ON THE EXPONENTIAL BEHAVIOUR OF NON-AUTONOMOUS DIFFERENCE EQUATIONS

LUIS BARREIRA AND CLAUDIA VALLS
Departamento de Matemática, Instituto Superior Técnico, 1049-001 Lisboa, Portugal (barreira@math.ist.utl.pt; cvalls@math.ist.utl.pt)

(Received 15 November 2011)

Abstract Given a sequence of matrices $\left(A_{m}\right)_{m \in \mathbb{N}}$ whose Lyapunov exponents are limits, we show that this asymptotic behaviour is reproduced by the sequences $x_{m+1}=A_{m} x_{m}+f_{m}\left(x_{m}\right)$ for any sufficiently small perturbations f_{m}. We also consider the general case of exponential rates $\mathrm{e}^{c \rho_{m}}$ for an arbitrary increasing sequence ρ_{m}. Our approach is based on Lyapunov's theory of regularity.

Keywords: Lyapunov exponents; non-autonomous difference equations; exponential behavior
2010 Mathematics subject classification: Primary 34D08; 34D10

1. Introduction

In this paper, we show that if all Lyapunov exponents associated with a sequence of matrices $\left(A_{m}\right)_{m \in \mathbb{N}}$ are limits, then the asymptotic exponential behaviour persists under sufficiently small perturbations. More precisely, we show that for any sequence

$$
\begin{equation*}
x_{m+1}=A_{m} x_{m}+f_{m}\left(x_{m}\right) \tag{1.1}
\end{equation*}
$$

that is not eventually zero, the limit

$$
\lambda=\lim _{m \rightarrow+\infty} \frac{1}{m} \log \left\|x_{m}\right\|
$$

exists and coincides with a Lyapunov exponent of the sequence $\left(A_{m}\right)_{m \in \mathbb{N}}$. We also consider the general case of exponential rates $\mathrm{e}^{c \rho_{m}}$ for an arbitrary sequence ρ_{m}. The required smallness of the perturbation is that

$$
\begin{equation*}
\sum_{m=1}^{\infty} \mathrm{e}^{\delta m} \sup _{x \neq 0} \frac{\left\|f_{m}(x)\right\|}{\|x\|}<+\infty \tag{1.2}
\end{equation*}
$$

for some $\delta>0$, or simply that the particular sequence x_{m} in (1.1) satisfies

$$
\sum_{m=1}^{\infty} \mathrm{e}^{\delta m} \frac{\left\|f_{m}\left(x_{m}\right)\right\|}{\left\|x_{m}\right\|}<+\infty
$$

for some $\delta>0$. We note that (1.2) has the advantage that one does not need to know the sequence a priori.

Now, we formulate a special case of our main result. Namely, let $\left(A_{m}\right)_{m \in \mathbb{N}}$ be a sequence of invertible $n \times n$ matrices with complex entries such that

$$
\sup _{m \in \mathbb{N}}\left\|A_{m}\right\|<+\infty
$$

For each $m, \ell \in \mathbb{N}$, with $m \geqslant \ell$, we set

$$
\mathcal{A}(m, \ell)= \begin{cases}A_{m-1} \cdots A_{\ell} & \text { if } m>\ell \\ \text { Id } & \text { if } m=\ell \\ A_{m}^{-1} \cdots A_{\ell-1}^{-1} & \text { if } m<\ell\end{cases}
$$

The Lyapunov exponent $\lambda: \mathbb{C}^{n} \rightarrow \mathbb{R} \cup\{-\infty\}$ associated with the sequence $\left(A_{m}\right)_{m \in \mathbb{N}}$ is defined by

$$
\lambda(x)=\limsup _{m \rightarrow+\infty} \frac{1}{m} \log \|\mathcal{A}(m, 1) x\|
$$

We assume that the following hold.
(C1) There exists a decomposition

$$
\mathbb{C}^{n}=F_{1} \oplus F_{2} \oplus \cdots \oplus F_{p}
$$

with respect to which A_{m} can be written in the block form

$$
A_{m}=\left(\begin{array}{ccc}
A_{m}^{1} & & 0 \\
& \ddots & \\
0 & & A_{m}^{p}
\end{array}\right)
$$

(C2) There exist numbers $\lambda_{1}<\cdots<\lambda_{p}$ such that

$$
\lim _{m \rightarrow+\infty} \frac{1}{m} \log \|\mathcal{A}(m, 1) x\|=\lambda_{i}
$$

for each $i=1, \ldots, p$ and $x \in F_{i} \backslash\{0\}$.
The following is a particular case of our main result in Theorem 3.1 for the special case of the rates $\rho_{m}=m$.

Theorem 1.1. Let x_{m} be a sequence satisfying (1.1) for some continuous functions $f_{m}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ such that

$$
\begin{equation*}
\left\|f_{m}\left(x_{m}\right)\right\| \leqslant \gamma_{m}\left\|x_{m}\right\|, \quad m \in \mathbb{N} \tag{1.3}
\end{equation*}
$$

where the sequence γ_{m} satisfies

$$
\sum_{m=1}^{\infty} \mathrm{e}^{\delta m} \gamma_{m}<+\infty
$$

for some $\delta>0$. Then, one of the following alternatives holds:
(1) $x_{m}=0$ for all sufficiently large m;
(2) the limit

$$
\lim _{m \rightarrow+\infty} \frac{1}{m} \log \left\|x_{m}\right\|
$$

exists and coincides with some Lyapunov exponent of the sequence $\left(A_{m}\right)_{m \in \mathbb{N}}$.
In the particular case of perturbations $x_{m+1}=A x_{m}+f\left(x_{m}\right)$ of an autonomous linear difference equation (in which case all Lyapunov exponents of the linear dynamics are limits), the result in Theorem 1.1 was obtained by Coffman [5]. For perturbations of a differential equation $x^{\prime}=A x$, with constant coefficients, a related result can be found in Coppel's book [6]. Earlier results were obtained by Perron [10], Lettenmeyer [8] and Hartman and Wintner [7]. Corresponding results for perturbations of autonomous delay equations were obtained by Pituk $[\mathbf{1 1}, \mathbf{1 2}]$ (for values in \mathbb{C}^{n} and finite delay) and Matsui et al. [9] (for values in a Banach space and infinite delay). We emphasize that all these references consider only perturbations of autonomous dynamics.

