similar analysis applies to definitions of multiplication and other
recursive functions where we use a variable as an accumulator to store the result.
This technique of proof allows us to achieve goals like those for which Hudak (1987)
defined a collecting interpretation for reference counts.

7 Discussion

For this paper we have focused on a particular natural deduction presentation
of linear logic, the proposal of Benton, Bierman, de Paiva, and Hyland (1993).
Nevertheless, there is relatively little consensus on which proof system is the right
system for constructing a typed programming language. As we pointed out before,
substitutivity is one of the key technical properties for a proof system. Wadler (1993)
proposes a different approach than the one taken here, using a syntax of patterns
that yields a syntax with the substitutivity property. His approach also extends to
a presentation of LL using judgements of the form F ; A h s where T is a set of
'intuitionistic assumptions' (types of non-linear variables) and A is a multi-set of
'linear assumptions' (types of linear variables). Another approach to the substitutivity
problem has been to modify linear logic by adding new assumptions. For instance,
Filinski (1992) and O'Hearn (1991) propose taking \\A to be isomorphic to \A.
(From the perspective of this paper, such an identification would collapse two
levels of indirection and suspension into one and hence fundamentally change the
character of the language.) Finally, even if substitutivity is achieved, automatic type
checking or inference - an issue of clear importance in the design of a programming
language - may not be achievable. For instance, Abramsky's (1993) system, which
uses the sequent formulation of linear logic, satisfies substitutivity (the cut rule gives it

https://doi.org/10.1017/S0956796800001660 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001660

Reference counting interpretation of linear logic 227

automatically), but there is no clear means of doing type checking for his language.
Others (Mackie, 1991; Lincoln and Mitchell, 1992) have attempted to reconcile
substitutivity and type inference by proposing restricted forms of these properties.
For each of these proposals - particularly the one of splitting assumptions into
linear and intuitionistic assumptions - it would be interesting to see whether our
interpretation of LL as reference counting is robust; our preliminary investigations
suggest that it is.

It is also possible to fold reference-counting operations into the interpretation
of an ordinary functional language (that is, one based on intuitionistic logic). The
ways in which the result differs from the semantics we have given for an LL-based
language are illuminating. First of all, there are several choices about how to do
this. One approach is to maintain the invariant that interp is evaluated on triples
(M, p, a) where the domain of p is exactly the set of free variables of M. When
evaluating an application M = (P Q), for example, it is essential to account for
the possibility that some of the free variables of M are shared between P and Q.
This means that when P is interpreted, the reference counts of variables they have
in common must be incremented (otherwise they may be deallocated before the
evaluation of Q begins):

interp((P Q), p, a) =
let (/o, <TO) = interp(P, p \ P, inc-env(p \P np\ Q, a))

(h, <7i) = interp(Q, p\Q, a0)
in case <7|(/0) of closure(<ix. N, p') or recclosure(/bc. N, p') =>

if refcount(/o, <7i) = 1
then interp(Af, p'[x>—* li], dec(/o, <Ji))
e l s e interp(JV, p'[x *—>li], inc-env(p', dec(/o, Ci)))-

The deallocation of variables is driven by the requirement that only the free variables
of M can lie in the domain of p; this arises particularly in the semantics for the
conditional:

interp(if N then P else Q, p, a) =
l e t (/0, ffo) = interp(iV, p\N, inc-env(p|iV n (p\P U p\Q), a))

in if cro(/o) = t r u e

then in te rp (P , p\P, dec(/o, dec-ptrs-env((p|P) — (p\Q), (To)))
e l se interp(Q, p\Q, dec(/0, dec-ptrs-env((p|Q) — (p\P), aa))).

An alternative approach to providing a reference-counting semantics for an intu-
itionistic language would be to delay the deallocation of variables until 'the last
minute' and permit the application of interp to triples (M,p, a) where the domain
of p includes the free variables of M but may also include other variables. This
makes it possible to simplify the interpretation of the conditional:

interp(if N then P else Q, p, a) =
let (/o, ffo) = interp(N, p, a)
in if ffo('o) = true

then interp(P, p, dec(/o, ffo))
else interp(Q, p, dec(/o, (Jo))

but the burden of disposal then shifts to the evaluation of constants:

https://doi.org/10.1017/S0956796800001660 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001660

228 J. Chirimar et al.

interp(n, p, a) = new(n, dec-ptrs-env(p, a)).

The basic difference between a 'reference-counting interpretation of intuitionistic
logic' following one of the approaches just described versus reference counting and
linear logic is the way in which the LL primitives make many distinctions explicit
in the code. The LL primitives make it possible to describe certain kinds of 'code
motion' that concern when memory is deallocated. For example, the program

Xx : s. if B then (dispose x before P) else (dispose x before Q)

can be shown to be equivalent in the higher-level semantics to

Xx : s. (dispose x before if B then P else Q)

but the latter program can be viewed as preferable in our reference-counting seman-
tics because it may deallocate the locations referenced by x sooner. (In fact, the LL
proofs corresponding to these terms are equivalent by commutative conversions.)
As another example, the program

Xx : s. (dispose y before M)

is equivalent to

(dispose y before Xx : s. M)

if x and y are different variables. The transformation may be significant if the value
of y would be deallocated rather than needlessly held in a closure.

The question of whether an LL-based language could be useful as an intermediate
language for compiler analysis for intuitionistic programming languages is certainly
related to the techniques for translating between them. By analogy, there have
been various studies of the subtleties of transformation to continuation-passing style
(Lawall and Danvy, 1993, is a one recent example). A closer analogy is the translation
of a language meant to be executed in call-by-name into a call-by-value language
with primitives for delaying (store'ing) and forcing (fetch'ing). There is a standard
translation for this purpose and many of the issues that arise for that translation
also arise in the translation from intuitionistic to linear logic. For instance, a pair of
programs that are strongly reminiscent of those in Table 1 appears in the discussion
of the ALFL compiler in Bloss et al. (1988) based on a sample from the test
suite in Gabriel (1985). This problem is addressed by the technique of strictness
analysis (Abramsky and Hankin, 1987): with strictness analysis the translation can
be made more efficient or the translated program can be optimized. There are several
techniques known for translating intuitionistic logic into linear logic. To illustrate,
consider the combinator S (here written in SML syntax):

fn x:(s -> t -> u) => fn y: (s -> t) => fn z:s => (x z) (y z) .

