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Abstract

Ageing is associated with a prolonged and exaggerated postprandial lipaemia. This study aimed to examine the contribution of alterations in
chylomicron synthesis, size and lipid composition to increased lipaemia. Healthy older (60-75 years; n 15) and younger (20-25 years; n 15)
subjects consumed a high-fat breakfast. Chylomicron dynamics and fatty acid composition were analysed for 5h in the postprandial state.
Plasma TAG levels were elevated following the meal in the older subjects, relative to younger subjects (2 < 0-01). For older subjects compared
with younger subjects, circulating chylomicron particle size was smaller (P < 0-05), with greater apoB content (P < 0-05) at all postprandial time
points. However, total chylomicron TAG concentration between the groups was unaltered post-meal. Compared with younger subjects, the
older subjects exhibited a greater proportion of oleic acid in the TAG and phospholipid (PL) fraction (P<0-05), plus lower proportions of
linoleic acid in the TAG fraction of the chylomicrons (< 0-01). Thus, following the ingestion of a high-fat meal, older individuals demonstrate
both smaller, more numerous chylomicrons, with a greater total MUFA and lower PUFA contents. These data suggest that the increased
postprandial lipaemia of ageing cannot be attributed to increased chylomicron TAG. Rather, ageing is associated with changes in chylomicron

particle size, apoB content and fatty acid composition of the chylomicron TAG and PL fractions.
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Postprandial lipaemia, characterised by increased concentra-
tions of TAG-rich chylomicron and remnant particles, exerts a
significant and often unappreciated impact on CVD risk™.
Chylomicrons are synthesised within the small intestinal enter-
ocyte, with a lipid composition highly reflective of the previous
meal ingestion*®. Chylomicrons tend to increase in size with
increasing quantities of ingested lipids, but are also larger when
composed of proportionally more longer-chain and less
saturated TAG®>. Although larger chylomicrons are cleared
more slowly than smaller particles, the total number of particles
competing for removal has been shown to be the rate-limiting
factor in postprandial chylomicron and remnant clearance®,
with chylomicrons being the preferential lipolytic substrate over
remnants”®.,

Older individuals experience greater postprandial lipaemia
The current evidence suggests that ageing is associated with an
increased TAG content of chylomicrons®*!”. Further, measure-
ments of postprandial chylomicron dynamics in older adults have

O-15)

been inconsistent and are frequently reliant on proxy measures
such as fatsoluble vitamin appearance’*™ or apoB-48:.TAG
ratios’®. Direct measurement of chylomicron particle size with
ageing is lacking and this can be quantified by dynamic light

scattering methods"'”. As chylomicron size dictates lipolytic
clearance, age-related differences in chylomicron composition and
size could contribute to the reported impaired chylomicron rem-
nant clearance and hypertriacylglycerolaemia in elderly adults™.

Fat meal loads used in previous studies to induce post-
prandial lipaemia have varied widely and have often been
limited to simple fat boluses that are poorly representative of a
typical meal™. As macronutrients exert differential metabolic
responses when ingested alone™ or in unison">*®, it is of
considerable interest to understand the metabolic response to
representative mixed meals. High-fat and high-carbohydrate
meals representative of a typical Western diet have increasingly
been used to study postprandial lipaemia in healthy®~** and
metabolically compromised populations®*?”. Thus, in this
study, direct measurement of the effect of age on chylomicron
dynamics and composition following a high-fat (and high-
carbohydrate) meal, representative of a Western diet, was
conducted. Analysis was performed to examine chylomicron
particle size, apoB concentration and fatty acid composition of
both the chylomicron TAG and the phospholipid (PL) fractions
in a healthy younger and older adult population. We

hypothesised that an exaggerated postprandial lipaemic

Abbreviations: CMRF, chylomicron-rich fraction; PL, phospholipid; TRL, TAG-rich lipoproteins.
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response in older adults would be due to the formation of larger
chylomicrons containing greater TAG that would delay clear-
ance. We further aimed to describe the fatty acid composition of
both the chylomicron TAG and the PL fraction in older adults.

