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Abstract

We discuss a Conley index calculation which is of importance in population models with large interaction.
In particular, we prove that a certain Conley index is trivial.
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1. Introduction

We calculate the Conley index of a suitable isolated invariant set T for the semiflow
ẋ = H(x) on a Banach space E . Here T consists of two hyperbolic stationary points u0

and u1 and a single orbit joining u0 to u1 where the unstable manifold of u0 intersects
the stable manifold of u1 transversally. We prove that the Conley index is trivial, under
natural hypotheses.

We briefly explain some of the terms in the previous paragraph; more details can
be found in [11]. A semiflow need only be defined for t ≥ 0. A stationary point x0

is said to be hyperbolic if the linearization H ′(x0) exists and none of the spectrum
of H ′(x0) lies on the imaginary axis. By a connecting orbit joining u0 to u1, we mean
a solution u(t) of ẋ = H(x) such that u(t)→ u0 in E as t→−∞ and u(t)→ u1

in E as t→∞. The stable manifold of u1 is defined locally to be the points of E
near u1 which lie on solutions of ẋ = H(x) which tend to u1 as t→∞ and is then
extended globally. The unstable manifold of u0 is defined similarly (though there are
some complications as we only have a semiflow). The definition of transversality is
a slight variant of the usual definition of transversality in differential topology and is
discussed in [11]. (The usual definition needs to be changed slightly because, if u(t)
is a connecting orbit, u′(t) always lies in the tangent spaces of both the stable and
unstable manifold at u(t).)

Note that the Conley index is a topological invariant for compact isolated invariant
sets of dynamical systems. It has been used extensively to study the bounded solutions
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of such equations; see [6] for the case of flows on finite-dimensional spaces and [15]
for the infinite-dimensional case (for a certain class of equations). The basic notions
of the Conley index are defined in [15]. In particular, the Conley index of T , ĥ(T ), is
defined to be the homotopy type of [S/Ẽ] (with base point) where S is a rather nice
neighbourhood of T (an isolating block in the notation of [15]). Here Ẽ is the subset
of S where the semiflow of H exits S and [ ] denotes the homotopy type (with base
point Ẽ).

The reason why the above result is of interest is the following. As noted in [8], the
above result implies that the connection index is nontrivial. The connection index is a
‘count’ of the connecting orbits from u0 to u1 in T and is defined in [14]. In particular,
under deformations of the equation the connection index stays the same under quite
general perturbations and thus we can frequently prove connections from u0 to u1

persist. Indeed, this was the motivation for the present paper. In [7] we considered a
population model,

ut =1u + f (u)− kuv,
vt =1v + g(v)− αkuv,

(1.1)

on a bounded smooth domain � with homogeneous Dirichlet boundary conditions on
∂�. Here α, k > 0, f, g are C1, f (0)= 0, and g(0)= 0. This is a competing species
model with diffusion which has been extensively studied (see [7, 9, 10], for example).
Because u and v are populations, it is natural to consider only solutions with u, v
nonnegative. It is proved in [9] that for large k, there is a natural limit problem,

ω̇ =1ω + h(ω) in �,
ω = 0 on ∂�,

(1.2)

where h(y)= α f (α−1 y+)− g(y−) and where we allow ω to change sign. (We
recover u, v from ω by taking u = α−1ω+, v =−ω−.) There are actually two separate
limit problems for this equation. The other limit problem is for small solutions and
large k. We do not discuss this one here; it is covered in [8]. It is proved in [8] that
Conley indices of (1.1) for large k (in {(u, v) ∈ X × X | u, v are nonnegative}) for an
appropriate Banach space X are equal to an appropriate corresponding Conley index
of (1.2) on all of X at least up to cohomology. This enables us to prove the existence of
connecting orbits between stationary solutions of (1.1) corresponding to two nontrivial
solutions of ω1, ω2 of (1.2) for large k if we prove that the connection index of an
orbit T joining ω1 and ω2 is nontrivial (for the semiflow corresponding to (1.2)). In
this way our claim will complete the proof of Corollary 2.7(b) in [8]. Note that our
problem is really a singular perturbation problem with small parameter k−1 and we
have additional difficulties since u and v are required to be nonnegative while w may
change sign. (Thus the two Conley indices are on different spaces.) Hence, it seems
difficult to use the implicit function theorem to prove the existence of the connection.
Note that we also have considerable technical difficulties because h is not C1.
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2. Main result