When we apply one of Girard's translations (Girard, 1987), the result (using a syntax
similar to the one in Table 1) is the following program:

fn x : ! (! s -o !t -o u) => fn y : ! (! s -o t) => fn z:!s =>
share z l ,z2 as z in

https://doi.org/10.1017/S0956796800001660 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001660

Reference counting interpretation of linear logic 229

((fetch x) (store (fetch z l)))
(store ((fetch y) (store (fetch z2))))

However, another program having S as its 'erasure' is

fn x : (! s -o t -o u) => fn y : (! s -o t) => fn z : ! s =>
share zl ,z2 as z in (x zl) (y z2)

which is evidently a much simpler and more efficient program. (This example also
appears in Abramsky, 1993.) An analog of strictness analysis that applies to the LL
translation is clearly needed if an LL intermediate language is to be of practical
significance in analyzing 'intuitionistic' programs.

Our reference-counting interpreter and the associated invariance properties can
easily be extended to the linear connectives &, ®, and e (although it is unclear, in the
present framework, how to handle the 'classical' connectives). Extending the results
to dynamic allocation of references and arrays is not difficult if such structures do
not create cycles. For instance, it can be assumed that only integers and booleans
are assignable to mutable reference cells. To see this in a little more detail, if we
assume that o is Nat or Bool, then typing rules can be given as follows:

T\- M :o T\-M : ref(o) A h N : o F h M : ref(o)
T I- ref (M) : ref (o) r, A h M := N : ref (o) T \-\M : o

To create a reference cell initialized with the value of a term M, the term M is
evaluated and its value is copied into a new cell:

(16) interp(ref(M),p,<r) =
l e t (/o, 0o) = interp(JVf, p, a)
i n new((TO(/o),dec(/o,<TO))

The location /o holds the immutable value of M; a new mutable cell must be created
with the value of M as its initial value. Assignment mutates the value associated
with such a cell:

(17) interp(M := N,p,a) =
le t (/0, ff0) = interp(JVf, p \ M, a)

(/i,ffi) = interp(JV,p| JV,ff0)
in (/0,dec(/i,ff|[/0i->ffi(/i)]))

To obtain the value held in a mutable cell denoted by M, the contents of the cell
must be copied to a new immutable cell:

(18) interp(!M, p, a) =
le t (k,a0) = interp(M,p,<T)
in new(o-0(/o),clec(/o,(To))

Although the code for creating a reference cell and the code for dereferencing look
the same, they are dual to one another in the sense that cell creation, ref (M), copies
the contents of an immutable cell to a mutable one while dereferencing, !M copies
the contents of a mutable cell to an immutable one. The language designed in this
way is similar to Scheme with force and delay primitives, but with restrictions like
those SML places on the types of values that are mutable. The restriction on the
types of elements held in reference cells is similar to those made for block-structured

https://doi.org/10.1017/S0956796800001660 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001660

230 J. Chirimar et al.

languages, which do not permit higher-order procedures to be assigned to variables
(reference cells).

We have demonstrated that a language whose design is guided by an analog
of the Curry-Howard correspondence applied to linear logic can be interpreted as
providing fine-grained information about reference counts in the memory graphs
produced by the program during run-time. As such, the LL-based language may be
useful for detecting or proving the correctness of forms of program analysis that
rely on reference counts of nodes of memory graphs. As a secondary theme we
have illustrated an approach to expressing and proving properties of programs at a
level of abstraction in which properties of memory graphs are significant but some
lower-level properties, such as memory layout, are abstracted away. Isolating this
level of abstraction could be useful for correctness proofs of lower levels, such as
the correctness of a memory allocation scheme.

Acknowledgements

This research was partially supported by ONR Young Investigator Award number
N00014-88-K-0557, NSF grant CCR-8912778, NRL grant N00014-91-J-2022, and
NOSC grant 19-920123-31. A preliminary version of the paper appeared in the
Proceedings of the 1992 ACM Conference on LISP and Functional Programming.
For discussions that contributed to the investigation and exposition in this pa-
per we thank Samson Abramsky, Andrew Appel, Val Breazu-Tannen, Amy Felty,
Elsa Gunter, James Hicks, Dave MacQueen, Diana Meadows, Andre Scedrov, Phil
Wadler, David Wise, and the anonymous referees.

A Proofs of the main theorems

A.I Verification of the basic laws in Table 7

Proposition 10
Each of the laws Al, A2, Dl, D2 given in § 2 hold.

Proof: The proof of Al may be found in § 4, and the proof of A2 is similar. We
need to verify Dl and D2.

Dl Suppose S = (1,1, p, a), 9*(S) holds, o(l) is a numeral or boolean, and S' =
(7, p, dec(/, a)). Note that there are no outgoing edges from / in the memory
graph induced by S; thus, even if / ^ dom(dec(/, er)), the state S' is count-
correct. Since dom(cr) 2 dom(dec(/,cr)), each of the properties 9*2-9*5 follow
directly from the hypothesis. It is obvious also that 9*6 holds. Thus, 9*(S')-

D2 Suppose 9*(/,7,p,<r) and refcount(/, a) ± 1, and let S' = (7,p,dec(/,o-)). By
hypothesis, it follows that refcount(Z, <r) > 1 since / is in the root set. Thus,
refcount(/, dec(/, cr)) > 1 and hence S' is count-correct, satisfying 9*1. Since
dom(ff) = dom(dec(/, a)), each of the properties 9*2-9*5 follow directly from
the hypothesis. It is obvious also that 9*6 holds. Thus, 9*(S').

This completes the verification of each part. •

https://doi.org/10.1017/S0956796800001660 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001660

Reference counting interpretation of linear logic 231

Proposition 11
Law D3 holds; more generally,

1. If 9?(/,7,p,<7), then 5R(7,p,dec-ptrs(/,a)).
2. If 9?(7,p,p,<j), then <R(7,p,dec-ptrs-env(p,(7)).

Proof: By induction on the total number of calls to dec-ptrs and dec-ptrs-env. In
the basis, suppose the number of calls is one; there are two cases:

1. dec-ptrs is called. Then there are three subcases:

(a) a{l) = n, true, or false. Then dec-ptrs(/,a) = dec(/, a). By Dl, it follows
that 9*(7,p,dec-ptrs(/,<j)).

(b) <r(/) = susp(/'), thunk(M.p), or closure(/bc. M,p), and refcount(/, a) > 1.
Then dec-ptrs(/, a) = dec(/,er), and hence by D2, 9f(7,p,dec-ptrs(/,a)).

