LINEAR TRANSFORMATIONS ON MATRICES: THE INVARIANCE OF A CLASS OF GENERAL MATRIX FUNGTIONS

E. P. BOTTA

1. Introduction. Let $M_{m}(F)$ be the vector space of m-square matrices

$$
X=\left(x_{i j}\right), \quad x_{i j} \in F ; i, j=1, \ldots, m,
$$

where F is a field; let f be a function on $M_{m}(F)$ to some set R. It is of interest to determine the linear maps $T: M_{m}(F) \rightarrow M_{m}(F)$ which preserve the values of the function f; i.e., $f(T(X))=f(X)$ for all X. For example, if we take $f(X)$ to be the rank of X, we are asking for a determination of the types of linear operations on matrices that preserve rank. Other classical invariants that may be taken for f are the determinant, the set of eigenvalues, and the r th elementary symmetric function of the eigenvalues. Dieudonné (1), Hua (2), Jacobs (3), Marcus (4, 6, 8), Morita (9), and Moyls (6) have conducted extensive research in this area. A class of matrix functions that have recently aroused considerable interest $(4 ; 7)$ is the generalized matrix functions in the sense of I. Schur (10). These are defined as follows: let S_{m} be the full symmetric group of degree m and let λ be a function on S_{m}, with values in F. The matrix function associated with λ is defined by

$$
d_{\lambda}(X)=\sum_{\sigma \in S_{m}} \lambda(\sigma) \prod_{i=1}^{m} x_{i \sigma(i)} .
$$

These functions clearly include the classical determinant, permanent (5), and imminent functions (11).

Let C be a transitive cyclic subgroup of S_{m} and suppose $\lambda: S_{m} \rightarrow F$ is such that $\lambda(\sigma)=0$ if $\sigma \notin C$. Our main result is a characterization of all linear maps $T: M_{m}(F) \rightarrow M_{m}(F)$ that satisfy

$$
\begin{equation*}
d_{\lambda}(T(X))=d_{\lambda}(X) \quad \text { for all } X \in M_{m}(F) \tag{1}
\end{equation*}
$$

The results are first established for the case when C is the group generated by the cycle π given by

$$
\pi(i) \equiv i+1, \quad \pi^{k}(i) \equiv i+k \quad(\bmod m), \quad k \text { integer },
$$

and the function λ is identically equal to 1 on C. We then extend the results to other transitive cyclic subgroups and other functions by showing that it is possible to convert one matrix function uniformly into another by a linear

[^0]transformation. We assume throughout that the field F contains more than m elements, where m is the size of the matrices under consideration, and that $m \geqslant 3$.

The author would like to thank Professor Marvin Marcus for suggesting this problem.
2. Definitions and main results. Let π be the cycle defined before, let C be the cyclic subgroup of S_{m} generated by π, and let $\lambda: S_{m} \rightarrow F$ be defined by

$$
\lambda(\sigma)=1 \quad \text { if } \sigma \in C, \quad \lambda(\sigma)=0 \quad \text { if } \sigma \notin C .
$$

We denote the generalized matrix function associated with λ by d. Clearly we may write

$$
d(X)=\sum_{k=1}^{m} \prod_{i=1}^{m} x_{i \pi} k_{(i)} .
$$

Definition. If M is a subspace of $M_{m}(F)$, then
(a) M is a 0 -subspace if $\operatorname{dim} M=m^{2}-m$ and $d(X)=0$ for all $X \in M$.
(b) M is of type α, where $\alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right)$ is an ordered m-tuple of integers $1 \leqslant \alpha_{i} \leqslant m$, if $\operatorname{dim} M=m^{2}-m$ and the $\left(\alpha_{k}, \pi^{k}\left(\alpha_{k}\right)\right)$ entry of every $X \in M$ is zero for $k=1, \ldots, m$.

The following characterization of the 0 -subspaces of $M_{m}(F)$ turns out to be very useful in the determination of the structure of the set of linear maps of $M_{m}(F)$ into itself satisfying (1).