We now state our main result. We will not state it in the most general form, but the
result covers our application. We consider the problem

u̇ =1u + h(u) in �,
u = 0 on ∂�,

(2.1)

with h as before. Because our h is not C1 at zero, there will be technical difficulties
which we will have to overcome. (It is Lipschitz on compact sets and C1 except at
zero.) It is convenient to modify h for large y so that |yh′(y)| + |h(y)| is bounded on
R and yh(y) < 0 for |y| large. Using maximum principles, it follows easily that there
is an L∞ bound for both stationary solutions and connecting orbits of (1.1).

ASSUMPTION A. Assume that:

(i) u0 and u1 are hyperbolic stationary solutions of (1.2);
(ii) there is a connecting orbit T joining u0 to u1;
(iii) Morse index of u1 + 1= Morse index of u0; and
(iv) the unstable manifold of u0 intersects the stable manifold of u1 transversally

on T .

We need to explain this assumption a little, including why the various terms make
sense. Firstly, it is known by [3] that, if ω is a nontrivial solution of (1.2), then ω
only vanishes on a set of measure zero and hence h is differentiable (in fact strictly
differentiable in the sense of [4]) at ω in appropriate spaces, and so the linearization
makes sense. As we see below, this is enough smoothness to prove the existence of the
stable and unstable manifolds at u0 and u1. If z(t, x) is a connecting orbit joining u0

and u1, it follows from [5] (see Lemma 3.2 below) that, for each t , {x ∈� | z(t, x)=
0} has measure zero in �. Hence, the linearization at z(t, x) is defined and hence
transversality makes sense. The strategy of our proof will be to show that if we take
an isolating neighbourhood N of T ∪ {u0, u1}, then the Conley index of the semiflow
of (1.2) on T is the same as that of the ‘semiflow’ of (1.2) on the finite-dimensional
space Pn X where h is replaced by Pnh(Pn) for large n and where Pn is the orthogonal
(in L2(�)) projection onto the space spanned by the eigenfunctions corresponding to
the first n distinct eigenvalues of−1 for Dirichlet boundary conditions on�. Here we
prove (and this is the technical part) that our structure, including a single transversal
intersection of the stable and unstable manifolds, is preserved and hence we have
reduced to the finite-dimensional case. We then smooth carefully and use a result
of McCord [14]. (Unfortunately, it does not appear to be easy to generalize McCord’s
proof to infinite dimensions.) We now state our result precisely and give the tedious
details. Note that we could easily state a rather more general abstract result if the
mapping h is C1.

THEOREM 2.1. Assume that� is a smooth bounded domain in RN , h is as above and
that Assumption A holds. If Y is an isolating neighbourhood of {u0, u1, T } for the
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semiflow of (1.2) on the fractional power space Xα where 0< α < 1 and X = L2(�),
then ĥ(Y, S(t)) is trivial.

REMARK 2.2. There is nothing special about L2(�). By using [8, Lemma 2.1], we
can replace L2(�) by L p(�) where 1< p <∞ (at least for the cohomology of the
Conley index, which is sufficient for nearly all applications). Note that fractional
power spaces are defined in [11].

The author feels that it should be possible to give a more natural direct proof of the
theorem, at least in the C1 case.

LEMMA 2.3.

(i) If φ ∈ L2(�), Pnφ→ φ in L2(�) as n→∞.
(ii) If φ ∈ Ẇ 1,2(�) ∩W 2,2(�), Pnφ→ φ in W 2,2(�) as n→∞.

PROOF. Part (i) follows since the range of the Pns together forms an orthonormal basis
for L2(�), then (ii) follows from (i) since the Pns commute with the Laplacian. 2

REMARK 2.4. We can use interpolation to obtain convergence in many other spaces,
in particular in Ẇ 1,2(�).