(c) a{l) = rec(/',/) or recclosure(Ax. N,p), and refcount(/,<r) > 2. Then it fol-
lows that dec-ptrs(/, a) = dec(/, a), and hence by D2, 9*(7, p, dec-ptrs(/, a)).

2. dec-ptrs-env is called. Then since dec-ptrs is not called, dom(p) must be the
empty set. Thus, dec-ptrs-env(p, a) = a and hence 9?(7, p, dec-ptrs-env(p, a)).

For the induction case, suppose the total number of calls to dec-ptrs and
dec-ptrs-env is greater than one. There are again two main cases:

1. dec-ptrs is called. There are five subcases depending on the reference count
and the value stored at /.

(a) a(l) = susp(/'), refcount(/, ex) = 1. Then

dec-ptrs(/, a) = dec-ptrs(/', dec(/, a)).

If cr(/') = thunk(AT,p), then by A2 9?(p,7,p,dec(/',dec(/,ff))), so by induc-
tion, *R(7,p, dec-ptrs-env(p, dec(/', dec(/,cr)))). Thus, 9?(7, p, dec-ptrs(/, a)).
The other case, when a(l') is not a thunk, is similar and hence omitted.

(b) a(l) = thunk(M,p), refcount(/,a) = 1. Then

dec-ptrs(/, a) = dec-ptrs-env(p,dec(/, <T)).

By Al, 9?(7, p, p, dec(/, a)) so by induction, 5R(7, p, dec-ptrs-env(p, dec(/, a))).
Thus, <R(7,p,dec-ptrs(/,ff)).

(c) a{l) = closure(Ax. M,p), refcount(/,(j) = 1. Similar to the previous case.
(d) a(l) = recclosure(Ax. N,p), a(l') = rec(/,f), refcount(/', a) = 1, and

refcount(/, a) = 2. Then

dec-ptrs(/, a) = dec-ptrs-env(p — / , dec(/', dec(/, dec(/, a)))).

Let CTO = dec(/',dec(/,dec(/,<x))); then the state S = (7, p—f,p, CTO) is count-
correct, since both / and /' have disappeared from the memory graph. Also,
S satisfies properties 9?2-9?5, since dom(cro) £ dom(ff), and 9?6 holds by
hypothesis. Thus, 9?(S), and so by induction 9?(7,p,dec-ptrs-env(p—/,oo))-
Thus, <R(7,p,dec-ptrs(/,tr)).

https://doi.org/10.1017/S0956796800001660 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001660

232 J. Chirimar et al.

(e) a(l) = rec(/',/), a(l') = recclosure(lx. N,p), refcount(/,(j) = 2, and
refcount(/',<T) = 1. Then

dec-ptrs(/, o) = dec-ptrs-env(p — / , dec(/', dec(/, dec(/, a))))

and one may proceed in a manner similar to the previous case.
2. dec-ptrs-env is called. Since the number of calls is greater than 1, dom(p) =

{xi,...,xn} fo rn>0 . Since 9?(p(x,),...,p(xn), 7,p,a) and

dec-ptrs-env(p, a) = dec-ptrs(p(xn), dec-ptrs(... dec-ptrs(p(x!), a)...)),

by repeated applications of the inductive hypothesis, 91(7, p, dec-ptrs(p, a)).

This completes the induction case and hence the proof. •

Proposition 12
Each of the laws II, 12, E, Nl, N2, N3, Ul, and U2 in § 4 hold.

Proof: We verify each law individually.

11 Suppose 9i(7, p, a), I € dom(a), and a{l) is not a thunk. Let S' be the state
(1,1,p, inc(/,a)). Since there is one more pointer to / from the root set of
S' and the reference count has been incremented, S' is count-correct. Since
dom(ff) = dom(inc(/, a)), each of the properties 912-915 follow directly from
the hypothesis; property 5R6 is also obvious from the hypothesis. Thus, 9l(S')-

12 Suppose 91(7, p, a), p(x) G dom(<j) for all x € dom(p), and each a{p{x)) is not
a thunk. Then by an easy induction on the size of dom(p) using arguments
similar to the last case, 91(7, p,p, inc-env(p, <r)). Note that it is important that
each a(p{x)) is not a thunk, for otherwise 9?3 would be violated.

E Suppose 9?(/,7,p,p,<r) and x $ dom(p), and let S' = (7,p[x H—> l],p,<j). Then
the root set points of S and S' are identical, and the memory graph induced
by S and S' are hence identical. Thus, 9l(S')- The converse is similar.

Nl Suppose S = (7,p,<j), 9i(S), and (I1,a') = new(c,<r) for some constant c,
and let S' = (l',l,p,a'). Since new is an allocation relation, it follows that
refcount(/',o-) = 0, refcount(/',<7') = 1, and for any / =£ /', a(l) = <r(/') and
refcount(/, a) = refcount(/, a'). First, note that S' is count-correct, since the
only location in a' that is different from a is /', and that location has a pointer
in the root set. This verifies property 5R1. Since dom(cr) is finite, dom(a') is
also finite and so property 912 holds of S. Finally, since new does not create
any additional cycles in the memory graph or thunks or closures, properties
9l3-9?6 holdin S'. Thus, W(S').

N2 Suppose 9?(/,p,p,<7), FV(N) = dom(p), (I1,a') = new(closure(N,p),a) or
new(recclosure(JV,p),<r), and N is typable, and let S' = (l',l, p,a'). Since new
is an allocation relation, refcount(/', a) = 0, refcount(/', a') = 1, and for any
location / ^ /', a{l) = a(V) and refcount(/,<r) = refcount(/, a1). To see that
property 911—namely count-correctness—holds of S', note that all of the
pointers from p are accounted for in the closure stored in /', and that /' only
has reference count 1. To see 912, dom(ff') = dom(<r) U {/'} is finite because
dom(ff) is. No cycles are created in the induced memory graph by new, so 9J4
holds. Finally, 9?5 and 916 hold by hypothesis. Thus, 9l(S').

https://doi.org/10.1017/S0956796800001660 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001660

Reference counting interpretation of linear logic 233

N3 Suppose 9?(7,p,p,a), (/o,co)
 = new(thunk(N,p),a) where FV{N) = p, and

(/', a') = new(susp(/o), CTO). Then 9?(/', 7, p, a') follows in a manner similar to
the previous case.