Theorem 1. Any 0 -subspace M of $M_{m}(F)$ is of type α for some unique sequence α.

If $P=\left(p_{i j}\right)$ is the permutation matrix corresponding to the cycle π (i.e. $p_{i j}=\delta_{i \pi(j)}$), then $X \in M_{m}(F)$ can be uniquely written

$$
X=\sum_{i=1}^{m} X_{i} P^{i}
$$

where the X_{i} are diagonal matrices. We use this representation in defining the following linear maps of $M_{m}(F)$ into itself. Set $X_{i}=\operatorname{diag}\left(x_{i 1}, \ldots, x_{i m}\right)$, and define three classes of maps by:
(a) If $\sigma \in S_{m}$, then

$$
T(\sigma)(X)=\sum_{i=1}^{m} X_{i} P^{\sigma(i)}
$$

(b) If $\tau \in S_{m}$ and $1 \leqslant k \leqslant m$, then

$$
S_{k}(\tau)(X)=\sum_{i=1}^{m} X^{\prime}{ }_{i} P^{i}
$$

where $X^{\prime}{ }_{i}=X_{i}$ for $i \neq k$ and $X^{\prime}{ }_{k}=\operatorname{diag}\left(x_{k \tau(1)}, \ldots, x_{k \tau(m)}\right)$.
(c) If $1 \leqslant k \leqslant m$ and $a_{i} \in F$ are such that

$$
\prod_{i=1}^{m} a_{i}=1
$$

then

$$
M_{k}\left(a_{1}, \ldots, a_{m}\right)(X)=\sum_{i=1}^{m} X^{\prime \prime}{ }_{i} P^{i}
$$

where $X^{\prime \prime}{ }_{i}=X_{i}$ for $i \neq k$ and $X^{\prime \prime}{ }_{k}=\operatorname{diag}\left(a_{1} x_{k 1}, \ldots, a_{m} x_{k m}\right)$.
It is clear that each of the above types of linear transformations $T(\sigma)$, $S_{k}(\sigma)$, and $M_{k}\left(a_{1}, \ldots, a_{m}\right)$ is non-singular. We let G be the (multiplicative) subgroup of $\mathrm{GL}\left(m^{2}\right)$ (the group of non-singular linear maps of $M_{m}(F)$ into itself) generated by the above three types.

If C is a transitive cyclic subgroup of S_{m} and $\lambda: S_{m} \rightarrow F$ is such that $\lambda(\sigma)=0$ for $\sigma \notin C$, let $N=\{\sigma \in C: \lambda(\sigma)=0\}$. We define a linear map A_{N} of $M_{m}(F)$ into itself by

$$
A_{N}\left(E_{i j}\right)= \begin{cases}0 & \text { if } j=\sigma(i) \text { for some } \sigma \in N, \\ E_{i j} & \text { otherwise },\end{cases}
$$

and extend A_{N} linearly. Here $E_{i j}$ is the m-square matrix with a 1 in the (i, j) position and zeros elsewhere.

Let I be the identity map of $M_{m}(F)$ into itself. We can now state our main result.

Theorem 2. Let C be a transitive cyclic subgroup of S_{m} and $\lambda: S_{m} \rightarrow F$ be such that $\lambda(\sigma)=0$ if $\sigma \notin C$. Let d_{λ} be the generalized matrix function associated with λ. There exists a non-singular linear transformation R of $M_{m}(F)$ onto itself such that a linear map T of $M_{m}(F)$ into itself satisfies

$$
d_{\lambda}(T(X))=d_{\lambda}(X) \quad \text { for all } X
$$

if and only if $A_{N}(T-I)+I \in R^{-1} G R$.
A specific formula for R will be given in the next section. It should be noted that R is independent of the map T but is not unique.
3. Proofs. Recall that d is the generalized matrix function associated with the function $\lambda: S_{m} \rightarrow F$ defined by $\lambda(\sigma)=1$ if σ belongs to the cyclic group generated by π and $\lambda(\sigma)=0$ otherwise. Here π is defined by

$$
\pi(i) \equiv i+1(\bmod m)
$$

We let P be this permutation matrix corresponding to π and say a matrix K is a k-diagonal matrix if $K=D P^{k}$ for some diagonal matrix D. We now prove some lemmas needed to prove Theorem 1.