Our approach is based on Lyapunov's theory of regularity (we refer the reader to [2] for a modern exposition), which allows one to obtain precise exponential bounds for the dynamics in terms of the Lyapunov exponents and of the so-called regularity coefficient. This is used to show that the Lyapunov exponent of any sequence satisfying (1.1) is a limit and coincides with some Lyapunov exponent of the sequence $\left(A_{m}\right)_{m \in \mathbb{N}}$. The remaining part of the argument is inspired by the work of Pituk [11], where he established a corresponding result for perturbations of a linear delay equation $x^{\prime}=L x_{t}$ (although only autonomous).

We considered earlier, in [4], the case of difference equations with infinite delay, although the lack of a general theory of regularity in infinite-dimensional spaces forced us to use a different approach.

2. Preliminaries

Let $\left(\rho_{m}\right)_{m \in \mathbb{N}} \subset \mathbb{R}^{+}$be an increasing sequence. Also, let $\left(A_{m}\right)_{m \in \mathbb{N}}$ be a sequence of invertible $n \times n$ matrices with complex entries such that

$$
\begin{equation*}
\limsup _{m \rightarrow+\infty} \frac{1}{\rho_{m}} \log \|\mathcal{A}(m, 1)\|<+\infty \tag{2.1}
\end{equation*}
$$

The Lyapunov exponent $\lambda: \mathbb{C}^{n} \rightarrow \mathbb{R} \cup\{-\infty\}$ associated with the sequence $\left(A_{m}\right)_{m \in \mathbb{N}}$ is defined by

$$
\lambda(x)=\limsup _{m \rightarrow+\infty} \frac{1}{\rho_{m}} \log \|\mathcal{A}(m, 1) x\|,
$$

with the convention that $\log 0=-\infty$ (it follows from (2.1) that λ never takes the value $+\infty$). By the general theory of Lyapunov exponents (see, for example, [1]), the
function λ can take at most n values in $\mathbb{C}^{n} \backslash\{0\}$, say $-\infty \leqslant \lambda_{1}<\cdots<\lambda_{p}$ for some integer $p \leqslant n$. Furthermore, for $i=1, \ldots, p$ the set

$$
\begin{equation*}
E_{i}=\left\{x \in \mathbb{C}^{n}: \lambda(x) \leqslant \lambda_{i}\right\} \tag{2.2}
\end{equation*}
$$

is a linear subspace over \mathbb{C}. We also set $k_{i}=\operatorname{dim} E_{i}-\operatorname{dim} E_{i-1}$ (with the convention that $E_{0}=\{0\}$).

Now, we assume that each matrix A_{m} is in block form, with each block corresponding to a Lyapunov exponent. More precisely, we assume the following.
(H1) There exist decompositions

$$
\mathbb{C}^{n}=F_{m}^{1} \oplus F_{m}^{2} \oplus \cdots \oplus F_{m}^{p}, \quad m \in \mathbb{N}
$$

into subspaces of dimension $\operatorname{dim} F_{m}^{i}=k_{i}$ such that, for each $m, \ell \in \mathbb{N}$ and $i=$ $1, \ldots, p$,

$$
\mathcal{A}(m, \ell) F_{\ell}^{i}=F_{m}^{i}
$$

(H2) For each $i=1, \ldots, p$ and $x \in F_{1}^{i} \backslash\{0\}$,

$$
\lim _{m \rightarrow+\infty} \frac{1}{\rho_{m}} \log \|\mathcal{A}(m, 1) x\|=\lambda_{i}
$$

(H3) For each $i, j=1, \ldots, p, x \in F_{1}^{i} \backslash\{0\}$ and $y \in F_{1}^{j} \backslash\{0\}$,

$$
\lim _{m \rightarrow+\infty} \frac{1}{\rho_{m}} \log \angle(\mathcal{A}(m, 1) x, \mathcal{A}(m, 1) y)=0
$$

One can easily verify that

$$
E_{i}=\bigoplus_{j \leqslant i} F_{1}^{j}
$$

(see (2.2)) for each i.
We also describe some consequences of conditions (H1)-(H3). Given a number $b \in \mathbb{R}$ that is not a Lyapunov exponent, we consider the decompositions

$$
\begin{equation*}
\mathbb{C}^{n}=E_{m} \oplus F_{m}, \tag{2.3}
\end{equation*}
$$

where

$$
E_{m}=\bigoplus_{\lambda_{i}<b} F_{m}^{i} \quad \text { and } \quad F_{m}=\bigoplus_{\lambda_{i}>b} F_{m}^{i}
$$

are subspaces for each $m \in \mathbb{N}$. Let P_{m} and Q_{m} be the projections associated with the decomposition (2.3). Take also $a<b<c$ such that the interval [a, c] contains no Lyapunov exponent.

Theorem 2.1. The following properties hold.
(1)

$$
E_{1}=\left\{x \in \mathbb{C}^{n}: \lambda(x)<b\right\} \quad \text { and } \quad \lambda(x)>b \quad \text { for } x \in F_{1} \backslash\{0\}
$$

(2) Given $\varepsilon>0$, there exists $L=L(\varepsilon)>0$ such that

$$
\begin{equation*}
\left\|\mathcal{A}(m, \ell) \mid E_{\ell}\right\| \leqslant L \mathrm{e}^{a\left(\rho_{m}-\rho_{\ell}\right)+\varepsilon \rho_{\ell}}, \quad m \geqslant \ell \tag{2.4}
\end{equation*}
$$

and

$$
\left\|\mathcal{A}(m, \ell)^{-1} \mid F_{m}\right\| \leqslant L \mathrm{e}^{c\left(\rho_{\ell}-\rho_{m}\right)+\varepsilon \rho_{m}}, \quad m \geqslant \ell
$$