PROOF OF THEOREM 2.1. We first consider the stationary solution u0. Since u0 is
nontrivial, a classical result [3] implies that u0 only vanishes on a set of measure zero.
It then follows as in [7, p. 248] that the map ω→ h(ω) is strictly differentiable at u0 in
the sense of [4] as a map of L p(�) into Lq(�) if p > q ≥ 1 (see also Lemma 3.2
below). It follows easily by regularity and compactness of the Laplacian that the
map ω→ (−1)−1h(ω) is a completely continuous mapping of L p(�) into itself if
1< p <∞ and is strictly differentiable at u0. It follows easily from this that for n
large, the problem −1Y = Pnh(PnY ) has a unique solution un

0 in h(Pn) close to u0 in
L2(�). This is straightforward (by the contraction mapping theorem). We do not give
the details because similar but more complicated arguments appear below. Moreover,
for large n, the operator −1h̃ − Pnh′(un

0)Pn h̃ = λh̃ on R(Pn) has the same number
of negative eigenvalues as −1− h′(u0)I on Ẇ 1,2(�). (Note that un

0 is a finite linear
combination of eigenfunctions and hence is analytic in �. Thus it only vanishes on a
set of measure zero.) This follows easily from standard spectral results if we note that
h′(un

0) converges pointwise to h′(u0) almost everywhere and is uniformly bounded.
(Thus the convergence is strong in L p for all finite p.)

We now consider the parabolic equation

u̇ =1u + h(u) on �,
u = 0 on ∂�.

Since h is strictly differentiable at u0 as a map of L p(�) into Lq(�) for p > q , it is
easy to combine with regularity properties of the Laplacian to prove the existence
of a local unstable manifold W u for u0 in the sense of [11]. (This is an easy
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modification of [11, proof of Theorem 6.1.2].) The strict differentiability guarantees a
small Lipschitz condition near the stationary point for the remainder term. The same
argument guarantees the existence of a stable invariant manifold near u1. Similar
arguments also guarantee the existence of local stable manifolds W s,n near un

0 and
these are parameterized over the unstable space of u0 uniformly in n (by examining
the contraction mapping proof of the existence of the local manifold theorem in [11,
p. 112]). Similar remarks hold for the unstable manifold of un

1 which is denoted by
W u,n . In both cases, as examination of the proof shows strictly differentiability at the
critical point. As in [11, pp. 154–156] there corresponds a global unstable manifold
that exists and is in fact a C1 manifold (which ensures that it has a tangent space).
Note that this uses the variational structure because our scalar problem has energy∫
�
( 1

2 (∇u)2 + H(u)) where H ′ = h (with a similar result for the projected problem).
There are several technical issues in the above. Firstly, the proof of the existence of

the global unstable manifold requires backward uniqueness for the equation u̇ +1u =
h(u). Since h is globally Lipschitz, this is true if we show that, if z is a nontrivial
solution of ż +1z = a(x, t)z on�× R, if z satisfying the boundary condition, if a is
bounded on �× R and if z(x, t)= 0 if x ∈�, t ≥ 0, then z vanishes identically. This
follows from [2, Theorem 2.1].

Secondly, we need to know that if δ > 0 is small, then the time map u→ T (δ)u
is C1 along an unstable manifold. This follows from [11, proof of Theorem 3.4.4]
and the strict differentiability of h at any point of the unstable manifold. (For this, we
also need to know that any nontrivial solution of u̇ =1u + h(u) on �× R satisfying
the boundary conditions has the property that {x ∈� | u(x, t)= 0} has measure zero
in RN for each t ∈ R. This follows from a slight variant of the main theorem in [5].
The details appear in Lemma 3.1 below.)

The strict differentiability of the map x→ h(x) as a map of C([0, T ], Xα) into
C([0, T ], X) at a solution is similar to the proof of a result in [7, p. 248]. Since
this is technical, we defer it to Lemma 3.2 below. The same argument proves
that the local stable manifold is strictly differentiable at any point u(x, t) such that
{x ∈� | u(x, t)= 0} has measure zero for each t ∈ R. In particular, this applies at
any point of W u(a) ∩W s

loc(b) where a and b are critical points. Thus in particular
W s

loc(b) has tangent space at such points. Hence, we can define that W u(a) and W s(b)
intersect transversally if W u(a) and W s