Lemma 1. If M is a 0 -subspace, then M contains a non-zero k-diagonal matrix for each $k=1, \ldots, m$.

Proof. It is enough to show that M contains a diagonal matrix, for then we can apply this result to the 0 -subspace $M P^{k}$. Suppose M does not contain a non-zero diagonal matrix. Let D be the subspace of diagonal matrices and M_{k} the subspace formed by adjoining P^{k} to M. It is easy to check that $d\left(P^{k}\right)=1$; therefore $P^{k} \notin M$ and $\operatorname{dim} M_{k}=m^{2}-m+1$. Then $D \cap M_{k} \neq 0$, for $\operatorname{dim} D=m$ and a simple dimension argument yields the result. Let D_{k} be a non-zero element of $D \cap M_{k}$. We may assume (by multiplying by a suitable constant) that $D_{k}=M_{k}-P^{k}$ where $M_{k} \in M$. Let $D_{k}=\operatorname{diag}\left(d_{k 1}, \ldots, d_{k m}\right)$. Then

$$
d\left(M_{k}\right)=d\left(D_{k}+P^{k}\right)=\prod_{i=1}^{m} d_{k i}+1 \quad \text { for } k \neq m .
$$

Recall that M is a 0 -subspace, so we must have

$$
\prod_{i=1}^{m} d_{k i}=-1
$$

Hence no $d_{k i}$ is equal to zero for $k \neq m$. Let T be the subspace generated by adjoining the matrix $E_{n 1}$ to D. Then $\operatorname{dim} T=m+1$ and a dimension argument again shows that $T \cap M \neq 0$. Let

$$
B=\sum_{i=1}^{m} b_{i} E_{i i}+c E_{n 1}
$$

be a non-zero matrix in $T \cap M$. Then $M_{1}+z B \in M$ for all $z \in F$ since M_{1} and B belong to the subspace M. Now

$$
d\left(M_{1}+z B\right)=\prod_{i=1}^{m}\left(d_{1 i}+z b_{i}\right)+1
$$

and it is evident that this is equal to zero if and only if $b_{i}=0$ for all i. Hence $B=c E_{n 1}$. Since B and M_{m-1} belong to $M, M_{m-1}+z B$ belongs to M for all $z \in F$. Now

$$
d\left(M_{m-1}+z B\right)=\prod_{i=1}^{m} d_{m-1, i}+(1+c z)=c z
$$

This, however, implies that $c=0$, for $M_{m-1}+z B M$. Hence $B=0$, a contradiction.

Lemma 2. If M is a 0 -subspace and $X \in M$, then for each $k=1, \ldots$, m there exists a unique integer j_{k}, independent of X, such that the $\left(j_{k}, \pi^{k}\left(j_{k}\right)\right)$ entry of X is zero.

Proof. We first show that for any $X \in M$ the ordered set

$$
D(X, k)=\left\{x_{1, \sigma(1)}, \ldots, x_{m, \sigma(m)}: \sigma=\pi^{k}\right\}
$$

(i.e., the k th diagonal of X) contains at least one zero. For some $X \in M$ and some k assume that $0 \notin D(X, k)$. By Lemma 1 , let $K \in M$ be a non-zero
k-diagonal matrix. Let $K=D P^{k}$ where $D=\operatorname{diag}\left(d_{1}, \ldots, d_{m}\right)$ and suppose that $d_{t} \neq 0$. Then $Z=X-x_{t, \pi} k_{(t)} / d_{t} K$ belongs to M and since $K_{i j}=d_{i} \delta_{i, \pi} k_{(j)}$,

$$
d(Z)=\sum_{\substack{j=1 \\ j \neq t}}^{m} \prod_{i=1}^{m} x_{i, \pi} j_{(i)}=-\prod_{i=1}^{m} x_{i, \pi} t_{(i)} .
$$