Ul Suppose S = (l'~l,p,a) and 9*(S), a(l) is a constant. We prove the second
statement of Ul only; the first follows similarly. So suppose / is not reachable
from I' in the graph induced by S, and let S' = (l',l,p, \nc(l',a[l H-> susp(/')])).
In S' the in-degree of /' is now one greater than in S; the in-degree of all
other nodes remains the same. Thus, S' satisfies property 5R1. Since dom(o-) =
dom(<r'), the domain of a' is finite, satisfying property 5R2. No new thunks are
created, so property 9?3 holds of S'. Since / is not reachable from /' in S, there
is no cycle through / in S'. Thus, S' satisfies property 9?4. Finally, properties
9?5 and <R6 hold since no thunks or closures are added to a. Thus, 9?(S').

U2 Suppose S = (l~l,p,<j) and 9?(S), refcount(/,a) ^ l, ff(/) = susp(/'), and
CT(Z') = thunk(iV,p), and let S' = (p,7,p,dec(/',dec(/,ff[/ >-> c]))). To verify
property 9J1, note first that refcount(/', a) = 1 by hypothesis. Thus, since the
pointers from a(l') are mentioned in the root set of S', it follows that S' is
count-correct. It is also clear that each of the properties 5R2-9?6 hold of S'.
Thus,

This completes the verification of each part. •

A.2 Proof of Lemma 5

Lemma 5
Suppose (/""', pf, p', a/) and (/", pg> p", ag) are congruent. If interpf(M, pf, af) = (/̂ , ay),
then interpg(M,pg,<rg) = (/g,<7g) and the resultant states (l'f,l',p',a'{) and (l'g,l",p",a'g)
are congruent.

Proof: By induction on the number of calls to interp. We cover the four cases in
the core language and leave the other cases to the reader. Let h be an isomorphism
from ^(oy) to ^(<rg) that makes the above states congruent.

1. M = x. Then

interp /(M,p /,(j/) = (pf(x),af)

interpg(M,pg,<Tg) = (pg(x),og),

and the resultant states (pf(x),l',p',o'f) and (pg(x),l",p",a'g) are congruent via
h.

2. M = (Ax.P). Then

interpy(M,p/,oy) = new(closure(ix. P,Pf), af) = (l'f,a'f).

Since / is an allocation relation,
• If ^ dom(<7/) and dom(oy-) = dom(oy) u {l'f};
• for all / € dom(oy), oy(/) = a'f(l) and refcount(/,oy) = refcount(/',a'f); and
• o'fil'f) = closure(lx. P,pf) and reicount(l'f,a'f) = 1.

https://doi.org/10.1017/S0956796800001660 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001660

234 J. Chirimar et al.

Note that interpg(M,pg,crg) = new(closure(2x. P,pg),ag) = (/g,crg). Again,
since g is an allocation relation,

• l'g ^ dom(ffg) and dom(<Tg) = dom(o-g)U {/g};
• for all / G dom(o-g), ag(l) = o'g{l) and refcount(/,<rg) = refcount(/',a'g); and
• a'g{l'g) = closure(/lx. P,pg) and refcount(/g,ag) = 1.

Let h' = h[l'j >—• l'g]. It is clear that h! is an isomorphism from 1S{a'f) to
Via'). Now consider the resultant states (l'f,l',p',a'f) and U'F',p",a'). Using

5 J J B O

the isomorphism h, the first two conditions for congruence of states are
satisfied, and so we just need to show that the last six properties, stating
the relationship between the values stored at locations, is satisfied. But the
contents of the cells in Of and ag do not change, and for the new locations,
a'f(rf) = closure^*. N,Pf), a'g(h'(l'f)) = a'g{l'g) = closure(Ax. N,pg), 6om(pf) =
dom(pg), and for all x e dom(py), pg(x) = h'(pf(x)); the last two facts follow
from the hypothesis. Thus, the resultant states are congruent.

3. M = (P Q). Since interp /(M,p / ,ff /) = (/},<r}),
• interpf(P,pf | P,a}) = (lffi,ff/,o);
• inteTpf(Q,pf \ Q,ofs>) = (//,I,<T/,I);

• oy,i(//,o) = closure(Ax. N, p'j) or recclosure(Ax. N, p'j).
By hypothesis the environments p/ and pg have the same domain, so they can
also be divided into pg | P and pg | Q. By two applications of the inductive
hypothesis,

• interpg(P,pg | P,ag) = (/g,o,ffg,o) and
• interpg(2,pg | Q,agfl) = (/g,i,ffg,i),

and the states {lffi,//,i,/',p',cr/,i) and (/gio,/g,i,/",p",<7g,i) are congruent. In
particular, note that o-go(/g,o) = closure(Ax. N,p'g) or recclosure(/lx. N,p'g).
There are now two cases:

(a) reicount(lffl,CT/J) = 1. Then refcount(/gjo,ogt\) is also 1, since the two ref-
erence counts must be the same. Since the states (F,pj[xt-> //jj.p'.oy,!)
and (/",pg[x i-* /g,i],p~",ffg,i) are congruent, it follows from the induc-
tive hypothesis that interpg(iV,pg[x i-> /gji],dec(/o,ffg)i)) = (l'g,<*'g) and
(l'f,T',p',Of) and (l'g,T',p',a'g) are congruent. Putting the pieces together,
interpg(M,pg,o-g) = (l'g,a'g) as desired.

(b) refcount(//,o, CT/,2) ̂ 1. Then refcount(/g>o,<Tg,2) =/= 1 also, since the two
reference counts must be the same. Since {l',p'Ax i-> //,i],p',c/,i) and
(l"p'g[x 1—* /g,i],p",ffg>i) are congruent, by the inductive hypothesis it fol-
lows that interpg(iV,Pg[x^ /g,i], inc-env(pg,dec(/g,o,ag,i))) = (/g,ffg), and
the states (l'f,l',p',a'f) and (l'g,l",p",og) are congruent. Putting the pieces
together, interpg(M,pg,<xg) = (lg,<f'g) as desired.