(3) Given $\varepsilon>0$, there exists $M=M(\varepsilon)>0$ such that

$$
\begin{equation*}
\left\|P_{m}\right\| \leqslant M \mathrm{e}^{\varepsilon \rho_{m}} \quad \text { and } \quad\left\|Q_{m}\right\| \leqslant M \mathrm{e}^{\varepsilon \rho_{m}} \tag{2.5}
\end{equation*}
$$

for every $m \in \mathbb{N}$.
Proof. Property (1) follows readily from (H1) and (H2), and (2) can be obtained as in [3, Proof of Theorem 10.6]. For (3), we recall that

$$
\begin{equation*}
\frac{1}{\alpha_{m}} \leqslant\left\|P_{m}\right\| \leqslant \frac{2}{\alpha_{m}} \quad \text { and } \quad \frac{1}{\alpha_{m}} \leqslant\left\|Q_{m}\right\| \leqslant \frac{2}{\alpha_{m}} \tag{2.6}
\end{equation*}
$$

where α_{m} is the angle between the subspaces E_{m} and F_{m} (see, for example, [3]). Also, let α_{m}^{i} be the angle between F_{m}^{i} and $\bigoplus_{j \neq i} F_{m}^{j}$. Clearly, for each i such that $\lambda_{i}<b$ we have that

$$
\begin{equation*}
\alpha_{m} \geqslant \alpha_{m}^{i} \quad \text { for } m \in \mathbb{N} \tag{2.7}
\end{equation*}
$$

On the other hand, by $(\mathrm{H} 3)$, given $\varepsilon>0$, there exists $M^{\prime}>0$ such that

$$
\alpha_{m}^{i}=\min _{j \neq i} \angle\left(F_{m}^{i}, F_{m}^{j}\right) \geqslant M^{\prime} \mathrm{e}^{-\varepsilon m}
$$

for every $m \in \mathbb{N}$. Together with (2.6) and (2.7) this yields (3).
Since

$$
\left\|\mathcal{A}(m, \ell) P_{\ell}\right\| \leqslant\left\|\mathcal{A}(m, \ell) \mid E_{\ell}\right\| \cdot\left\|P_{\ell}\right\|
$$

and

$$
\left\|\mathcal{A}(m, \ell)^{-1} Q_{m}\right\| \leqslant\left\|\mathcal{A}(m, \ell)^{-1} \mid F_{m}\right\| \cdot\left\|Q_{m}\right\|
$$

it follows from Theorem 2.1 that, given $\varepsilon>0$, there exists $K=K(\varepsilon)>0$ such that

$$
\left\|\mathcal{A}(m, \ell) P_{\ell}\right\| \leqslant K \mathrm{e}^{a\left(\rho_{m}-\rho_{\ell}\right)+\varepsilon \rho_{\ell}}
$$

and

$$
\left\|\mathcal{A}(m, \ell)^{-1} Q_{m}\right\| \leqslant K \mathrm{e}^{c\left(\rho_{\ell}-\rho_{m}\right)+\varepsilon \rho_{m}}
$$

for every $m \geqslant \ell$. In particular, taking $d>\lambda_{p}$ it follows from (2.4) that, given $\varepsilon>0$, there exists $N=N(\varepsilon)>0$ such that

$$
\begin{equation*}
\|\mathcal{A}(m, \ell)\| \leqslant N \mathrm{e}^{d\left(\rho_{m}-\rho_{\ell}\right)+\varepsilon \rho_{\ell}}, \quad m \geqslant \ell \tag{2.8}
\end{equation*}
$$

3. A non-autonomous Perron-type theorem

Now, we consider nonlinear perturbations of the dynamics defined by a sequence of matrices $\left(A_{m}\right)_{m \in \mathbb{N}}$. Namely, we consider the collection of sequences $\left(x_{m}\right)_{m \in \mathbb{N}}$ in \mathbb{C}^{n} satisfying

$$
\begin{equation*}
x_{m+1}=A_{m} x_{m}+f_{m}\left(x_{m}\right), \quad m \in \mathbb{N} \tag{3.1}
\end{equation*}
$$

for some continuous functions $f_{m}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$. We show that if a given sequence x_{m} does not grow too fast, then its Lyapunov exponent (see (3.3)) coincides with some Lyapunov exponent of the unperturbed difference equation (obtained from setting all f_{m} equal to 0).

Theorem 3.1. Let $\left(x_{m}\right)_{m \in \mathbb{N}}$ be a sequence such that (3.1) and (1.3) hold for some numbers $\gamma_{m} \in \mathbb{R}$ satisfying

$$
\begin{equation*}
\sum_{k=1}^{\infty} \mathrm{e}^{\left(-\lambda_{1}+\delta\right)\left(\rho_{k+1}-\rho_{k}\right)+\delta \rho_{k+1}} \gamma_{k}<\infty \tag{3.2}
\end{equation*}
$$

for some $\delta>0$. Then, one of the following alternatives hold.
(1) $x_{m}=0$ for all sufficiently large m.
(2) There exists i such that

$$
\begin{equation*}
\lambda_{i}=\lim _{m \rightarrow+\infty} \frac{1}{\rho_{m}} \log \left\|x_{m}\right\| \tag{3.3}
\end{equation*}
$$

Proof. Let $b \in \mathbb{R}$ be a number that is not a Lyapunov exponent and set $\varepsilon=\frac{1}{4} \delta$. Also, let $a<b<c$ be as in $\S 2$. We consider the norm

$$
\|x\|_{m}=\sup _{\sigma \geqslant m}\left(\mathrm{e}^{-a\left(\rho_{\sigma}-\rho_{m}\right)}\left\|\mathcal{A}(\sigma, m) P_{m} x\right\|\right)+\sup _{\sigma \leqslant m}\left(\mathrm{e}^{-c\left(\rho_{\sigma}-\rho_{m}\right)}\left\|\mathcal{A}(\sigma, m) Q_{m} x\right\|\right)
$$

for each $m \in \mathbb{N}$ and $x \in \mathbb{C}^{n}$. Clearly,

$$
\begin{equation*}
\|x\|_{m}=\left\|P_{m} x\right\|_{m}+\left\|Q_{m} x\right\|_{m} \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\|x\| \leqslant\|x\|_{m} \leqslant 2 K \mathrm{e}^{\varepsilon \rho_{m}}\|x\| \tag{3.5}
\end{equation*}
$$