Hence $d(Z) \neq 0$ since $0 \notin D(X, k)$, a contradiction.
We now show that the position of the zero in the set $D(X, k)$ is independent of X. Suppose that this is not the case. Then for some integer $k, 1 \leqslant k \leqslant m$, there exist m matrices $X^{(1)}, \ldots, X^{(m)}$ belonging to M such that

$$
x_{i, \pi}^{(i)} k_{(i)} \neq 0 \quad \text { for } i=1, \ldots, m .
$$

A standard argument shows that we can choose $c_{i} \in F(i=1, \ldots, m)$ such that

$$
d_{i}=\sum_{t=1}^{m} c_{t} x_{i, \pi}{ }^{(t)} k(i) \neq 0, \quad i=1, \ldots, m
$$

Define

$$
Y=\sum_{t=1}^{m} c_{t} X^{(t)}
$$

Then $Y \in M$ and $0 \notin D(Y, k)=\left\{d_{1}, \ldots, d_{m}\right\}$. This, however, contradicts the fact that $0 \in D(Y, k)$ if $Y \in M$.

To see that the integer j_{k} is unique, note that the above shows that the subspace M consists of matrices that have zeros in at least m fixed positions, with at least one in each diagonal. It is not hard to see that if there was more than one zero in some diagonal, then $\operatorname{dim} M$ would be less than $m^{2}-m$, a contradiction.

We now prove Theorem 1 by simply taking the sequence α to be $\left(j_{1}, \ldots, j_{m}\right)$.
Let T be a linear transformation of $M_{m}(F)$ into itself satisfying (1) where C is the group generated by the permutation defined by $\pi(i) \equiv i+1(\bmod m)$ and the function λ is identically equal to 1 on C and 0 off C. Let d be the generalized matrix function associated with C and λ.

Lemma 3. The linear transformation T is non-singular.
Proof. Suppose T is singular. Then $T(A)=0$ for some $A \neq 0$. Therefore

$$
d(X-A)=d(T(X-A))=d(T(X)-T(A))=d(T(X))=d(X)
$$

for all X. If $A=\left(a_{i j}\right)$, then $a_{i j} \neq 0$ for some i, j. The group C is transitive, so there exists an integer k such that $\pi^{k}(i)=j$. Set

$$
B=\sum_{\substack{r=1 \\ r \neq k}}^{m} \prod_{t=1}^{m} a_{t \pi} r_{(t)} .
$$

Then

$$
d(A)=\prod_{t=1}^{m} a_{t \pi} k_{(t)}+B=0
$$

since $0=d(0)=d(T(A))=d(A)$.

We consider two cases:

$$
\begin{equation*}
\prod_{t=1}^{m} a_{t \pi} k_{(t)}=-B=0 \tag{1}
\end{equation*}
$$

Let $X=a_{i j} P^{k}$; then $d(X)=a_{i j}{ }^{m} \neq 0$. On the other hand,

$$
d(X-A)=\prod_{t=1}^{m}\left(a_{t \pi} k_{(t)}-a_{i j}\right)+B=0
$$

since $a_{i \pi} k_{(i)}=a_{i j}$.

$$
\begin{equation*}
\prod_{i=1}^{m} a_{t \pi} k_{(t)}=-B \neq 0 \tag{2}
\end{equation*}
$$

Let $X=a_{i j} E_{i j}$; then $d(X)=0$. However, we also have

$$
d(X-A)=\prod_{t=1}^{m}\left(\delta_{j \pi} k_{(t)} a_{i j}-a_{t \pi} k_{(t)}\right)+B=0+B \neq 0
$$

since $\delta_{j \pi} k_{(i)} a_{i j}-a_{i \pi} k_{(i)}=0$. Hence we have $d(X) \neq d(X-A)$, a contradiction.