This completes the induction and hence the proof. •

A3 Proof of Theorem 7

Recall from § 5 that, in order to prove a correctness theorem, we needed a definition
of how to unwind a term from a store. The definition of two mutually-recursive

https://doi.org/10.1017/S0956796800001660 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001660

Reference counting interpretation of linear logic 235

Table 8. Definitions o/valof and valofcell.

valof(x,p, a) = valofcell(p(x),ff)
valof(Ax. P, p, cr) = Ax. valof(P, p, a), x g dom(p)
valof((P Q),p,a) = (valof(P,p,<r) valof(Q,p,cr))

valof((fetch P),p,a) = (fetch valof(P,p,<r))
valof((share x j a s P in Q), p, a) = (share x, y as valof(P, p, ff) in valof(Q, p, a)),

where x, y $ dom(p)
valof((dispose P before Q),p,a) = (dispose valof(P,p,or) before valof(Q,p,a))

valof(n, p, cr) = n
valof(true, p, a) = true

valof(false,p,<r) = false
valof((succ P),p,o) = (succ valof(P,p,a))
valof((pred P),p,o) = (pred valof(P,p,a))

valof((zero? P),p,a) = (zero? valof(P,p,ff))
valof((fix P),p,a) = (fix valof(P,p,ff))

valof((if N then P else Q), p, cr) = if valof(iV, p, cr) then valof(P, p, a) else valof(2, p, CT)
valof((store N where xi = M|,...,xn = Mn),p,a)

= (store valoffA/.p,cr) where x\ = valof(Mi,p,a),...,xn = valof(JVfn,p,IT))
where x, ̂ dom(p)

n if <T(/) = n
true ifcr(/) = true
false if a(l) = false
Ax. valof(M,p, a) if <r(/) = closure(Ax. M,p) or

CT(/) = recclosure(/lx. M,p)
valofcell(/,(j) = { where x $ dom(p)

(store valofcell(/', cr)) if a(l) = susp(/')
valof(M,p,cr) if CT(/) = thunk(M,p)
valof((fix (store (Xf. Xx. M))),p-f,a) if a {I) = rec(/',/),

a(l') = recclosure(/bc.M,p)
where x ^ dom(p),p(/) = /

functions for performing this task, valof and valofcell, appears in Table 8. It is
obvious from the definitions that only the reachable cells affect the value returned
by valof and valofcell. For instance, if /' is not reachable from / in store a and
a' = dec(/',a), then valofcell(/, a) = valofcell(/,a'). We will use this fact throughout
the arguments that follow.

Also essential to the proof of Theorem 7 is a notion of when one term is
'more evaluated' than another. A relation >* between terms which expresses this
relationship is defined in § 5. We can prove three lemmas about the relationship of
> and canonical forms.

Lemma 13

If c > P and c is a canonical form, then P is a canonical form. Moreover, c and P
have the same shape, i.e. if c is a numeral or boolean, then c = P; if c = Ix. Q, then
P = Xx. Q'; and if c = (store Q), then P = (store Q').

Proof: There are two cases to consider: either c ty P, or c = C[M], P = C[N], C[]
is nontrivial, and M ty N. In the first case, since c is canonical, c = P, and hence

https://doi.org/10.1017/S0956796800001660 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001660

236 J. Chirimar et al.

P is canonical. In the second case, for c to be canonical it must be the case that
C[] = n, true, false, kx. D[-], or (store C[]). Thus, P must be canonical as well,
and must have the same shape as c. •

Lemma 14
If c is a canonical form and M > c, then M || d > c.

Proof: By the definition of M > c, we know that M = C[M'], c = C[d], and M' <} d.
In order for c to be canonical, it must be the case that either C[] = [•], n, true,
false, Xx. £>[•], or (store £>[•]). In the first case, M' = M and d = c, so M |[c > c.
For the other cases, M || M > c. •

Lemma 15
If c is a canonical form and M >' c, then M § d>* c.

Proof: An easy induction on the length of M = Mi > ... > M* > c using
Lemma 14. •

We now have enough machinery to prove the main correctness theorem.

Definition
Suppose <iR{l[,...,l'k,p\,...,p'n,o). Suppose c\,...,Ck are closed canonical terms,
M\,...,Mn are closed terms, and M\,...,M'n are typable terms. Suppose also that
for all i, dom(pi) = FV(M\). Then we say that

if the following conditions hold:

1. For all l<j<k, cj >' valofcell(/},<7).
2. For all l<j<n, M, >' valof(M}, p'p a).

Theorem 7
Suppose M is typable, dom(p) = FV(M), M' is closed, and M' >* valof(M,p,a).
Suppose also that 5R(P, p,p', a).

1. If M' ty c, then there exist I',a' such that in terp(M, p, a) = {I',a') and c >'

valofcell(/',(7').
2. If in terp(M, p, a) = (/', a'), then there exists a c such that M' |[c >*

valofcell(/',cr')-

Proof: We prove the following more general property: suppose

Then

1. If M || c, then interp(M',p,<T) = {I1, a') and

(Cjc1,...,ct,Ml!...Mn)>*(/',/;,...,^(M'1,p'1),...,(M;,p^),<T').

2. If interp(M',p,<r) = (/>')> then M |[c and

(c , c u . . . , c k , M i , . . . M n) >*(/ ' , / ; , . . . , l k , (M[,p \) , . . . , (M' n , p ' n) ,a 1) .

https://doi.org/10.1017/S0956796800001660 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001660

Reference counting interpretation of linear logic 237

The first part is proven by induction on the height of the proof of M | c. We
consider the cases for the core language and leave the cases for the PCF extensions
to the reader. To ease the readability of the various cases, we can separate each
induction case into two cases based on whether or not M' is a variable or a canonical
form. The first of these cases can be seen immediately. If M' is a canonical form
or variable, then the form of the rules guarantees that interp(M',p, a) returns a
result (/',a') and valofcell(/',a') = valof(M',p,a). Thus, by Lemma 15, it follows
that c >* valofcell(/',(r')- For instance, if M' = (Ax. P'), then interp(M', p, a) =
new(closure(Ax. P',p),a) = (/',a'). Since 9f(F',p,p',a) and /' $ dom(<x), the new cell
/' in a' cannot be reached from a. Thus,

valofcell(/',(r') = valof(,bc. P',p,a') = valof(/bc. P',p,a)

and the required property holds.
If, on the other hand, M' is not a variable or canonical form, then there is some

interpretation required in the reference-counting interpreter. Now we divide into
cases depending on the last rule used in the proof of M || c.

1. M = (P Q), where P V (Ax. N), Q |[d, and N[x := d] |[c. The only case to
consider is M' = (P' Q'), where P >* valof(P',p,<r) and Q >' va\of(Q', p, a).
Since M is typable, the free variables of P and Q are disjoint. The first
step is to evaluate the operator and operand. By induction, it follows that
interp(P', p | P', a) = (/0, <x0) and

((te.N),ci,...,ck,Q,Mu...Mn)

Next evaluate the operand. By the induction, interp(Q',p | Q',a) = {h,o\) and

((Xx. N),d,c1,...,ck,Mu...Mn)

>'(lo,ll,l\,...,l'kAM[,p'l),...,(M'n,p'n),al)

We need to show that /o really holds a closure. Note that

(Xx.N)>' valofcell(f0,<xi)

and hence, by Lemma 13, (Ax. N) and valofcell(/o,o\) must have the same
shape. By Theorem 2, ffi(/o) is not a thunk (condition 1R6). Thus,

ffi('o) = closure(Ax. N',p') or recclosure(Ax. N',p').