Lemma 3.2. We have that

$$
\left\|\mathcal{A}(m, \ell) P_{\ell} x\right\|_{m} \leqslant \mathrm{e}^{a\left(\rho_{m}-\rho_{\ell}\right)}\left\|P_{\ell} x\right\|_{\ell} \quad \text { for } m \geqslant \ell
$$

and

$$
\left\|\mathcal{A}(m, \ell) Q_{\ell} x\right\|_{m} \geqslant \mathrm{e}^{c\left(\rho_{m}-\rho_{\ell}\right)}\left\|Q_{\ell} x\right\|_{\ell} \quad \text { for } m \geqslant \ell
$$

Proof of the lemma. For $m \geqslant \ell$ we have that

$$
\begin{align*}
\left\|\mathcal{A}(m, \ell) P_{\ell} x\right\|_{m} & =\sup _{\sigma \geqslant m}\left(\left\|\mathcal{A}(\sigma, m) \mathcal{A}(m, \ell) P_{\ell} x\right\| \mathrm{e}^{-a\left(\rho_{\sigma}-\rho_{m}\right)}\right) \\
& =\mathrm{e}^{a\left(\rho_{m}-\rho_{\ell}\right)} \sup _{\sigma \geqslant m}\left(\left\|\mathcal{A}(\sigma, \ell) P_{\ell} x\right\| \mathrm{e}^{-a\left(\rho_{\sigma}-\rho_{\ell}\right)}\right) \\
& \leqslant \mathrm{e}^{a\left(\rho_{m}-\rho_{\ell}\right)} \sup _{\sigma \geqslant \ell}\left(\left\|\mathcal{A}(\sigma, \ell) P_{\ell} x\right\| \mathrm{e}^{-a\left(\rho_{\sigma}-\rho_{\ell}\right)}\right) \\
& \leqslant \mathrm{e}^{a\left(\rho_{m}-\rho_{\ell}\right)}\left\|P_{\ell} x\right\|_{\ell} . \tag{3.6}
\end{align*}
$$

Similarly, for $m \geqslant \ell$ we have that

$$
\begin{align*}
\left\|\mathcal{A}(m, \ell) Q_{\ell} x\right\|_{m} & =\sup _{\sigma \leqslant m}\left(\left\|\mathcal{A}(\sigma, m) \mathcal{A}(m, \ell) Q_{\ell} x\right\| \mathrm{e}^{-c\left(\rho_{\sigma}-\rho_{m}\right)}\right) \\
& =\mathrm{e}^{c\left(\rho_{m}-\rho_{\ell}\right)} \sup _{\sigma \leqslant m}\left(\left\|\mathcal{A}(\sigma, \ell) Q_{\ell} x\right\| \mathrm{e}^{-c\left(\rho_{\sigma}-\rho_{\ell}\right)}\right) \\
& \geqslant \mathrm{e}^{c\left(\rho_{m}-\rho_{\ell}\right)} \sup _{\sigma \leqslant \ell}\left(\left\|\mathcal{A}(\sigma, \ell) Q_{\ell} x\right\| \mathrm{e}^{-c\left(\rho_{\sigma}-\rho_{\ell}\right)}\right) \\
& \geqslant \mathrm{e}^{c\left(\rho_{m}-\rho_{\ell}\right)}\left\|Q_{\ell} x\right\|_{\ell} . \tag{3.7}
\end{align*}
$$

This completes the proof of the lemma.
Now, let $\left(x_{m}\right)_{m \in \mathbb{N}}$ be a sequence satisfying (3.1). Using the decomposition in (2.3), one can write that $x_{m}=y_{m}+z_{m}$, where

$$
y_{m}=P_{m} x_{m} \quad \text { and } \quad z_{m}=Q_{m} x_{m} .
$$

Lemma 3.3. One of the following alternatives holds.
(1)

$$
\begin{equation*}
\limsup _{m \rightarrow+\infty} \frac{1}{\rho_{m}} \log \left\|x_{m}\right\|<b \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{k \rightarrow+\infty} \frac{\left\|z_{k}\right\|_{k}}{\left\|y_{k}\right\|_{k}}=0 \tag{3.9}
\end{equation*}
$$

(2)

$$
\begin{equation*}
\liminf _{m \rightarrow+\infty} \frac{1}{\rho_{m}} \log \left\|x_{m}\right\|>b \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{k \rightarrow+\infty} \frac{\left\|y_{k}\right\|_{k}}{\left\|z_{k}\right\|_{k}}=0 \tag{3.11}
\end{equation*}
$$

Proof of the lemma. We have that

$$
\begin{equation*}
y_{k+1}=A_{k} P_{k} x_{k}+P_{k} f_{k}\left(x_{k}\right) \tag{3.12}
\end{equation*}
$$

and

$$
\begin{equation*}
z_{k+1}=A_{k} Q_{k} x_{k}+Q_{k} f_{k}\left(x_{k}\right) . \tag{3.13}
\end{equation*}
$$