Let $M_{i}\left(M^{j}\right)$ be the subspace of $M_{m}(F)$ consisting of all matrices with row i (column j) zero. Clearly M_{i} and M^{j} are 0 -subspaces. Let $R_{i}=T\left(M_{i}\right)$ and $R^{j}=T\left(M^{j}\right)$. Then R_{i} and R^{j} are 0 -subspaces; for, by Lemma 3, T is nonsingular and so preserves dimension and T preserves the values of the matrix function d by assumption. Applying Theorem 1 , we may conclude that R_{i} is of type $\beta_{(i)}=\left(\beta_{i 1}, \ldots, \beta_{i m}\right)$ and R^{j} is of type $\beta^{(j)}=\left(\beta_{1}{ }^{j}, \ldots, \beta_{m}{ }^{j}\right)$ for some unique sequences $\beta_{(i)}$ and $\beta^{(j)}$.

In order to determine the structure of T, it is convenient to let $X=\left(x_{i j}\right)$ be a matrix of m^{2} indeterminates. If we do this, we can consider $T(X)$ as a matrix of m^{2} linear forms, $L(i, j)$, where

$$
L(i, j)=\sum_{r=1}^{m} \sum_{s=1}^{m} t(i, j, r, s) x_{r s}, \quad t(i, j, r, s) \in F
$$

We now use the fact that $R_{i}\left(R^{j}\right)$ is of type $\beta_{(i)}\left(\beta^{(j)}\right)$ to determine the coefficients $t(i, j, r, s)$ in each linear form $L(i, j)$. Clearly once we have done this, the structure of the linear map T will be known.

Lemma 4. Each linear form $L(i, j)$ involves only one indeterminate (i.e. $L(i, j)=c_{r s} x_{r s}$ for some $\left.r, s\right)$ and different linear forms involve different indeterminates.

Proof. Consider $L\left(\beta_{i k}, \pi^{k}\left(\beta_{i k}\right)\right)$. If $x_{i 1}=\ldots=x_{i m}=0$, then $L\left(\beta_{i k}\right.$, $\left.\pi^{k}\left(\beta_{i k}\right)\right)=0$ because R_{i} is of type $\left(\beta_{i 1}, \ldots, \beta_{i m}\right)$. Hence $t\left(\beta_{i k}, \pi^{k}\left(\beta_{i k}\right)\right.$, $r, s)=0$ if $r \neq i$. A similar argument shows that $L\left(\beta_{j}{ }^{k}, \pi^{k}\left(\beta_{j}{ }^{k}\right)\right)=0$ if $x_{1 j}=\ldots=x_{m j}=0$.

Now notice that if $i \neq j$, then $\beta_{i t} \neq \beta_{j t}$ for any t. To see this, suppose that $\beta_{i t}=\beta_{j t}$ for some t and some $i \neq j$. The argument above shows that $L\left(\beta_{i t}\right.$,
$\left.\pi^{k}\left(\beta_{i t}\right)\right)$ involves only the indeterminates $x_{i 1}, \ldots, x_{i m}$. But we have assumed that $L\left(\beta_{i t}, \pi^{t}\left(\beta_{i t}\right)\right)=L\left(\beta_{j t}, \pi^{t}\left(\beta_{j t}\right)\right)$; hence $L\left(\beta_{i t}, \pi^{t}\left(\beta_{i t}\right)\right)$ involves only the indeterminates $x_{j 1}, \ldots, x_{j m}$. Hence $L\left(\beta_{i t}, \pi^{t}\left(\beta_{i t}\right)\right)=0$ since

$$
\left\{x_{i 1}, \ldots, x_{i m}\right\} \cap\left\{x_{j 1}, \ldots, x_{j m}\right\}=\emptyset .
$$