loc(b) intersect transversally. Now a solution u
of (1.2) lies in W 1,p(�× [−k, k]] for each k and 1< p <∞ by the regularity theory
in [12] and since h is Lipschitz, h(u) is also in W 1,p(�× [−k, k]). Hence, by the
regularity theory again, we see that ut t is defined and is in L p(�× [−k, k]). Hence,
we can easily justify differentiating equation (1.2) for u in t and proving that u′(t) is
a solution of ṡ =1s + f ′(u(t))s on �× R (remember that f is strictly differentiable
at u). Technically, it is easier to work on a weak form of the equation. Since we
have proved that the unstable manifold is a C1 manifold (and the unstable manifold is
strictly differentiable at appropriate points), we can argue as in [11] to prove that our
transversality and related assumptions ensure that the problem ṡ =1s + h′(u)s on
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�× R, s = 0 on ∂�× R and h→ 0 as |t | →∞ has up to scalar multiples a unique
solution which is u′(t) (and transversality is equivalent to this). Now we consider the
problem

ṡ =1s + g(x)s + ω(t, x) on �× R,
s = 0 on ∂�× R, (2.2)

where g is bounded and −1− g(x)I and the boundary condition is invertible. We
let X be L2(�). If ω ∈ C(R, X) ∩ L∞(R, X), then as in [13], (2.2) has a unique
solution in L∞(R, X), h̃ = Lω, where

Lh̃(t)=
∫ t

−∞

T (t − s)P1ω(s) ds −
∫
∞

t
T (s − t)P2ω(s) ds.

Here P1 is the orthogonal projection on L2(�) where the range is spanned by the
eigenfunctions corresponding to the eigenfunctions of −1− g(x)I corresponding to
positive eigenvalues and P2 = I − P1. Note that R(P2) is a finite-dimensional space.
Hence, the semigroup T (t)

∣∣
R(P2)

naturally extends to a group. Thus everything makes
sense. It is easy to check that L is a bounded linear map of L∞(R, X) into itself.
Moreover, L maps C0(R, X) into itself and by standard regularity theorems as in [11],
L is a bounded linear map of L∞(R, X) into L∞(R, Xα) for 0< α < 1. (Hence,
we have compactness of L on L∞(R, X) when restricted to compact t intervals.
Note that the estimates in [12] guarantee a bound for ut in L2(X × [−T, T ]) and
hence we have compactness in t on bounded t intervals.) Now much as in [13],
we can deduce a number of consequences. If m ∈ L∞(X × R), m(t, x)→ m±(x) as
t→±∞ uniformly in x and−1− m±(x)I (and the boundary condition is invertible)
then the linear operator L̃ , defined by

L̃ h̃ = ˙̃h −1h̃ − mh̃

with the natural domain, is a closed linear operator on C0(R, X) and is semi-Fredholm
of Fredholm index less than infinity. One shows that L̃hn→ 0 in our space implies
that {hn} has a convergent subsequence. (The invertibility for the limit operators as
t→±∞ and the local compactness of L in t plays an essential role here.) Moreover,
using the fact that compact perturbations of Fredholm operators do not change their
Fredholm index, one proves that this index is determined solely by m+ and m−. To
calculate the index of the Fredholm operator, we can easily use compact perturbations
to reduce to the case where m(x, t) is m−(x) for t <− 1

2 and m+(x) for t > 1
2 . Here

it is much easier to calculate the index. (The point is that we can semi-explicitly
calculate the solutions on [ 12 ,∞) and (−∞,− 1

2 ].) Similar arguments appear in [16].
In particular, one can show that the index is +1 if −1− m+ I has exactly n negative
eigenvalues counting multiplicity, while −1− m− I has exactly (n − 1) negative
eigenvalues counting multiplicity. Hence, we see that in our original case where our

operator L̂ h̃ = ˙̃h −1h̃ − h′(ũ)h̃ our operator is Fredholm of index 1. Here ũ is the
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connecting orbit. Note that f ′(ũ(x, t)) is defined almost everywhere, is uniformly
bounded and f ′(ũ(x, t))→ f ′(u±(x)) as t→∞ uniformly in x except on sets of
small measure. Since our transversality assumptions imply that this operator has a
one-dimensional kernel, it follows that this operator is onto (as a closed linear operator
on C0(R, X)).