By (3.5) and (3.7), it follows from (3.13) and (2.5) that

$$
\begin{align*}
\left\|z_{k+1}\right\|_{k+1} & \geqslant\left\|A_{k} Q_{k} x_{k}\right\|_{k+1}-\left\|Q_{k} f_{k}\left(x_{k}\right)\right\|_{k+1} \\
& \geqslant \mathrm{e}^{c\left(\rho_{k+1}-\rho_{k}\right)}\left\|z_{k}\right\|_{k}-2 K \mathrm{e}^{\varepsilon \rho_{k+1}}\left\|Q_{k} f_{k}\left(x_{k}\right)\right\| \\
& \geqslant \mathrm{e}^{c\left(\rho_{k+1}-\rho_{k}\right)}\left\|z_{k}\right\|_{k}-D_{1}\left\|x_{k}\right\| \delta_{k} \tag{3.14}
\end{align*}
$$

for some constant $D_{1}>0$, where $\delta_{k}=\mathrm{e}^{\varepsilon \rho_{k+1}} \gamma_{k}$. By (3.12) and (3.6), it follows from similar estimates that

$$
\begin{equation*}
\left\|y_{k+1}\right\|_{k+1} \leqslant \mathrm{e}^{a\left(\rho_{k+1}-\rho_{k}\right)}\left\|y_{k}\right\|_{k}+D_{2}\left\|x_{k}\right\|_{k} \delta_{k} \tag{3.15}
\end{equation*}
$$

for some constant $D_{2}>0$. Inequalities (3.14) and (3.15) yield that

$$
\begin{equation*}
\left\|z_{k+1}\right\|_{k+1} \geqslant \alpha_{k}\left\|z_{k}\right\|_{k}-D \delta_{k}\left(\left\|y_{k}\right\|_{k}+\left\|z_{k}\right\|_{k}\right) \tag{3.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|y_{k+1}\right\|_{k+1} \leqslant \beta_{k}\left\|y_{k}\right\|_{k}+D \delta_{k}\left(\left\|y_{k}\right\|_{k}+\left\|z_{k}\right\|_{k}\right) \tag{3.17}
\end{equation*}
$$

for all integers k, where

$$
\begin{equation*}
D=D_{1}+D_{2}, \quad \alpha_{k}=\mathrm{e}^{c\left(\rho_{k+1}-\rho_{k}\right)} \quad \text { and } \quad \beta_{k}=\mathrm{e}^{a\left(\rho_{k+1}-\rho_{k}\right)} . \tag{3.18}
\end{equation*}
$$

Now, we claim that either

$$
\begin{equation*}
\left\|z_{k}\right\|_{k} \leqslant\left\|y_{k}\right\|_{k} \quad \text { for all large } k \tag{3.19}
\end{equation*}
$$

or

$$
\begin{equation*}
\left\|y_{k}\right\|_{k}<\left\|z_{k}\right\|_{k} \quad \text { for all large } k . \tag{3.20}
\end{equation*}
$$

We show that if (3.19) fails, then (3.20) holds. We assume that (3.19) does not hold. Then,

$$
\begin{equation*}
\left\|z_{k}\right\|_{k}>\left\|y_{k}\right\|_{k} \quad \text { for infinitely many } k . \tag{3.21}
\end{equation*}
$$

By (3.16),

$$
\begin{equation*}
\left\|z_{k+1}\right\|_{k+1} \geqslant\left(\alpha_{k}-D \delta_{k}\right)\left\|z_{k}\right\|_{k}-D \delta_{k}\left\|y_{k}\right\|_{k} \tag{3.22}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|y_{k+1}\right\|_{(k+1) r} \leqslant\left(\beta_{k}+D \delta_{k}\right)\left\|y_{k}\right\|_{k}+D \delta_{k}\left\|z_{k}\right\|_{k} . \tag{3.23}
\end{equation*}
$$

By (3.21), there exists $k_{1} \geqslant 1$ arbitrarily large such that $\left\|y_{k_{1}}\right\|_{k_{1}}<\left\|z_{k_{1}}\right\|_{k_{1}}$. We show by induction on k that

$$
\begin{equation*}
\left\|y_{k}\right\|_{k}<\left\|z_{k}\right\|_{k} \quad \text { for } k \geqslant k_{1} \tag{3.24}
\end{equation*}
$$

We assume that $\left\|y_{k}\right\|_{k}<\left\|z_{k}\right\|_{k}$ for some $k \geqslant k_{1}$. By (3.22) and (3.23), this implies that

$$
\left\|z_{k+1}\right\|_{k+1} \geqslant\left(\alpha_{k}-2 D \delta_{k}\right)\left\|z_{k}\right\|_{k}>0
$$

and

$$
\left\|y_{k+1}\right\|_{k+1} \leqslant\left(\beta_{k}+2 D \delta_{k}\right)\left\|z_{k}\right\|_{k}
$$

Now, it follows from (3.2) that

$$
\mathrm{e}^{\left(-\lambda_{1}+4 \varepsilon\right)\left(\rho_{k+1}-\rho_{k}\right)+4 \varepsilon \rho_{k+1}} \gamma_{k} \rightarrow 0
$$

when $k \rightarrow \infty$. Taking d sufficiently close to λ_{p}, this implies that $c_{k}=\delta_{k} / \alpha_{k} \rightarrow 0$ and $d_{k}=\delta_{k} / \beta_{k} \rightarrow 0$ when $k \rightarrow \infty$. Therefore,

$$
\left\|y_{k+1}\right\|_{k+1} \leqslant \frac{\beta_{k}+2 D \delta_{k}}{\alpha_{k}-2 D \delta_{k}}\left\|z_{k+1}\right\|_{k+1}<\left\|z_{k+1}\right\|_{k+1}
$$

provided that k is sufficiently large. This shows that (3.24) holds. Thus, we have shown that if (3.19) fails, then (3.20) holds. As a consequence, we have the following two cases.