This, however, implies that T is singular, contradicting Lemma 3. We may now conclude that for each $i, t=1, \ldots, m$ there exists an integer r such that $\beta_{r t}=i$; for we have shown that $\beta_{r t} \neq \beta_{s t}$ for $r \neq s$ and $1 \leqslant \beta_{u v} \leqslant m$ by definition. The group C is transitive; hence, we can choose an integer t such that $\pi^{t}(i)=j$. Then the above arguments show that $L(i, j)=L\left(\beta_{\tau t}, \pi^{t}\left(\beta_{r t}\right)\right)$ involves only the indeterminates $x_{r 1}, \ldots, x_{r m}$. Similarly $L(i, j)$ involves only the indeterminates $x_{1 s}, \ldots, x_{m}$ for some integer s. Now

$$
\left\{x_{r 1}, \ldots, x_{r m}\right\} \cap\left\{x_{1 s}, \ldots, x_{m s}\right\}=x_{r s}
$$

so $L(i, j)$ involves only the indeterminate $x_{r s}$.
If two different linear forms involved the same indeterminate, then, since there are m^{2} linear forms and m^{2} indeterminates, some indeterminate, say $x_{u v}$, would not appear in any linear form. Then T is singular for $T\left(E_{u v}\right)=0$, a contradiction.

Let G be the subgroup of $\mathrm{GL}\left(m^{2}\right)$ defined in $\S 2$. We now prove a special case of Theorem 2 .

Lemma 5. A linear transformation T of $M_{m}(F)$ into itself satisfies $d(T(X))=$ $d(X)$ for all X if and only if $T \in G$.

Proof. First note that if

$$
X=\left(x_{i j}\right) \in M_{m}(F) \quad \text { and } \quad X_{i}=\operatorname{diag}\left(x_{1, \pi} i_{(1)}, \ldots, x_{m, \pi} i_{(m)}\right)
$$

then

$$
X=\sum_{i=1}^{m} X_{i} P^{i}
$$

and this representation is unique.
If x_{1}, \ldots, x_{m} are indeterminates and $X=\operatorname{diag}\left(x_{1}, \ldots, x_{m}\right) P^{k}$, then, by Lemma $4, T(X)$ has precisely m non-zero entries. Further,

$$
d(X)=\prod_{i=1}^{m} x_{i}=d(T(X))
$$

hence the non-zero entries in $T(X)$ must lie in a k-diagonal for some k so $T(X)$ is a k-diagonal matrix. Let $T(X)=\operatorname{diag}\left(L_{1}, \ldots, L_{m}\right) P^{k}$ where the L_{i} are linear forms in the indeterminates x_{1}, \ldots, x_{n}. By Lemma $4, L_{i}=a_{i} x_{\sigma(i)}$ for some permutation $\sigma \in S_{m}$. Hence

$$
d(T(X))=\prod_{i=1}^{m} a_{i} x_{\sigma(i)}=\prod_{i=1}^{m} a_{i} \prod_{i=1}^{m} x_{i}=\prod_{i=1}^{m} x_{i}=d(X)
$$

and we must have

$$
\prod_{i=1}^{m} a_{i}=1
$$

If D_{1} and D_{2} are diagonal matrices and $i \neq j$, then we have shown that $T\left(D_{1} P^{i}\right)=D^{\prime}{ }_{i} P^{r}$ and $T\left(D_{2} P^{j}\right)=D^{\prime}{ }_{2} P^{s}$ for diagonal matrices $D^{\prime}{ }_{1}$ and $D^{\prime}{ }_{2}$. In addition, we can conclude from the non-singularity of T that $r \neq s$. Therefore, using the linearity of T, if

$$
X=\sum_{i=1}^{m} X_{i} P^{i}, \quad \text { then } T(X)=\sum_{i=1}^{m} X^{\prime}{ }_{i} P^{\sigma(i)}
$$

where $\sigma \in S_{m}$; and if $X_{i}=\operatorname{diag}\left(x_{i 1}, \ldots, x_{i m}\right)$, then