By the second remark after Lemma 3.2 below, we can approximate h uniformly
by C1 functions fn so that the strictly differentiability holds at u uniformly in n. We
prove that the conditions for our problem u̇ =1u + h(u) continue to hold for the
problem u̇ =1u + fn(u) for large n. This is quite straightforward. The only real
problem is to prove that for our perturbed problem there is still a connection close to ũ.
To do this, we use our strict differentiability results and apply the implicit function
theorem in the space C0((−∞,∞), Xα)= Z (noting that strict differentiability rather
than C1 is all that is needed for the implicit function theorem). Firstly, note that we can
translate by a fixed function joining u0 and u1 to obtain a problem in C0. We can write
elements of C0((−∞,∞), Xα) near ũ uniquely in the form ũ + s ˙̃u + ω where ω is in
a complement Y to span ˙̃u in C0((−∞,∞), Xα). Then uniformly in n and for s small,
the solutions are of the form ũ + s ˙̃u + ωn(s) where ωn is continuous and is small if n
is large. (Note that fn(y)− h(y) is uniformly small and thus fn(u)− h(u) is small
in C0((−∞,∞), X) if n is large and u ∈ Z and we use crucially that the derivative is
onto.) Thus there is a connection for large n. Moreover, the connections near u0 form a
1-manifold parameterized by s for all large n. Moreover, there is a natural 1-manifold
of connections by translating in t (once we know there is one connection). Thus these
two manifolds must agree locally and hence globally. Thus for large n there is unique
connection near u0 (up to translation). The proof of nondegeneracy at u0

n (in our sense)
is easy because the linearized operator is close to a Fredholm operator which is onto
and of index 1.

Since transversality is equivalent to nondegeneracy (as we saw earlier), homotopy
invariance of the homotopy index implies that we have reduced our problem to the
case where h is C1. Note that part of the technicalities in the above argument is really
proving that two definitions of transversality are equivalent.

We now use a closely related idea to reduce our problem to a C1 finite-dimensional
problem. (If we do this, we can easily smooth to reduce the problem to the smooth
case and we can then apply the main result in [14].) The main problem is to check that
the Conley index condition persists. For large n, we consider the problem

u̇ =1Pnu + Pnh(Pnu) on R(Pn)

where Pn was defined earlier. Since the equation v̇ =1v, v = 0 on ∂� has no trivial
bounded solutions on �× R, we can use the product theorem for the Conley index to
show that it suffices to consider the problem

u̇ = 1u + Pnh(Pnu)
u = 0 on ∂�

(2.3)
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on X × R. (It is easy to see that the two problems have the same bounded solutions on
�× R.)

We need to prove our earlier structure persists for large n. This is similar to but
somewhat easier than the earlier case. Since u is an approximate solution for large n,
we again use the implicit function theorem to obtain a connecting orbit for (2.3). (Note
that by standard regularity theory {ũ(t) | t ∈ (−∞,∞)} lies in a compact set in Xα and
thus Pnh(Pnu(t)) will converge uniformly on X (in t) as n→∞.) We can use very
similar but easier arguments to obtain the other properties. The only part that needs
a more careful argument is the calculation of the homotopy index for large n on Ũ
where Ũ is a small bounded neighbourhood of {u0, u1, u(t), t ∈ (−∞,∞)} in Xα

which is an isolating block in the sense of [15]. It suffices to prove that any bounded
solution û(t) on h of

u̇ =1u + sh(u)+ (1− s)Pnh(u) on �× R,
u = 0 on ∂�× R, (2.4)

for large n such that 0≤ s ≤ 1 and û(t) lies in the closure of Ũ for all t lies in Ũ .
Suppose not, that is, suppose that un(t) are solutions of (2.4) for s = sn such that un(t)
lies in the closure of Ũ for all t and un(tn) ∈ ∂Ũ for some tn . By translating
we may assume that un(0) ∈ ∂Ũ . By various local estimates as in [11] we can
assume that the un are uniformly bounded in Xβ and dun/dt is bounded in Xα .
Thus we can choose a subsequence of the un such that un converges uniformly on
compact t intervals to z(t) in Xα . Passing to the limit in (2.4) (using the mild solution
formulation), we see that z(t) is a solution of u̇ =1u + h(u) on �× R such that
z(0) ∈ ∂Ũ and z(t) lies in the closure of Ũ for all t . This contradicts Ũ being an
isolating block. Hence, we see that the Conley index of the original flow on Ũ is same
as that of the finite-dimensional flow and we are finished. 2

3. Some technical lemmas

We prove two technical lemmas needed to complete the proof of Theorem 2.1.