Methods
Subject selection

In total, thirty healthy, community-dwelling subjects (72 7 young
females, n 8 young males, 7 9 older females, n 6 older males)
from the Auckland region were recruited through newspaper
advertisements the university community to
participate in the study. Eligible subjects were required to have
a BMI between 18 and 30 kg/m? and be between the ages of
20-25 and 60-75 years. Individuals with a history of CVD or
metabolic disease/conditions including diabetes or thyroid
conditions or who used medications that may interfere with
study end points (i.e. anti-inflammatory drugs, statin drugs)
were not eligible for participation. All subjects reported that
they were non-smokers. This study was conducted according to
the guidelines laid down in the Declaration of Helsinki, and all
procedures involving human subjects were approved by the
University of Auckland Human Participants and Ethics
Committee (ref no. 8026). Written informed consent was
obtained from all subjects. This study was registered pro-
spectively at Australian New Zealand Clinical Trials Registry at
anzctr.org.au (ID: ACTRN12612000515897).

and from

Study procedures

The present study was a cross-sectional, postprandial trial using
a high-fat breakfast, chosen as a standard test meal with high fat
(62:2 @) and protein content, also representative of a high-fat
restaurant breakfast meal® (Table 1). Subjects were asked to
abstain from vigorous physical activity, high-fat foods,

Table 1. Macronutrient and fatty acid composition of the breakfast meal
(Mean values with their standard errors)

Meal components Value SEM

Macronutrients™
Fat (g) 622 -
Carbohydrates (g) 77-4 -
Protein (g) 498 -
Energy (kJ) 4530 -

Fatty acid mass proportion (g/100 g)t
14:0 29 0-13
16:0 18-1 0-60
16:1n-7 1-8 0-10
18:0 96 0-40
18:1n-7 1.7 0-07
18:1n-9 50-0 1.70
18:1n-9trans 1.3 0-90
18:2n-6 87 0-30
18:3n-3 25 0-10
Otherst 3:35 0-50

* Meal consisting of two sausage egg muffin sandwiches containing English muffin
(wheat), egg, sausage patty (beef), cheese slice and rapeseed oil, with two hash
browns containing potatoes and rapeseed oil. Values presented are based on
nutrient panel data obtained from the website of the fast food restaurant.

1t n3.

1 Fatty acids with a mass proportion <0-5g/100 g are pooled to others category.

anti-inflammatory medications and nutritional supplements the
day before their visit. Subjects arrived fasted on the morning of
their visit; anthropometric data were collected before a catheter
was inserted into an antecubital vein and a baseline sample
(time 0h) was obtained followed by consumption of the test
breakfast. Subject physical activity was limited to sedentary
activities within the clinical room of the study facility. Blood
samples were collected after the meal into serum- and
EDTA-containing blood collection tubes (Becton Dickinson)
every hour for 5h. Serum tubes were left to clot at room tem-
perature for 15min before all the tubes were centrifuged at
1500 g for 15 min at 4°C for serum and plasma separation. An
aliquot of plasma was maintained at 4°C for chylomicron-rich
fraction (CMRF) separation within 6h, and the remaining
plasma was collected in pyrogen-free microtubes and stored at
—20°C until analysis.

Chylomicron-rich fraction isolation

The CMRF, containing chylomicrons and their large remnants,
was separated in 4-7-ml OptiSeal tubes (Beckman Coulter) in an
Optima MAX-XP ultracentrifuge using a TLA-110 rotor
(Beckman Coulter), adapted from Oikawa et al . Density-
gradient saline solutions were prepared with NaCl and 0-005 %
EDTA (Sigma-Aldrich) according to Naito®”, and separation
protocols were based on the studies of Kupke & Worz-
Zeugner®. In brief, 3-5ml plasma was overlaid with 1-2ml
saline solution (d=1-006 g/ml) and centrifuged at 117 000 g for
10 min. The visible top layer was aspirated into microtubes and
corrected to a final collection volume of 1-4ml using saline
solution. This provided a standardised dilution factor of the
collected CMRF volume relative to initial plasma volume. The
CMRF was stored in pyrogen-free microtubes at —80°C until use.