Case 1. Assume that (3.19) holds. We show that (3.8) and (3.9) hold. We note that $\left\|y_{k}\right\|_{k}>0$ for all large k, since otherwise (3.4) and (3.19) would yield

$$
\left\|x_{k}\right\|_{k}=\left\|y_{k}\right\|_{k}+\left\|z_{k}\right\|_{k} \leqslant 2\left\|y_{k}\right\|_{k}=0
$$

for infinitely many k, contradicting the hypothesis that $\left\|x_{m}\right\|_{m} \geqslant\left\|x_{m}\right\|>0$ for all sufficiently large m. Define

$$
S=\limsup _{k \rightarrow+\infty} \frac{\left\|z_{k}\right\|_{k}}{\left\|y_{k}\right\|_{k}}
$$

By (3.19), we have $0 \leqslant S \leqslant 1$. It follows from (3.19) and (3.17) that, for all large k,

$$
\left\|y_{k+1}\right\|_{(k+1) r} \leqslant\left(\beta_{k}+2 D \delta_{k}\right)\left\|y_{k}\right\|_{k} .
$$

Together with (3.16), this yields that, for all large k,

$$
\frac{\left\|z_{k+1}\right\|_{k+1}}{\left\|y_{k+1}\right\|_{k+1}} \geqslant \frac{\alpha_{k}-D \delta_{k}}{\beta_{k}+2 D \delta_{k}} \cdot \frac{\left\|z_{k}\right\|_{k}}{\left\|y_{k}\right\|_{k}}-\frac{D \delta_{k}}{\beta_{k}+2 D \delta_{k}} .
$$

Since $\alpha_{k} / \beta_{k} \rightarrow+\infty$ when $k \rightarrow \infty$ (see (3.18)), taking limsup on both sides, we obtain $S \geqslant+\infty \cdot S$. This implies that $S=0$, and that (3.9) holds. Now, take k_{0} so large that $\left\|z_{k}\right\|_{k} \leqslant\left\|y_{k}\right\|_{k}$ for all $k \geqslant k_{0}$. By (3.17), we find that, for $k \geqslant k_{0}$,

$$
\left\|y_{k+1}\right\|_{k+1} \leqslant\left(\beta_{k}+2 D \delta_{k}\right)\left\|y_{k}\right\|_{k}
$$

and, hence,

$$
\begin{align*}
\left\|y_{k}\right\|_{k} & \leqslant\left\|y_{k_{0}}\right\|_{k_{0}} \prod_{j=k_{0}}^{k-1}\left(1+2 D c_{j}\right) \prod_{j=k_{0}}^{k-1} \beta_{j} \\
& =\left\|y_{k_{0}}\right\|_{k_{0}} \prod_{j=k_{0}}^{k-1}\left(1+2 D c_{j}\right) \mathrm{e}^{a\left(\rho_{k}-\rho_{k_{0}}\right)} \tag{3.25}
\end{align*}
$$

for $k \geqslant k_{0}$. On the other hand, it follows from (3.2) that

$$
\sum_{j=1}^{\infty} \log \left(1+2 D c_{j}\right) \leqslant 2 D \sum_{j=1}^{\infty} c_{j}<\infty
$$

and, hence, by (3.25),

$$
\limsup _{m \rightarrow+\infty} \frac{1}{\rho_{m}} \log \left\|x_{m}\right\| \leqslant a<b
$$

This establishes (3.8).
Case 2. Now assume that (3.20) holds. We show that (3.10) and (3.11) hold. We define

$$
R=\limsup _{k \rightarrow+\infty} \frac{\left\|y_{k}\right\|_{k}}{\left\|z_{k}\right\|_{k}}
$$

By (3.20), we have $0 \leqslant R \leqslant 1$. It follows from (3.20) in (3.16) that, for all large k,

$$
\left\|z_{k+1}\right\|_{k+1} \geqslant\left(\alpha_{k}-2 D \delta_{k}\right)\left\|y_{k}\right\|_{k}
$$

Together with (3.17), this yields that, for all large k,

$$
\frac{\left\|y_{k+1}\right\|_{k+1}}{\left\|z_{k+1}\right\|_{k+1}} \leqslant \frac{\beta_{k}+D \delta_{k}}{\alpha_{k}-2 D \delta_{k}} \cdot \frac{\left\|y_{k}\right\|_{k}}{\left\|z_{k}\right\|_{k}}+\frac{D \delta_{k}}{\alpha_{k}-2 D \delta_{k}}
$$

Since $\beta_{k} / \alpha_{k} \rightarrow 0$ when $k \rightarrow \infty$, taking limsup on both sides, we obtain $R \leqslant 0 \cdot R$. This implies that $R=0$ and that (3.11) holds. Now, take k_{0} such that $\left\|y_{k}\right\|_{k}<\left\|z_{k}\right\|_{k}$ for $k \geqslant k_{0}$. By (3.16), we find that, for $k \geqslant k_{0}$,

$$
\left\|z_{k+1}\right\|_{k+1} \geqslant \alpha_{k}\left(1-2 D d_{k}\right)\left\|z_{k}\right\|_{k}
$$

and, hence,

$$
\left\|z_{k}\right\|_{k} \geqslant\left\|z_{k_{0}}\right\|_{k_{0}} \prod_{j=k_{0}}^{k-1}\left(1-2 D d_{j}\right) \mathrm{e}^{c\left(\rho_{k}-\rho_{k_{0}}\right)}
$$

On the other hand, it follows from (3.2) that

$$
-\sum_{j=1}^{\infty} \log \left(1-2 D d_{j}\right) \leqslant \sum_{j=1}^{\infty} \log \frac{1}{1-2 D d_{j}} \leqslant \sum_{j=1}^{\infty} \frac{2 D d_{j}}{1-2 D d_{j}}<\infty
$$

Therefore,

$$
\liminf _{m \rightarrow \infty} \frac{1}{\rho_{m}} \log \left\|x_{m}\right\| \geqslant c>b
$$

This establishes (3.10).