LEMMA 3.1. If u is a nontrivial bounded solution of u̇ =1u + h(u) on �× R such
that u = 0 on ∂�× R, then {x | u(x, t)= 0} has measure zero for each t.

PROOF. Now u satisfies the equation u̇ =1u + b(x, t)u where b is bounded and
measurable. The result follows from [5, Theorem 4.3(iv)] once we prove that, for
any fixed t , the map x→ u(x, t) cannot have a zero of infinite order in �. If one
exists, it follows from the main result in [1] that u(x, t)≡ 0 on �. This is impossible
by the forward and backward uniqueness theorems for the parabolic equation. (As
before the backwards uniqueness can be found in [2].) 2

LEMMA 3.2. If u is a nontrivial solution of u̇ =1u + h(u) on �× [0, T ], then
the map v→ Sv is strictly differentiable at u as a mapping of C([0, T ], Xα) to

https://doi.org/10.1017/S0004972709000653 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972709000653


518 E. N. Dancer [9]

itself, where 0< α < 1, X = L2(�), Xα is the fractional power space in the sense
of [11] and Sv(t)=

∫ t
0 T (t − s)h(v(s)) ds for 0≤ t ≤ T . Here T (t) is the semigroup

generated by the Laplacian (with Dirichlet boundary conditions).

PROOF. By standard regularity results for the heat semigroup (see [11, Ch. 1]),
it suffices to prove that the map F(v)= h(v) is strictly differentiable at u as a
map of C([0, T ], Xα) into C([0, T ], X). By the Sobolev embedding theorem and
interpolation, Xα is continuously embedded in L p(�) where p > 2 (see [11]). Hence,
it suffices to prove our result for F considered as a map of C([0, T ], L p(�)) into
C([0, T ], L2(�)). If δ > 0 is small, we construct a set Z t ⊆� for each t such that
St = {x ∈� | u(x, t)= 0} lies in the interior of Z t and the measure of Z t \ St is at
most 1

2δ for each t . To prove this, choose a closed neighbourhood Z̃ of ∂� in � such
that Z̃ has measure at most 1

4δ. For each t we construct a compact neighbourhood Ẑ t of
L t = {x ∈� \ int Z̃ | u(x, t)= 0} in � such that L t lies in the interior of Ẑ t , Z t ∪ ∂�

is compact for each t and Ẑ t has measure at most 1
4δ. This is possible since L t has

zero measure. Now since u is continuous on �̄× R (by standard regularity theory
as in [12]), we see by continuity that for s near t , {x ∈� | u(x, s)= 0} lies in the
interior of Ẑ t ∪ Z̃ and |u(x, s)| has a positive lower bound on ∂(Ẑ t ∪ Z̃) ∩� for s
near t (where the bound is independent of s) and Ẑ t ∪ Z̃ has measure at most 1

2δ.
By the compactness of [0, T ], it follows that we can find 0= t1 < t2 < · · ·< tk = T
and Ẑi ⊆� for 1≤ i ≤ k − 1 such that if ti ≤ t ≤ ti+1, {(x, t) | u(x, t)= 0} ⊆ Ẑi ,
|u(x, t)| has a positive lower bound on ∂ Ẑi ∩� and each Ẑi has measure at most 1

2δ.
Let γ be the infimum of the lower bounds and if s ∈ C([0, T ], L p(�)) has small
enough norm, then for each t , ‖s(t)‖p is small and hence {x : |s(t)(x)| ≥ 1

2δ} has
measure at most 1

2δ. Thus, for each t ∈ [0, T ],

Wt = {x | u(x, t)+ s1(t)(x), u(x, t)+ s2(t)(x) and u(x, t)

are all nonzero and have the same sign}

has the property that � \Wt has measure at most 1
2δ if s1 and s2 both satisfy the

smallness condition. If t ∈ [0, T ] and x ∈Wt , we can simply estimate

At (x) = h(u(x, t)+ s1(t)(x))− h(u(x, t)+ s2(t)(x))