Chylomicron-rich fraction particle size analysis

CMRF patticle size was measured using a NanoZetasizer S
(Malvern Instruments) by dynamic light scattering. If more than
one size peak was observed, the mean peak data for the peak
within the range of large TAG-rich lipoproteins (TRL) were used
(>70 nm) based on the lower range of mean diameters of small
chylomicrons (S; 400-1000), as reported by Fraser®.

Biochemical analysis

Concentrations of plasma glucose, cholesterol, LDL, HDL, TAG,
NEFA and CMRF TAG, apoB, serum alanine transaminase (ALT)
and serum aspartate transaminase (AST) were measured using a
Hitachi 902 autoanalyser (Hitachi High Technologies Corpora-
tion) by enzymatic colorimetric assay (Roche). Plasma insulin
concentration was measured using an Abbott AXSYM system
(Abbott Laboratories) by microparticle enzyme immunoassay.

Fatty acid composition analysis of meals and
chylomicron-rich fraction TAG and phospholipids

Meals were homogenised using a domestic blender with 600 g
water. Samples were aliquoted into 50-ml centrifuge tubes,
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frozen and stored at —80°C until use. Fatty acid extraction,
methylation and GC of meal and CMRF samples were carried
out according to protocols described previously®*=%. In short,
an  internal  standard mixture of  triheptadecanoin
(Sigma-Aldrich)  and  dinonadecanoylphosphatidylcholine
(Sigma-Aldrich) was added to the isolated CMRF. Subsequently,
1-5 ml methanol, 3 ml chloroform and 0-8 ml 0-88 % KCl in water
were added and the blend was thoroughly vortexed after each
addition. Samples were centrifuged at 2000 g for 3 min to
separate the layers, and the lower chloroform-rich layer was
removed and the upper layer was extracted again®”. Food
lipids were extracted just as CMRF after further homogenisation
with an Ultra Turrax (IKA). CMRF TAG and PL were isolated
from the extracted lipid mixture with solid-phase extraction
based on Sep—Pak® Vac 1 cc silica columns (Waters)® D

Fatty acid methyl esters (FAME) were prepared using the
sodium methoxide method. In short, the lipids were suspended
into 1 ml dry diethyl ether; subsequently, 25 pl methyl acetate
and 25 pl sodium methoxide were added and the blend was
incubated for 5min while shaken at times. The reaction was
stopped with 6l acetic acid. Samples were centrifuged at
2000 g for 5 min, after which the supernatant was removed and
gently evaporated to dryness. The resulting FAME were trans-
ferred to 100 pl inserts in hexane®®. The FAME were analysed
using a gas chromatograph (Shimadzu GC-2010) equipped with
an AOC-20i auto injector, a flame ionisation detector (Shimadzu
Corporation) and a wall-coated open tubular column DB-23
(60 mx 0-25 mm i.d., liquid film 0-25 pm; Agilent Technologies,
J.W. Scientific). Splitless/split injection was used and the split
was opened after 1 min. Supelco 37 Component FAME Mix
(Supelco), 68D (Nu-Chek-Prep) and GLC-490 (Nu-Chek-Prep)
were used as external standards.

Calculations

The homoeostatic model assessment of insulin resistance
(HOMA-IR) was calculated from fasting glucose and insulin
concentrations using the equation from the study by Matthews
et al.®®. Maximum concentrations (Cy..) were identified as the
greatest value in an individual’s data set, with maximum peak
times (T, identified as the corresponding nominal sampling
time. Arithmetic means were used for group Cp,, comparisons,
whereas median values were used for group 7.« comparisons.
Plasma fatty acids were pooled for mathematical analysis into
SFA, MUFA, PUFA and dairy-derived odd-chain fatty acids.