Now we establish an auxiliary result.
Lemma 3.4. There exists $C>0$ such that

$$
\begin{equation*}
\left\|x_{m}\right\| \leqslant C\left\|x_{\ell}\right\| \mathrm{e}^{d\left(\rho_{m}-\rho_{\ell}\right)+\varepsilon \rho_{\ell}} \tag{3.26}
\end{equation*}
$$

for all $m \geqslant \ell$.
Proof of the lemma. For each $m \geqslant \ell$ we have that

$$
x_{m}=\mathcal{A}(m, \ell) x_{\ell}+\sum_{j=\ell}^{m-1} \mathcal{A}(m, j+1) f_{j}\left(x_{j}\right) .
$$

Therefore, by (2.8) and (1.3),

$$
\begin{aligned}
\left\|x_{m}\right\| & \leqslant N \mathrm{e}^{d\left(\rho_{m}-\rho_{\ell}\right)+\varepsilon \rho_{\ell}}\left\|x_{\ell}\right\|+N \sum_{j=\ell}^{m-1} \mathrm{e}^{d\left(\rho_{m}-\rho_{j+1}\right)+\varepsilon \rho_{j+1}} \gamma_{j}\left\|x_{j}\right\| \\
& \leqslant N \mathrm{e}^{d\left(\rho_{m}-\rho_{\ell}\right)+\varepsilon \rho_{\ell}}\left\|x_{\ell}\right\|+N \sum_{j=\ell}^{m-1} \mathrm{e}^{d\left(\rho_{m}-\rho_{j}\right)+\varepsilon \rho_{j+1}} \gamma_{j}\left\|x_{j}\right\|,
\end{aligned}
$$

where in the last inequality we have used that ρ is increasing. Hence,

$$
\mathrm{e}^{-d\left(\rho_{m}-\rho_{\ell}\right)}\left\|x_{m}\right\| \leqslant N \mathrm{e}^{\varepsilon \rho_{\ell}}\left\|x_{\ell}\right\|+N \sum_{j=\ell}^{m-1} \mathrm{e}^{-d\left(\rho_{j}-\rho_{\ell}\right)+\varepsilon \rho_{j+1}} \gamma_{j}\left\|x_{j}\right\| .
$$

One can use induction to show that

$$
\mathrm{e}^{-d\left(\rho_{m}-\rho_{\ell}\right)}\left\|x_{m}\right\| \leqslant N \mathrm{e}^{\varepsilon \rho_{\ell}}\left\|x_{\ell}\right\| \prod_{j=\ell}^{m-1}\left(1+N \mathrm{e}^{\varepsilon \rho_{j+1}} \gamma_{j}\right)
$$

for $m \geqslant \ell$. Hence,

$$
\begin{aligned}
\left\|x_{m}\right\| & \leqslant N \mathrm{e}^{d\left(\rho_{m}-\rho_{\ell}\right)+\varepsilon \rho_{\ell}}\left\|x_{\ell}\right\| \exp \left(\sum_{j=\ell}^{m-1} N \mathrm{e}^{\varepsilon \rho_{j+1}} \gamma_{j}\right) \\
& \leqslant N \mathrm{e}^{d\left(\rho_{m}-\rho_{\ell}\right)+\varepsilon \rho_{\ell}}\left\|x_{\ell}\right\| \mathrm{e}^{N S},
\end{aligned}
$$

where

$$
S=\sum_{j=1}^{\infty} \mathrm{e}^{\varepsilon \rho_{j+1}} \gamma_{j}<+\infty .
$$

This completes the proof of the lemma.
We proceed with the proof of Theorem 3.1. Let $\left(x_{m}\right)_{m \in \mathbb{N}}$ be a sequence satisfying (3.1). If $x_{k}=0$ for some k, then it follows from (3.26) that $x_{m}=0$ for all $m \geqslant k$, and, hence, the first alternative in the theorem holds. Now, we assume that $x_{m} \neq 0$ for all $m \geqslant \ell$.

Also, let $\lambda_{1}<\cdots<\lambda_{p}$ be the Lyapunov exponents of the sequence $\left(A_{m}\right)_{m \in \mathbb{N}}$. Take real numbers b_{j} such that

$$
\lambda_{j}<b_{j}<\lambda_{j+1} \quad \text { for } 1 \leqslant j<p
$$

Also, take $b_{0}<\lambda_{1}\left(\right.$ when $\left.\lambda_{1} \neq-\infty\right)$ and $b_{p}>\lambda_{p}$. By Lemma 3.3 applied to each $b=b_{j}$, there exists $j \in\{1, \ldots, p\}$ such that

$$
\limsup _{m \rightarrow+\infty} \frac{1}{\rho_{m}} \log \left\|x_{m}\right\|<b_{j}
$$

and

$$
\liminf _{m \rightarrow+\infty} \frac{1}{\rho_{m}} \log \left\|x_{m}\right\|>b_{j-1}
$$

Letting $b_{j} \searrow \lambda_{1}$ and $b_{j-1} \nearrow \lambda_{j}$, we find that

$$
\lim _{m \rightarrow+\infty} \frac{1}{\rho_{m}} \log \left\|x_{m}\right\|=\lambda_{j}
$$

This completes the proof of the theorem.
Now, we show that any sequence satisfying (3.1) and the second alternative in Theorem 3.1 is essentially asymptotically tangent to the spaces F_{m}^{i}, with i as in (3.3). We consider the decompositions

$$
\mathbb{C}^{n}=E_{m} \oplus F_{m} \oplus F_{m}^{i}
$$

where

$$
E_{m}=\bigoplus_{j<i} F_{m}^{j} \quad \text { and } \quad F_{m}=\bigoplus_{j>i} F_{m}^{j}
$$

for each $m \in \mathbb{N}$. Also, let P_{m}, Q_{m} and R_{m} be the projections associated with this decomposition.

Theorem 3.5. Let $\left(x_{m}\right)_{m \in \mathbb{N}}$ be a sequence such that (3.1) and (1.3) hold for some numbers $\gamma_{m} \in \mathbb{R}$ satisfying (3.2) for some $\delta>0$. If (3.3) holds, then

$$
\lim _{m \rightarrow+\infty} \frac{\left\|P_{m} x_{m}\right\|_{m}}{\left\|R_{m} x_{m}\right\|_{m}}=0
$$

and

$$
\lim _{m \rightarrow+\infty} \frac{\left\|Q_{m} x_{m}\right\|_{m}}{\left\|R_{m} x_{m}\right\|_{m}}=0
$$

Proof. We write that

$$
x_{m}=y_{m}+z_{m}+w_{m}
$$

where

$$
y_{m}=P_{m} x_{m}, \quad z_{m}=Q_{m} x_{m} \quad \text { and } \quad w_{m}=R_{m} x_{m}
$$