$$
X^{\prime}{ }_{1}=\operatorname{diag}\left(a_{i 1} x_{i r(1)}, \ldots, a_{i m} x_{i \tau(m)}\right)
$$

for a permutation $\tau=\tau_{i} \in S_{m}$, and the $a_{i j}$ satisfy

$$
\prod_{j=1}^{m} a_{i j}=1
$$

Now notice that if $M_{k}\left(a_{1}, \ldots, a_{m}\right)$ and $S_{k}(\tau)$ are the linear transformations defined in $\S 2$ and D is a diagonal matrix, then $S_{k}(\tau)\left(D P^{i}\right)=D P^{i}$ and $M_{k}\left(a_{1}, \ldots, a_{m}\right)\left(D P^{i}\right)=D P^{i}$ if $i \neq j$. This is an immediate consequence of the fact that these two transformations only affect the k-diagonal of the matrix on which they operate.

Finally, let

$$
S=T(\sigma) \prod_{i=1}^{m} M_{i}\left(a_{i 1}, \ldots, a_{i m}\right) S_{i}\left(\tau_{i}\right)
$$

Then $S \in G$ and a straightforward computation shows that $S(X)=T(X)$ for all X.

Now let C be any transitive cyclic subgroup of S_{m}. It is well known that C consists of all powers of a cycle σ of length m, and we call σ a generator of C. We use this fact in the following preliminary version of Theorem 2.

Lemma 6. Let C be any transitive cyclic subgroup of S_{m}, σ a generator of C, and λ a function on S_{m} to F such that $\lambda(\tau)=0$ if $\tau \notin C$ and $\lambda(\tau) \neq 0$ if $\tau \in C$. Let d_{λ} be the generalized matrix function associated with λ. There exists a nonsingular linear transformation R of $M_{m}(F)$ onto itself such that a linear transformation T satisfies

$$
\begin{equation*}
d_{\lambda}(T(X))=d_{\lambda}(X) \quad \text { for all } X \tag{2}
\end{equation*}
$$

if and only if $R^{-1} T R \in G$.
Proof. It is well known that if two permutations $\alpha, \beta \in S_{n}$ have the same cycle structure, then there exists a permutation $\mu \in S_{m}$ such that $\mu \alpha \mu^{-1}=\beta$. By the above remarks the permutations π and σ have the same cycle structure.

Let $\phi \in S_{m}$ be such that $\phi \sigma \phi^{-1}=\pi$. Define the map R by

$$
R(X)=P\left(\phi^{-1}\right) M(X) P(\phi)
$$

where $P(\phi)$ and $P\left(\phi^{-1}\right)$ are the permutation matrices corresponding to ϕ and ϕ^{-1} and

$$
M=\prod_{k=1}^{m} M_{k}\left(\left(\lambda\left(\sigma^{k}\right)\right)^{-1}, 1, \ldots, 1\right)
$$

A straightforward computation shows that

$$
d_{\lambda}(R(X))=d(X) \quad \text { for all } X
$$

and

$$
d\left(R^{-1}(X)\right)=d_{\lambda}(X) \quad \text { for all } X
$$

The map R is clearly linear and non-singular.
If T is a linear transformation of $M_{m}(F)$ into itself satisfying (2), then

$$
d\left(R^{-1} T R(X)\right)=d_{\lambda}(T R(X))=d_{\lambda}(R(X))=d(X)
$$

Hence, by Lemma 5, $R^{-1} T R \in G$.
We now remove the restriction that the values of the function λ must be non-zero on the group C. Recall that $N=\{\sigma \in C: \lambda(\sigma)=0\}$ and

$$
A_{N}\left(E_{i j}\right)=\left\{\begin{array}{cl}
0 & \text { if } j=\sigma(i) \text { for some } \sigma \in N, \\
E_{i j} & \text { otherwise } .
\end{array}\right.
$$