To evaluate the application, there are two subcases: either refcount(/o,ffi) = 1
or refcount(/o, ffi) > 1. We do the first case and leave the other case to the
reader. If refcount(/o,ci) = 1, then 9J(/~',p'[x i—» /i],p',dec(/o,o'i)) by laws Al
and E. It is easy to see that

(cu...,ck,N[x -d],Mu...Mn)

>• (l\,...,l'k,(N
l,

Thus, by induction,

https://doi.org/10.1017/S0956796800001660 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001660

238 J. Chirimar et al.

/,],dec(/0,ffi)) = (/>')

2. M = (s to re N where xi = Ni,...,xm = Nm), Nt ty dt, and the canonical
form c = (store N [x i , . . . , x m := d\,...,dm]). The only case to consider is
M ' = (s to re N' where xi = N[,...,xm = N'm), where

(This makes sense because the free variables of each N- are disjoint.) Thus, by
induction, ±ntenp(N[,p \N[,a) = (h,<J\) and

(ducu...,ck,N2,...,Nm,Mi,...Mn)

Using similar repeated applications of the inductive hypothesis, we end up
with

(du...,dm,c\,...,ck,Mu---Mn)

>*(h,.

Finally, let

p' =

new(susp(/m+i),ffm+i) = (I1, a')

It is easy to see that

interp(M',p, a) = (/> ')
(c,cu...,ck,Mu...Mn)>'(r,l[,...,l'k,(M[,p[),...,(M'n,p'n),<j')

as desired.
3. M = (fetch N), where N |[(store Q) and Q ([c. The only case to consider is

M' = (fetch N'). By induction,

((store Q),cu...,ck,Mu...Mn)>'{l0,/'„...,l'k,(M[,p\),...,(M'n,p'n),o0)

By Theorem 2, 9?(/0, /"', p', <TO). Since (store Q) >' valofcell(/0,(7o) and CTO('O)

must be a non-thunk by 9?6, it follows from Lemma 13 that CTO('O) = susp(/i)
or rec(/i,/) and Q >* valofcell(/i,(7o)- We consider only the case when CTO('O)

is susp(/i) and leave the other case to the reader. There are two subcases:

(a) oo('i) = thunk(Q',p'). There are two subcases:

i refcount(/o, cro) = 1- First, note that neither fo nor l\ is reachable from
p'—if either were, the state S = (lo,T,p',oo) would have a cycle that
was not composed solely of a rec and a recclosure, contradicting the
regularity of the state S. By law A2,9?(F, p', p', dec(/i, dec(/0, <T0))). Thus,

(ci,...,ck,Q,Mh...Mn)

>' (/'„...,l'k,(Q\p'l(M[,p\),...,dec(/,,dec(/0,<

https://doi.org/10.1017/S0956796800001660 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001660

Reference counting interpretation of linear logic 239

It then follows by induction that

interp(<2', p', dec(/,, dec(/0, a0))) = (/', a')
(c,cl,...,ck,Ml,...Mn)>-(l',l[,...,l'k,(M[,p'i),...,(M'n,p'n),a')

as desired.

ii refcount(/o,(Jo) > 1- Let <r0 = dec(/i,dec(/o,ooUo •—• 0])). First, by law
U2, y{(l',p',p', <TQ). Second, note that neither /0 nor l\ is reachable from
p'—if either were, there would be an illegal cycle in the memory graph
induced by (lo, /', p', <ro). It follows that

e>'valof(eV,^).
Third, note that there exist contexts C\,...,Cn and closed terms Ntj
such that Mt = Cf[Nu,...,Af,•,,.], NiJt >' va\oi(Q',p',<r'0), and F, =
C,[0,...,0] >* valof(M;,p/,(T(,). Thus, it follows that

(cu...,ck,Q,Pu...Pn)

>'(l[,...,l'k,(Q',p'),(M[,p\),...,(M'n,p'nU'o)

and hence by induction

interp(G',p',(7y
0) = (/2,(Ti)

(c,cl,...,ck,Pi,...Pn)>'(l2J\,...,l'k,(M'1,p\),...,(M'n,p'n),<Tl)

Let (/',a') = (/2, inc(/2,<xi[/o >-* susp(/2)])). Since lo is not reachable
from p' in the store dec(/o,cof'o •-* 0]), by Theorem 2 it follows that
/o is not reachable from h in o\. Thus, c >' valofcell(/',a'). Also, note
that Mt = Q[N,-!,...,N,-,,.] >* valof(M;,p|,(T')- Thus,

interp(M',p,<7) = (/ > ')
(C >ci> . . . ,c t ,M,, . . .M (I)^(/ ' , / ; , . . . , / i , (M;,p '1) , . . . , (Af; ,^) , ff ')

as desired.

(b) (To(/i) 7̂ thunk(i?,p'). This case is straightforward and left to the reader.
4. M = (share x,y as P in Q), where P § d and Q[x,y := d] |> c. Then the only

case to consider is M' = (share x.y as P' in g')> where P >' valof(f",p | P',a)
and Q >' valof(Q', p | Q', a). Since M' is typable, the free variables of P' and
Q' are disjoint. It follows by induction that in terp(P ' , p \ P', a) = (lo, <xo) and

(d,ci,...,ck,Q,Mi,...Mn)

>'(loJ'l,..-,rk,(Q',p\Q'),(M[,p\),...,(M'n,p'n),<Jo)

By laws II and E, 9?(f',(p | Q')[x,y*-+ lo],p', inc(/0,a0))- Thus, since

(ci,...,ck,Q[x,y :=d],MU-.-Mtt)

>'(![,..., rkAQ',(p\Q')[x,y~l0]),(M[,p\),...,\nc(l0,a()))

it follows by induction that

interp(Q', (p | Q')[x,y .-> /0]) = (/', a')
(c,cu...,ck,Q,Mu...Mn)>'(l',l'i,...,l'k,(M[,p'1),...,(M'n,p'n),<T')

as desired.

https://doi.org/10.1017/S0956796800001660 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001660

240 J. Chirimar et al.

5. M = (dispose P before Q), where Q ty c. This case is similar to the previous
case and hence omitted.

This completes the proof of the first part. The second part is proven by induction on
the number of calls to interp. We consider the cases for the core of the language
and leave the cases for the PCF extensions to the reader.