Statistical analyses

Statistical analyses were carried out using Statistical Package for
the Social Sciences version 21 (SPSS; IBM Corporation). Sample
size was estimated with a power analysis for a superiority
design based on data from a previous study on lipaemia in the
elderly™. To achieve a significance level of P<0-05 with 80 %
power to detect a between-subject difference of 4-77 mmol/I
per h for TAG incremental AUC (JAUC), a sample size of 30 was
necessary. Data are presented as means values with their
standard errors except Tj.x, Which is presented as the medians
and interquartile ranges. iAUC was calculated after subtracting

fasting values. Baseline subject characteristics, iAUC and Cy.x
were compared using unpaired Student’s ¢ test. Ti,.x Wwas
compared using the Mann—-Whitney U test using mean ranks.
Two-factor repeated-measures ANOVA (time compared within-
subject and age compared between subjects) followed by the
Sidak-adjusted post hoc test were used for all multiple com-
parisons between different groups. Where Mauchly’s sphericity
test failed, the Huynh-Feldt correction was applied. a was set at
P<0-05. Heat maps were created using R software version
2.15.2 using the packages gplots (heatmap.2), RColorBrewer
and colorRamps (R Development Core Team).

Results
Subject characteristics

A total of thirty subjects completed the study (n 15 younger,
n 15 older). There were no significant differences between the
two age groups for BMI or fasting measurements of plasma
glucose, plasma insulin, HOMA-IR, plasma or CMRF TAG or
CMRF apoB content or particle size (Table 2). Fasting plasma
lipid profiles were within the normal range for both age groups,
although total, LDL and HDL-cholesterol levels were all higher
in older subjects (P<0-001, P=0-002 and P<0-001, respec-
tively). Liver function measured by serum ALT and AST were
within the normal range for all participants; however, the older
participants displayed lower concentrations for each (P=0-004
and P=0-001, respectively).

Plasma glucose, insulin and lipid responses
Postprandial glucose (Fig. 1(a)) and insulin (Fig. 1(b)) respon-

ses to the meal did not differ between younger and older

Table 2. Baseline subject characteristics and fasting plasma, serum and
chylomicron-rich fraction lipid profile of older and younger subjects
(Mean values with their standard errors)

Younger subjects Older subjects

(n 15) (n15)t

Measures Mean SEM Mean SEM
Age (years) 22.7 04 67.3"** 1.5
BMI (kg/m?) 237 0-8 24.4 1.0
HOMA-IR 20 02 1.7 0-3
Plasma

Glucose (mmol/l) 51 0-1 52 01

Insulin (mmol/l) 9.0 1.0 8.7 1.9

Total cholesterol (mmol/l) 4.0 0-2 5.0** 02

LDL (mmol/l) 24 02 3.0 0-2

HDL (mmol/l) 1-4 0-1 1.8 0-1

TAG (mmol/l) 0-82 0-07 0-91 0-07

NEFA (mmol/l) 0-66 0-08 0-57 0-09
Serum

ALT (UN) 10-0 22 1.9 0-8

AST (U/l) 191 1.7 12.1** 07
Chylomicron-rich fraction

TAG (mmol/l of plasma) 0.07 0-02 0-08 0-01

Size (nm) 191 20 140 24

apoB (mmol/l of plasma) 2-3 05 34 05

HOMA-IR, homoeostatic model assessment of insulin resistance; ALT, alanine
transaminase; AST, aspartate transaminase.