Take $b<\lambda_{i}$ such that the interval $\left[b, \lambda_{i}\right)$ contains no Lyapunov exponent of the sequence $\left(A_{m}\right)_{m \in \mathbb{N}}$. Then,

$$
\lim _{m \rightarrow+\infty} \frac{1}{\rho_{m}} \log \left\|x_{m}\right\|=\lambda_{i}>b
$$

and it follows from Lemma 3.3 that

$$
\begin{equation*}
\lim _{m \rightarrow+\infty} \frac{\left\|y_{m}\right\|_{m}}{\left\|z_{m}+w_{m}\right\|_{m}}=0 \tag{3.27}
\end{equation*}
$$

Now, take $c>\lambda_{i}$ such that the interval $\left(\lambda_{i}, c\right]$ contains no Lyapunov exponent of the cocycle $\left(A_{m}\right)_{m}$. Then,

$$
\lim _{m \rightarrow \infty} \frac{1}{\rho_{m}} \log \left\|x_{m}\right\|=\lambda_{i}<c
$$

and it follows from Lemma 3.3 that

$$
\begin{equation*}
\lim _{m \rightarrow+\infty} \frac{\left\|z_{m}\right\|_{m}}{\left\|y_{m}+w_{m}\right\|_{m}}=0 \tag{3.28}
\end{equation*}
$$

Given $\delta>0$, take $\eta \in(0,1)$ such that $\eta(1+\eta)\left(1-\eta^{2}\right)^{-1}<\delta$. By (3.28), for all large m we have that

$$
\left\|z_{m}\right\|_{m} \leqslant \eta\left\|y_{m}+w_{m}\right\|_{m}
$$

Furthermore, (3.27) implies that, for all large m,

$$
\left\|y_{m}\right\|_{m} \leqslant \eta\left\|z_{m}+w_{m}\right\|_{m}
$$

and, hence,

$$
\begin{aligned}
\left\|z_{m}\right\|_{m} & \leqslant \eta(1+\eta)\left\|w_{m}\right\|_{m}+\eta^{2}\left\|z_{m}\right\|_{m} \\
& \leqslant \eta(1+\eta)\left(1-\eta^{2}\right)^{-1}\left\|w_{m}\right\|_{m} \leqslant \delta\left\|w_{m}\right\|_{m}
\end{aligned}
$$

Since δ is arbitrary, this yields the identity

$$
\lim _{m \rightarrow+\infty} \frac{\left\|z_{m}\right\|_{m}}{\left\|w_{m}\right\|_{m}}=0
$$

Reversing the roles of P and Q, we find that

$$
\lim _{m \rightarrow+\infty} \frac{\left\|y_{m}\right\|_{m}}{\left\|z_{m}\right\|_{m}}=0
$$

This completes the proof of the theorem.

Finally, we formulate two non-trivial results that are consequences of Theorem 1.1. We first consider perturbations of linear dynamics with negative Lyapunov exponents.

Theorem 3.6. Let $f_{m}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ be continuous functions such that

$$
\left\|f_{m}(x)\right\| \leqslant \gamma_{m}\|x\|, \quad m \in \mathbb{N}, x \in \mathbb{C}^{n}
$$

for a sequence γ_{m} satisfying (3.2) for some $\delta>0$. If all values of the Lyapunov exponent λ of the sequence $\left(A_{m}\right)_{m \in \mathbb{N}}$ are negative, then all solutions x_{m} of (1.1) satisfy

$$
\lim _{m \rightarrow+\infty} \frac{1}{\rho_{m}} \log \left\|x_{m}\right\|<0
$$

Now, we consider the particular case of linear perturbations.
Theorem 3.7. If B_{m} are $n \times n$ matrices with complex entries such that the sequence $\gamma_{m}=\left\|B_{m}\right\|$ satisfies (3.2) for some $\delta>0$, then the Lyapunov exponents of the sequences $\left(A_{m}\right)_{m \in \mathbb{N}}$ and $\left(A_{m}+B_{m}\right)_{m \in \mathbb{N}}$ have the same values.

Acknowledgements. This research was supported by Portuguese National Funds through FCT - Fundação para a Ciência e a Tecnologia within the project PTDC/MAT/ 117106/2010 and by CAMGSD.

References

1. L. Barreira and Ya. Pesin, Lyapunov exponents and smooth ergodic theory, University Lecture Series, Volume 23 (American Mathematical Society, Providence, RI, 2002).
2. L. Barreira and Ya. Pesin, Nonuniform hyperbolicity, Encyclopedia of Mathematics and Its Applications, Volume 115 (Cambridge University Press, 2007).
3. L. Barreira and C. Valls, Stability of nonautonomous differential equations, Lecture Notes in Mathematics, Volume 1926 (Springer, 2008).
4. L. Barreira and C. Valls, Nonautonomous difference equations and a Perron-type theorem, Bull. Sci. Math. 136 (2012), 277-290.
5. C. Coffman, Asymptotic behavior of solutions of ordinary difference equations, Trans. Am. Math. Soc. 110 (1964), 22-51.
6. W. Coppel, Stability and asymptotic behavior of differential equations, Heath Mathematical Monographs (Heath, Lexington, MA, 1965).
7. P. Hartman and A. Wintner, Asymptotic integrations of linear differential equations, Am. J. Math. 77 (1955), 45-86.
8. F. Lettenmeyer, Über das asymptotische Verhalten der Lösungen von Differentialgleichungen und Differentialgleichungssystemen (Verlag der Bayerische Akademie der Wissenschaften, München, 1929).
9. K. Matsui, H. Matsunaga and S. Murakami, Perron-type theorem for functional differential equations with infinite delay in a Banach space, Nonlin. Analysis 69 (2008), 3821-3837.
10. O. Perron, Über Stabilität und asymptotisches Verhalten der Integrale von Differentialgleichungssystemen, Math. Z. 29 (1929), 129-160.
11. M. Pituk, A Perron-type theorem for functional differential equations, J. Math. Analysis Applic. 316 (2006), 24-41.
12. M. Pituk, Asymptotic behavior and oscillation of functional differential equations, J. Math. Analysis Applic. 322 (2006), 1140-1158.