− h′(u(x, t))(s1(t)(x)− s2(t)(x))

by the mean value theorem and find it is bounded by ε̂|s1(t)(x)− s2(t)(x)|. If t ∈
[0, T ] and x /∈Wt , then |At (x)| ≤ K1|s1(t)(x)− s2(t)(x)| by the Lipschitz property
of h. Hence,

‖At‖2,�−Wt ≤ K1‖s1(t)− s2(t)‖2,�\Wt

≤ K1(m(� \Wt ))
1/2−1/p

‖s1(t)− s2(t)‖p

by Hölder’s inequality. Since m(�−Wt ) is small for all t ∈ [0, T ] we are in a similar
situation to the proof in [7, p. 248] and we can easily complete the proof much as
there. 2
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REMARKS.

(1) We can also handle the case of an interval (−∞,∞) provided u(t) approaches a
nontrivial solution of the elliptic equation as t→∞ and a (necessarily different)
nontrivial solution as t→−∞. The point is that we can use a single Ẑi for large
negative t and a single Ẑi for large positive t where these are determined by two
nontrivial solutions of the elliptic equation.

(2) There is a very useful variant of Lemma 3.2. Assume that gn : R→ R are
globally Lipschitz with Lipschitz constant K independent of n, and gn is C1

for t 6= 0 and, given α > 0, gn(t)= 0 if |t | ≥ α and n is large. Then it is easy to
see by a similar argument that for large n the inequality for strict differentiability
at ũ holds uniformly in n. The point is that

gn(u(x, t)+ h1(x, t))− gn(u(x, t)+ h2(x, t))

− g′n(u(x, t))(h1(x, t)− h2(x, t))

vanishes except on a set Mt ⊆� for each t where Mt has small measure
uniformly in t . Since it is easy to construct gn as above uniformly small such that
fn = h + gn is C1, fn is a C1 approximation to h such that fn − h is uniformly
small and such that Lemma 3.2 holds for fn for large n with the neighbourhood
independent of n. This is crucial in Section 2.
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[4] H. Cartan, Calcul Différentiel (Hermann, Paris, 1967).
[5] X.-Y. Chen, ‘On the scaling limits at zeros of solutions of parabolic equations’, J. Differential

Equations 147 (1998), 355–382.
[6] C. Conley, Isolated Invariant Sets and the Morse Index, CBMS Regional Conference Series in

Mathematics, 38 (American Mathematical Society, Providence, RI, 1978).
[7] E. N. Dancer, ‘On positive solutions of some pairs of differential equations. II’, J. Differential

Equations 60 (1985), 236–258.
[8] , ‘On connecting orbits for competing species equations with large interactions’, Topol.

Methods Nonlinear Anal. 24 (2004), 1–19.
[9] E. N. Dancer and Y. H. Du, ‘Competing species equations with diffusion, large interactions, and

jumping nonlinearities’, J. Differential Equations 114 (1994), 434–475.
[10] E. N. Dancer and Z. Zhang, ‘Dynamics of Lotka–Volterra competition systems with large

interaction’, J. Differential Equations 182 (2002), 470–489.
[11] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics,

840 (Springer, Berlin, 1981).
[12] G. M. Lieberman, Second Order Parabolic Differential Equations (World Scientific, River Edge,

NJ, 1996).
[13] A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Progress in

Nonlinear Differential Equations and their Applications, 16 (Birkhäuser, Basel, 1995).

https://doi.org/10.1017/S0004972709000653 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972709000653


520 E. N. Dancer [11]

[14] C. McCord, ‘The connection map for attractor–repeller pairs’, Trans. Amer. Math. Soc. 307 (1988),
195–203.

[15] K. P. Rybakowski, The Homotopy Index and Partial Differential Equations (Springer, Berlin,
1987).

[16] A. Vol’pert and V. Vol’pert, ‘The Fredholm property of elliptic operators in unbounded domains’,
Tr. Mosk. Mat. Obs. 67 (2006), 148–227.

E. N. DANCER, School of Mathematics and Statistics, University of Sydney,
NSW 2006, Australia
e-mail: E.Dancer@maths.usyd.edu.au

https://doi.org/10.1017/S0004972709000653 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972709000653