1 Significance was determined by unpaired Student’s t test: *** P<0-001, ** P<0-01
compared with younger subjects.
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Fig. 1. Postprandial plasma concentrations of glucose (a), insulin (b), TAG (c) and NEFA (d) in older (—@—) and younger (- -O- -) subjects. Values are means (n 15/
group), with their standard errors. There were no differences in glucose, insulin or NEFA responses between older and younger subjects. There were significant
differences over time in the TAG response between older and younger subjects (age xtime interaction of P<0-01, two-factor repeated-measures ANOVA).
*** P<0-001 change from baseline in all subjects; + P<0-01, change from baseline in older subjects; + P<0-01 change from baseline in younger subjects; § P<0-01

change from 5 h in younger subjects (Sidak-corrected post hocs).

subjects. The older group had a delayed median time to achieve
peak plasma TAG concentrations relative to the younger group
(Tnax 3 QR 3-4) v. 2 OQR 1-5-3) h, respectively; P<0-001),
reaching peak TAG concentration (Cy,,,) after 3h (P<0-001 v.
baseline). The younger subjects reached maximum peak
concentration at 2h (P=0-02 v. baseline). The plasma TAG in
the younger subjects also returned to baseline by 4 h; however,
in the older group, plasma TAG remained significantly elevated
at 5 h post-meal (Fig. 1(c)). As such, we observed a prolonged
TAG response in older subjects. This pattern of response did
not impact on the iAUC (0-5 h) response between the younger
and the older groups (103-6 (sem 21-6) ». 102-5 (sem 19-1)
mmol/], respectively; P=0-97; data not shown). Marked sup-
pression of circulating plasma NEFA was observed following
the meal, with no difference between younger and older sub-
jects (Fig. 1(d)). Postprandial total plasma cholesterol con-
centrations decreased in the older but not in the younger
participants (Table 3; time—age interaction; P < 0-001).

Chylomicron-rich fraction dynamics

CMRF particle size increased after the meal (P=0-01; main
effect of time, Fig. 2(a)) and was smaller for the older compared
with the younger participants (P=0-011, main effect of age).
Owing to variation in time to peak size between individuals,
median group maximum peak CMRF particle size and T
were compared. Overall median peak time was 3 h post-meal

Table 3. Postprandial total cholesterol in older and younger subjects
(Mean values with their standard errors)

Younger subjects (n 15) Older subjects (n 15)t

mmol/l Mean SEM Mean SEM
Baseline 3:99 0-18 5-04 0-22
1h 3.93 017 4.92 0-16
2h 3.95 018 4.84** 018
3h 386 0-18 4.75** 0-16
4h 393 0-20 4.75***§ 0-16
5h 3.97 019 4.80** 0-16

1 Significance was determined by two-factor repeated-measure ANOVA with Sidak-
corrected post hoc analysis: ** P<0-:01, *** P<0-001 compared with baseline
within age group; § P<0-01 compared with 1h. All time point comparisons
between younger and older subjects were significant to P<0-01.

(Trmax 3 QR 2-3-5) v. 2 (IQR 1-4)h, younger v. older,
respectively; P=0-467). Maximum CMRF particle size tended to
be smaller in the older subjects (Chax 321 (sem 29) and 390
(sem 22) nm, older v. younger, respectively; P=0-072). As CMRF
particle size was not different at baseline between age groups,
post hoc analysis was conducted to determine age-group
postprandial changes in size, despite no time—age interaction.
The older group’s CMRF particle size remained constant after
the meal, whereas the younger group’s CMRF particle size
increased, resulting in an age difference in size at 2-3h
(P=0-022 and P=0-007, respectively). Postprandial CMRF TAG
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Fig. 2. Postprandial chylomicron-rich fraction (CMRF) particle size (a), TAG
concentration (b) and apoB concentration (c) in older (—@—) and younger
(- -O--) subjects. Values are means (n 15/group), with their standard errors in
nm for particle size, mmol/l of plasma for TAG and g/l of plasma for apoB. There
were no differences in CMRF TAG response concentrations between older and
younger subjects. There were significant main age differences in the particle
size and apoB responses between older and younger subjects (age effect
marked (1) of P<0-05 each, two-factor repeated-measures ANOVA). * P<0-05
change from baseline in all subjects; ** P<0-01 change from baseline in all
subjects (Sidak-corrected post hocs).

concentration was not different between older and younger
subjects (P=0-894; Fig. 2(b)).