1. M' = x. Then interp(M',p,<r) = (p{x),a) = (I1,a'). Note that

valofcell(/',ff') = valof(M',p,ff),

and hence M >' valofcell(/',<r')- Since SR{l',p,p',a), a'(V) = <x(p(x)) must be a
non-thunk by 5R6, and hence valofcell(/',a') = d where d is a canonical form.
Thus, by Lemma 15, M § c >* d and

2. M' = (Ax. N'). Similar to the previous case.
3. M' = (P' Q'). Since interp(M',p,<j) = (/>'), it follows that

i n t e r p (P ' , p | P » = (/0,<7o)
p(e/,pie',ff0) = (ii,ffi)
= closure(Ax. N',p') or recclosure(/lx. N',p')

Since M >* valof(M',p, a), it must be that M — (P Q) for some closed P and
Q, where P > ' valof(P',p,a) and Q >' valof(g',p,<j). By induction, P ^ d',
Qtyd, and

Since a\{lo) is a closure, it follows that valofcell(/o, o\) must be a A-abstraction,
and so by Lemma 13 it follows that d' = (Xx. N). If
refcount(/o,o\) = 1, then

N[x := d] >' valof(N',p'[xi-+ /i],dec(/Osffi)).

If, on the other hand, refcount(/0,o\) > 1, then

N[x :=d] >' valof(N',p'[xi-^ /i], inc-env(p',dec(/0,CTi))).

In either case, it follows by induction that N[x := d] ̂ c and

and hence also M |J c as desired.
4. M' = (store N' where xi = N[,...,xm = N'm). Since M' evaluates,

interp(N{,p | Afj.ff) = (/,,*,)

; , p \ N'm, crm_i) = (lm, am)

p' =0[xi,...,xmi-^/i,...,Zm]
(/m+i.ffm+i) = new(thunk(N',p'),o-m)
(l',a') = new(susp(/m+i),ffm+i)

https://doi.org/10.1017/S0956796800001660 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001660

Reference counting interpretation of linear logic 241

Since M >* valof(M',p,a), it follows that

M = (store N where xx = N\,...,xm = Nm)

and N >' valof(N',0,<7) and Nt >' valof(N,', p \ N\, a). By induction, Nx $ dx

and

(duc\,...,ck,N2,..., Mi,... Mn)

>'(li,l[,...,l'k,(N'2,p\N'2),...,(M'l,p[),...,(M'n,p'n),ai)-

Extending the inductive hypothesis, N, ty dt for all i and

{di,...,dm,ci,...,ck,Mu... Mn)

>'(h,...,lm,ri,...,l'k,(M'l,p'l),...,(M'n,p'n),al).

Let c = (store N[xi,...,xm := d\,...,dm]); then M |[c and

5. M' = (fetch P'). Since M' evaluates, interp(i",p,ff) = (lo,ao); by Theorem 2,
«(/OJ',P',CTO)- Since M >* valof(M',p,ff), it follows that M = (fetch P) for
some P and P >* valof(P',p,<r). By induction, P || d and

Note that oo('o) = susp(/i) or rec(/i,/); we consider the first case here and
leave the other to the reader. Since oo(/o) ™ a suspension, valofcell(/o,oo) =
(store Q') for some Q'. It follows from Lemma 13 that d — (store Q) for some
Q. There are now two subcases:

(a) <JO(/I) = thunk(i?',p'). There are two subcases depending on the reference
count of /o.

i refcount(/0,<7o) = 1- Then interp(R',p',dec(/i,dec(/0,o-0))) = (/',</)•
Since the state S = (lo,T,p',oo) is regular, it follows that /o is not
reachable from p'—otherwise, there would be an illegal cycle in the
memory graph induced by S. Thus,

(ci,...,ck,Q,MU---Mn)

>'(l[,...,l'k, (R1, p'), (MJ, p\),..., (M'n, p'n), dec(/ , , dec(/0 ,

By induction, Q (} c and

(c,cl,...,ck,Mu...Mn)>'(l',l\,...,l'k,(M[,p\),...,(M'n,p'n

ii refcount(/0,(To) > 1- Let a'o = dec(/i,dec(/0, <xo[/o •-> 0])); then

susp(/2)]))

First, by law U2, $1(1', p', p', o'0). Second, neither /0 nor h is reach-
able from p'—otherwise, there would be an illegal cycle in the mem-
ory graph induced by (/o,/', p', <ro)- Third, note that there exist con-
texts C\,...,Cn and closed terms Njj such that M, = Ci[Niti,.. ..iV,^.],

https://doi.org/10.1017/S0956796800001660 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001660

242 J. Chirimar et al.

NiM >* valof«2',p',^), and P, = C,[0,...,0] > ' valof(M;,p,-,<^). Thus,
it follows that

(ci,...,ck,Q,Pu...Pn)

>'(l\,...,l'k,(R',p'),(M[,p'l),...,(M'n,p'n),<j'o).

By induction, Q Jj c and

Since IQ is not reachable from p' in the store dec(/o,CTO['O •—* 0]), by
Theorem 2 it follows that /o is not reachable from fe in o\. Thus, c >'
valofcell(/',ff')- Note that M, = C.-CJV,-,! JV,-,/,] >* valof(M;,p;,cr')-
Thus, M <| c and

(C,clj...,cfc,M1,...Mn)>*(;',r1,...,/^,(Mi,p'1),...,(M:,P;),(7').
(b) CTO('I) 7̂= thunk(/?,p')- This case is straightforward and left to the reader.

6. M' = (share x,y as P' in Q'). Since M' evaluates,

interp(P', p | P » = (/(,, <70)
interp(6',(p I Q')[*,3"-» W, inc(J0,ff0)) = C'^')

Since M >* valof(M',p,cr), it follows that M = (share x,y as P in Q) for
some terms P >* valof(P',p | P',o) and Q >* valof(g',p| Q',o). By induction,
P (| d and

Thus,

(ci,...,ck,Q[x,y :=d],Mu...Mn)

>'(l[,...,rk,(Q',(p\Q')[x,y~lo]),(M[,p\),...,\nc(lo,ao)).

and so by induction, Q[x,y := d] |) c and

(c,c1,...,ck,M1,...Mn)>*(/',/'1,...,^,(Mi,p'1),...,(M;,p;),(T').

7. M' = (dispose P before Q). Similar to the previous case and hence omitted.

This completes the proof of the second claim and the proof of the theorem. •

References

Abramsky, S. (1993) Computational interpretations of linear logic. Theoretical Computer
Science 111:3-57.