It is easy to check that if $X=\left(x_{i j}\right) \in M_{m}(F)$, then as τ runs over C, the ordered sets (the diagonals),

$$
D(X, \tau)=\left\{x_{1, \tau(1)}, \ldots, x_{m, \tau(m)}: \tau \in C\right\}
$$

form a partition of the elements of the matrix X. We define $\bar{\lambda}: S \rightarrow F$ by $\bar{\lambda}(\tau)=1$ if $\tau \in N$ and $\bar{\lambda}(\tau)=\lambda(\tau)$ otherwise. Let \bar{d}_{λ} be the generalized matrix function associated with $\bar{\lambda}$.

Lemma 7. Let $T: M_{m}(F) \rightarrow M_{m}(F)$ be a linear map satisfying $d(T(X))=d(X)$ for all X and let $S=A_{N}(T-I)+I$ where I is the identity transformation. Then $\bar{d}_{\lambda}(S(X))=\bar{d}_{\lambda}(X)$ for all X.

Proof. For any matrix $X \in M_{m}(F)$ we have

$$
\begin{gathered}
\bar{d}_{\lambda}(X)=\sum_{\sigma \in N} \bar{\lambda}(\sigma) \prod_{i=1}^{m} x_{i \sigma(1)}+\sum_{\sigma \notin N} \bar{\lambda}(\sigma) \prod_{i=1}^{m} x_{i \sigma(i)}=\sum_{\sigma \in N} \prod_{i=1}^{m} x_{i \sigma(i)}+d_{\lambda}(X) . \\
\left(A_{N} T(X)-A_{N}(X)+X\right)_{i \sigma(i)}= \begin{cases}x_{i \sigma(i)} & \text { if } \sigma \in N, \\
T(X)_{i \sigma(i)} & \text { if } \sigma \notin N .\end{cases}
\end{gathered}
$$

Hence

$$
\bar{d}_{\lambda}(S(X))=\sum_{\sigma \in N} \prod_{i=1}^{m} x_{i \sigma(i)}+d_{\lambda}(T(X))=\bar{d}_{\lambda}(X)
$$

It is clear that the function \bar{d}_{λ} and the map $S=A_{N}(T-I)+I$ satisfy the hypotheses of Lemma 6, so there exists a non-singular linear transformation R of $M_{m}(F)$ into itself, independent of T, such that $A_{N}(T-I)+I \in R^{-1} G R$. This completes the proof of Theorem 2.

References

1. J. Dieudonné, Sur une généralisation du groupe orthogonal à quatre variables, Arch. Math., 1 (1948), 282-287.
2. L. K. Hua, Geometries of matrices, I. Generalizations of von Staudts' theorem, Trans. Amer. Math Soc., 57 (1945), 441-481.
3. H. G. Jacobs, Coherence invariant mappings on Kronecker products, Amer. J. Math., 77 (1955), 177-189.
4. M. Marcus, Linear operations on matrices, Amer. Math. Monthly, 69 (1962), 837-847.
5. M. Marcus and F. May, The permanent function, Can. J. Math., 14 (1962), 177-189.
6. M. Marcus and B. N. Moyls, Linear transformations on algebras of matrices, Can. J. Math., 11 (1959) 61-66.
7. M. Marcus and H. Minc, Inequalities for general matrix functions, Bull. Amer. Math. Soc., 70 (1960) 308-313.
8. M. Marcus and R. Purves, Linear transformations on algebras of matrices: The invariance of the elementary symmetric functions, Can. J. Math., 11 (1959) 383-396.
9. K. Morita, Schwarz's lemma in a homogeneous space of higher dimensions, Japan J. Math., 19 (1944), 45-56.
10. I. Schur, Über endliche Gruppen und Hermitesche Formen, Math. Z., 1 (1918), 184-207.
11. H. Weyl, The classical groups (Princeton, N.J., 1946).

University of Michigan

[^0]: Received August 20, 1965. Research supported by a National Research Council of Canada Special Scholarship.