Changes in CMRF particle numbers were assessed by apoB
concentrations. Older subjects had higher apoB concentrations
than younger subjects (mean postprandial concentration 0-5 h
of 5:3 (sem 0-4) v. 4-2 (sem 0-4) X 10 ™2 g/1, respectively; P=0-035;
Fig. 2(c)). Overall, apoB concentrations peaked at 2h
post-meal (P=0-001) returning to comparable baseline
concentrations by 5 h.

had lower proportions (P=0-003). The older group had lower
proportions of 18 : 0 (stearic acid) at 2 h compared with younger
participants (P=0-009), whereas these age differences were not
apparent after 4h. Older subjects had lower proportions of
15:1 at 2h compared with the younger group (P=0-037).

Pooling of the dairy-derived odd-chain fatty acids (15:0,
15:1, 17:0, 17:1) showed higher proportions in the CMRF
TAG of older subjects (P<0:001). In both groups, CMRF TAG
composition changed over the postprandial period. From 2 to
4h after the meal, proportions of CMRF TAG 20:4n-6
(arachidonic acid) and 22 : 6n-3 (DHA) increased (P=0-002 and
P=0-042, respectively).

Comparison of chylomicron-rich fraction phospholipid
composition between ages. In both older and younger sub-
jects, CMRF PL composition changed over the postprandial
period. At 4h, CMRF PL contained relatively more PUFA
(P=0-034), less SFA (P=0-042) and tended to contain more
MUFA (P=0-052) than at 2 h (Fig. 3). This difference in the later
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Fig. 4. Major chylomicron-rich fraction (CMRF) TAG (a) and phospholipid (b) fatty acid composition of younger subjects at 2 h ((]) and 4 h ([T) and older subjects at 2 h
() and 4 h () as mass proportions (g/100 g). Data marked (1) differ with age, and data marked (%) differ with time; P < 0-05 for age and time by two-factor repeated-
measures ANOVA. Age x time interaction post hocs (Sidak-corrected within each acid) are indicated as * P<0-05, ** P<0-01 between younger and older subjects at

specified time points.

postprandial period was characterised by relatively more
linoleic acid (18 : 2n-6; P=0-023) than at 2 h (Fig. 4(b)).

The CMRF PL of the older subjects contained relatively more
MUFA (87 % greater proportion in older v. younger subjects;
P=0-038), less PUFA (3:3% lower proportion in older wv.
younger subjects; P=0-032) and tended to contain less SFA
(3-2 % lower proportion in older ». younger subjects; P=0-085;
Fig. 3) relative to younger subjects. Arachidonic acid was found
in lower concentrations in older subjects (P=0-018).

Similar to the CMRF TAG, the CMRF PL in the older group
contained greater proportions of oleic acid (18:1n-9;
P=0-028). Elaidic acid (18:1n-9trans at 2h; P=0-001) and
18: 2n-6trans (P=0-012) were also more abundant in the
CMRF PL of older participants; this was accompanied by
relatively higher levels of the dairy-derived odd-chain fatty
acids (P=0-001), particularly 15:0 and 15:1 (Z=0-018 and
P=0-003, respectively). Furthermore, the older subjects had
greater proportions of the PUFA docosapentaenoic acid
(22:5n-3; P=0-013) and tended to have relatively more EPA
(P=0-058).