Abramsky, S. and Hankin, C. (eds.) (1987) Abstract Interpretation of Declarative Languages.
Ellis Horwood.

Appel, A. (1992) Compiling with Continuations. Cambridge University Press.
Baker, H. G. (1978) List processing in real time on a serial computer. Communications of the

ACM 21(7):ll-20.

https://doi.org/10.1017/S0956796800001660 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001660

Reference counting interpretation of linear logic 243

Benton, N., Bierman, G., de Paiva, V. and Hyland, M. (1992) Term assignment for intuitionistic
linear logic. Technical Report 262, University of Cambridge Computer Laboratory.

Benton, N., Bierman, G., de Paiva, V. and Hyland, M. (1993) A term calculus for intuitionistic
linear logic. In Typed Lambda Calculi and Applications: Lecture Notes in Computer Science
vol 664, pp. 75-90. Springer-Verlag.

Bloss, A., Hudak, P. and Young, J. (1988) An optimizing compiler for a modern functional
programming language. Computer Journal 31(6).

Breazu-Tannen, V., Gunter, C. and Scedrov, A. (1990) Computing with coercions. Proceedings
of the ACM Conference on Lisp and Functional Programming, pp. 44-60.

Chirimar, J., Gunter, C. A. and Riecke, J. G. (1992) Proving memory management invariants
for a language based on linear logic. Proceedings of the ACM Conference on Lisp and
Functional Programming, pp. 139-150.

Collins, G. E. (1960) A method for overlapping and erasure of lists. Communications of the
ACM 3(12): 655-657.

Despeyroux, J. (1986) Proof of translation in natural semantics. Proceedings, Symposium on
Logic in Computer Science. IEEE.

Deutsch, L. P. and Bobrow, D. G. (1976) An efficient, incremental, automatic garbage collector.
Communications of the ACM 19(9): 522-526.

Filinski, A. (1992) Linear continuations. Conference Record of the 19th Annual ACM
SIGP'LAN-SIGACT Symposium on Principles of Programming Languages, pp. 27-38. ACM.

Gabriel, R. P. (1985) Performance and Evaluation of Lisp Systems. MIT Press.

Girard, J.-Y. (1987) Linear logic. Theoretical Computer Science 50: 1-102.

Goldberg, B. and Gloger, M. (1992) Polymorphic type reconstruction for garbage collection
without tags. Proceedings of the ACM Conference on Lisp and Functional Programming, pp.
53-65. ACM.

Guzman, J. C. and Hudak, P. (1990) Single-threaded polymorphic lambda calculus. Proceed-
ings 5th Annual IEEE Symposium on Logic in Computer Science, pp. 333-343.

Holmstrom, S. (1988) Linear functional programming. In Implementation of Lazy Functional
Languages, T. Johnsson, S. Peyton-Jones and K. Karlsson (eds.), pp. 13-32.

Howard, W. A. (1980) The formulae-as-types notion of construction. In To H. B. Curry:
Essays on Combinatory Logic, Lambda Calculus and Formalism, J. Hindley and J. Seldin
(eds.), pp. 479^90. Academic Press.

Hudak, P. (1987) A semantic model of reference counting and its abstraction. In Abstract
Interpretation of Declarative Languages, pp. 45-62. Chichester: Ellis Horwood. (Preliminary
version appeared in Proceedings 1986 ACM Conference on LISP and Functional Program-
ming, August 1986, pp. 351-363).

Kahn, G. (1987) Natural semantics. Proceedings Symposium on Theoretical Aspects of Com-
puter Science: Lecture Notes in Computer Science vol 247. Springer-Verlag.

Lafont, Y. (1988) The linear abstract machine. Theoretical Computer Science 59: 157-180.

Launchbury, J. (1993) A natural semantics for lazy evaluation. Conference Record of the 20th
Annual ACM SIGP LAN-SIG ACT Symposium on Principles of Programming Languages, pp.
144-154. ACM.

La wall, J. L. and Danvy, O. (1993) Separating stages in the continuation-passing style trans-
formation. Conference Record of the 20th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pp. 124-136. ACM.

Lincoln, P. and Mitchell, J. C. (1992) Operational aspects of linear lambda calculus. Proceed-
ings 7th Annual IEEE Symposium on Logic in Computer Science, pp. 235-247.

Mackie, I. (1991) Lilac: A functional programming language based on linear logic. Master's
thesis, Imperial College, University of London.

https://doi.org/10.1017/S0956796800001660 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001660

244 J. Chirimar et al.

Milner, R. and Tofte, M. (1991) Commentary on Standard ML. MIT Press.
Milner, R., Tofte, M. and Harper, R. (1990) The Definition of Standard ML. MIT Press.
O'Hearn, P. W. (1991) Linear logic and interference control (preliminary report). In Category

Theory and Computer Science: Lecture Notes in Computer Science vol 530, D. H. Pitt (ed.),
pp. 74—93. Springer-Verlag.

Plotkin, G. D. (1975) Call-by-name, call-by-value and the A-calculus. Theoretical Computer
Science 1:125-159.

Plotkin, G. D. (1977) LCF considered as a programming language. Theoretical Computer
Science 5: 223-257.

Purushothaman, S. and Seaman, J. (1991) An adequate operational semantics of sharing in
lazy evaluation. Technical Report PSU-CS-91-18, Pennsylvania State University.

Scott, D. S. (1993) A type theoretical alternative to CUCH, ISWIM, OWHY. Theoretical
Computer Science 121: 411—440. (Published version of unpublished manuscript, Oxford
University, 1969.)

Wadler, P. (1990) Linear types can change the world! In Programming Concepts and Methods,
M. Broy and C. B. Jones (eds.). North Holland.

Wadler, P. (1991) Is there a use for linear logic? Proceedings of the Symposium on Partial
Evaluation and Semantics-Based Program Manipulation, pp. 255-273. ACM.

Wadler, P. (1993) A syntax for linear logic. Workshop on Mathematical Foundations of
Programming Language Semantics, New Orleans, LA.

Wand, M. and Oliva, D. P. (1992) Proving the correctness of storage representations. In Lisp
and Functional Programming, W. Clinger (ed.), pp. 151-160. ACM.

Wise, D. S., Hess, C, Hunt, W. and Ost, E. (1992) Uniprocessor performance of reference-
counting hardware heap. Unpublished manuscript.

https://doi.org/10.1017/S0956796800001660 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001660