Discussion

Following a high-fat meal, the older participants of the present
study had smaller chylomicron particles with a greater pro-
portion of oleic acid and a lower PUFA content over a 5-h
postprandial period. This study highlights that there are subtle

changes in the dynamics governing lipid absorption, which
occur along with differences in relative absorption and/or
clearance of specific fatty acids, predominately oleic acid.
Furthermore, our data do not support either altered appearance
or delayed chylomicron clearance as a major regulator of the
exaggerated lipaemia, typically present in older individuals.
Rather, this study shows that the major contributant to the
heightened postprandial TAG response is in the non-
chylomicron fraction and includes other TAG-rich particles
including VLDL and chylomicron remnants™".

Consistent with previous reports, our data demonstrate pro-
longed postprandial triacylglycerolaemia in older adults®'>.
However, within this literature, a few studies have addressed
the dynamics and role of chylomicron structure and composi-
tion in this hypertriacylglycerolaemic response. In the present
study, the concentration of CMRF TAG was not different
between older and younger participants. Previous studies
reporting differences in chylomicron TAG?* ' have shown
greater TAG content in large, rather than small, TRL in the
elderly®, plus a greater postprandial NEFA spillover from
exogenous TRLYY. Neither mechanism was demonstrated in
the present study. Rather, our data implicate alterations of small
TRL (endogenous VLDL and small chylomicron remnants)
production and clearance as a major determinant of the sus-
tained postprandial hypertriacylglycerolaemia in the elderly. It
must be noted that there were no age differences in BMI,
HOMA-IR, fasting TAG and NEFA or indications of hepatic
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dysfunction in this present study. Previously, these factors have
been shown to adversely affect postprandial chylomicron
dynamics™?
context of a mixed breakfast meal, rather than in response to
the ingestion of isolated lipid loads.

In this study, the older participants had a maximum

. Furthermore, our findings are presented in the

chylomicron particle size, on average 18 % smaller and 27 %
more numerous compared with the younger group. Impor-
tantly, chylomicron sizes were measured directly through
dynamic light scattering, a technique used previously for
chylomicron and lipoprotein size analyses”>®, although rarely
in the context of postprandial dynamics*®®. These smaller and
more numerous TRL are a reported feature of insulin

resistance°

» and certain types of dyslipidaemia®”. Smaller and
more abundant TRL may be due to intestinal over-production of
apoB-48%3? and/or failed suppression of postprandial large
VLDL producti()n(Z‘O) . However, in this study, no age difference
in fasting insulin sensitivity, as measured by HOMA-IR, were
observed. Thus, the mechanisms contributing to the increased
concentrations of smaller and more numerous chylomicron
particles were not determined in the present study.
Differences in chylomicron particle size and number may
have important implications for chylomicron clearance and
potentially for atherosclerotic risk in these older subjects.

Smaller chylomicron particle size has been shown to retard
“D,

)

shown that this may be an artifact of unmatched number of
particles'® | indicating that larger numbers, often corresponding
to smaller size, are cleared more slowly. Smaller and greater

clearance rate however, more recent investigations have

circulating numbers of chylomicron remnants, due to their
ability to penetrate the arterial intima, have been shown to
increase atherosclerotic risk”’. However, our results suggest
that the large CMRF, although containing relatively smaller
particles, is cleared efficiently, whereas the small TRL fraction
may persist.

In addition to the alterations in the size and number of cir-
culating chylomicrons, differences in the lipid composition of
both the TAG and the PL fractions were measured. The older
individuals had greater proportions of MUFA, particularly oleic
acid, in chylomicron TAG, with a corresponding lowering of the
proportion of PUFA. These compositional differences were also
present in the PL fraction. Our findings correspond with reports
of age-related differences in adipose and circulating TAG
composition with age-related declines in SFA“?, linoleic acid
(18 : 22-6)“*® and total PUFA Contents(44), along with increases
in MUFA content*?. Similarly, our findings of lower chylomi-
cron PL PUFA are similar to what has been previously
demonstrated in elderly populations(MJ‘(’). Habitual diet or
health status has been suggested to impact these age-related
compositional differences™*>. Indeed, the post-meal plasma
fatty acid composition has previously been shown to corre-
spond poorly with meal fatty acid composition, particularly
regarding plasma MUFA content in older subjects, suggesting an
important impact of habitual diet“”. In contrast, meal compo-
sition has been reported to significantly impact postprandial
TAG in young subjects(48)
fatty acid metabolism between old and young individuals.
Furthermore, as our postprandial findings match longer-term

, supporting a difference in post-meal

evaluations of circulating fatty acids in elderly populations, the
metabolic handling of fatty acids may contribute to age-related
fatty acid differences in the elderly.

There are likely to be several mechanisms exerting influence
on the differences in chylomicron fatty acid composition
between the younger and the older subjects following the
consumption of an identical meal, including possible differ-
ences in fatty acid absorption and clearance from TRL. Enter-
ocyte fatty acid metabolism may be involved as chylomicron
incorporation of fat-soluble vitamins has suggested age-related
differences in postprandial absorption®®'¥. The greater pro-
portions of MUFA observed in the older group may indicate
enhanced intestinal absorption of oleic acid. This is supported
by animal models indicating that uptake of oleic acid“?, lino-
leic acid®® and SFA®Y are increased in aged rats, fitting with
our data. In addition, chylomicron TAG are known to contain
proportions of fatty acids originating from enterocyte storage
pools, containing fatty acids from the previous meal®*>® as
well as early postprandial contributions from NEFA®?. It has
been suggested that in insulin-resistant states the intestines may
store greater quantities of fat, contributing to aberrant apoB
production®®. Tt is unknown whether differences in intestinal
enterocyte storage pools between age groups may have con-
tributed to postprandial fatty acid compositional differences.
However, it is probable that the predominant mediator is
exchange with either circulating free or lipoprotein-derived PL
and TAG or the presence of endogenous large TRL. Indeed, the
postprandial reductions in total cholesterol we observed in the
older group suggest increased inter-lipoprotein transfer; how-
ever, measures of this activity such as cholesterol ester transfer
activity were not assessed. Furthermore, the origins of altered
proportions of fatty acids in any endogenous lipoproteins, such
as greater MUFA content, remain unknown.

The postprandial age-related differences in older participants’
chylomicron composition may have metabolic implications
outside of transient effects on postprandial lipaemia. As older
people incorporate ingested TAG at a greater rate into small
TRL rather than chylomicrons®?, any differences in fatty acid
uptake will be amplified with the increased residence time of
these remnants®'®. In addition, the increased surface area:
volume ratio of chylomicrons in the older group implies
proportionally more PL, magnifying the impact of these
compositional differences. Specifically, enhanced uptake of
oleic acid could have implications for uptake of other fatty
acids, as long-chain fatty acid uptake into the enterocyte is
competitive®, and could explain the lower proportions of
PUFA found in older subjects’ chylomicron TAG. Furthermore,
the fatty acid composition differences reported in these older
adults have been identified as features in individuals with
metabolic dysfunction; lower serum linoleic acid has been
associated with an increased risk of developing impaired fasting
glucose or type 2 diabetes mellitus in middle-aged men®®. In
addition, as we show that some age-related compositional
differences are dependent on postprandial sampling time, dif-
ferences in rates of uptake or clearance may contribute to these
age-related differences, highlighting a downfall of composi-
tional profile analysis from a single time point when temporal
metabolic differences exist between populations.
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Conclusions

The exaggerated postprandial lipaemia typical of older
individuals is not characterised by elevated chylomicron TAG.
This study demonstrated that in an older healthy cohort there is
no impairment of large chylomicron clearance. Despite this
preservation of a chylomicron response to a high-fat meal, the
resultant chylomicrons are smaller and more numerous in the
elderly, containing greater proportions of MUFA and lower
proportions of PUFA. The implications of these fundamental
differences in chylomicron dynamics and composition are
unknown in the context of CVD risk and warrant further
investigation.
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