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ABSTRACT. Glacier mass changes are considered to represent key variables related to climate
variability. We have reconstructed a proxy for annual mass-balance changes in Grosse Aletschgletscher,
Swiss Alps, back to AD 1500 using a non-linear back-propagation neural network (BPN). The model skill
of the BPN performs better than reconstructions using conventional stepwise multiple linear regression.
The BPN, driven by monthly instrumental series of local temperature and precipitation, provides a proxy
for 20th-century mass balance. The long-term mass-balance reconstruction back to 1500 is based on a
multi-proxy approach of seasonally resolved temperature and precipitation reconstructions (mean over
a specific area) as input variables. The relation between the driving factors (temperature, precipitation)
used and the reconstructed mass-balance series is discussed. Mass changes in Grosse Aletschgletscher
are shown to be mainly influenced by summer (June–August) temperatures, but winter (December–
February) precipitation also seems to contribute. Furthermore, we found a significant non-linear part
within the climate–mass-balance relation of Grosse Aletschgletscher.

1. INTRODUCTION

Modern climatology faces the question of whether
anthropogenically induced climate change is already
observable in climatic variables. Because the climate
system can be regarded as non-linear (Houghton and
others, 2001), traditional linear statistical models cannot
describe the full complexity of its behaviour, and thus fail
to answer this question. Non-linear neural network
models (NNMs) provide a statistical solution to this
problem.

NNMs originated in the study of the cognitive abilities of
biological brain functions, i.e. how the brain processes
information and how it learns (Adrian, 1926; Rosenblatt,
1958; Grossberg, 1982). A comprehensive overview of the
wide range of applications of NNMs to time-series analysis
is summarized in Anderson and Rosenfeld (1986) and
Rumelhart and McClelland (1986).

As an analogue to biological brains, a typical NNM
consists of a yet to be defined number of simple processing
units. The task of a (supervised learning) NNM is to ‘learn’
certain features of the data, which consist of input variables
and desired output responses, using a training subset. After
the training process, these features are interpolated on an
unknown validation subset, on which the performance of
the NNM can be determined. Internal parameters of the
network architecture are adjusted according to a specific
learning rule so that the network ideally captures all intrinsic
data features.

What distinguishes NNM from traditional statistical
methods is its non-linear character, due to a non-linear
mapping function. This mapping function is commonly
chosen out of the class of sigmoid functions, because it has
been shown experimentally by Adrian (1926) that biological
neurons respond to a stimulus in a sigmoidal fashion, i.e. no
output until a certain threshold is exceeded, followed by a
nearly linear input–output relation and saturation from a
certain input level onward.

Conventional studies of climate change are based either
on physical climate models (e.g. general circulation models
(GCMs) with a high computing and CPU time demand), or
on statistical models such as multiple linear regression
(MLR) models, which allow only a limited exploration of the
state of the climate system. There is a wide variety of models
for studying the behaviour of the climate system that can be
ordered by increasing complexity (e.g. radiative–convective
models, energy-balance models). The MLR and GCM
approaches represent the extremes of this model hierarchy.
Nevertheless, NNM represents a quite simple non-linear
method for gaining insight into the behaviour of the climate
system.

The non-linear NNM combines the advantages of
physically motivated (possibly non-linear) climate models,
with high complexity, and linear statistical models, with a
low CPU time demand. Two recent climatological applica-
tions of NNM have been the detection and attribution of
anthropogenic climate change (Walter and Schönwiese,
2002, 2003), and forecasting tropical Pacific sea surface
temperatures in the El Niño region (Wu and Hsieh, 2003). For
a general overview of climatological applications of neural
networks, see Hsieh and Tang (1998) or Walter (2001).

In this paper, we simulate and reconstruct a proxy for
annual mass balance of Grosse Aletschgletscher, Switzer-
land, using a back-propagation network (Rumelhart and
others, 1986). This is the first time that a neural network
approach has been used in this glaciological context to
simulate and reconstruct glacier mass balance.

The mass balance of glaciers varies with changing
climate, and many studies and measurements have been
carried out to investigate this connection (e.g. Oerlemans
and Reichert, 2000, and references therein). To relate annual
glacier mass balance to meteorological data, a suitable
combination of climate data is required. In many studies,
(summer) temperature and (winter) precipitation are as-
sumed to be the best predictors for this objective (Oerlemans
and Reichert, 2000). Because mass balance is a complex
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function dependent on climate, time and other factors, it
may be well suited to non-linear approaches. In fact, non-
linear functions in the glacier–climate system have been
found in several recent studies (e.g. Braithwaite and Raper,
2002; Lie and others, 2003). The aim of this study is to use
an easy non-linear model, driven only by a combination of
temperature and precipitation data.

In section 2 we provide an overview of the data used in
this study and the concept behind the BPN. In section 3 we
discuss how the BPN can be used to simulate a proxy for
annual glacier mass balance by suitable selection of
monthly instrumental data (temperature, precipitation) for
the 20th century. As well as simulating glacier mass balance,
this work aims to reconstruct a longer-term mass-balance
series. Applying the BPN technique, we propose to use
multi-proxy seasonal reconstructions of temperature (Luter-
bacher and others, 2004) and precipitation (Pauling and
others, in press) to calculate a new annual mass-balance
series back to AD1500. In section 4 the performance of the
BPN is discussed, questions are presented and further
investigations are proposed.

2. DATA AND METHODS

2.1. Instrumental data of the 20th century
Figure 1 shows the topography and the locations of the
meteorological stations within the greater region of Aletsch-
gletscher, the largest stream of ice in the Alps, lying in the
Bernese Alps of south-central Switzerland. Aletschgletscher
is divided into main (Grosse Aletschgletscher), middle and
upper parts. The main glacier (468300 N, 8820 E) is 24.7 km
long and covers an area of 86.76 km2. Its head is at
4160ma.s.l., the glacier terminates at 1556ma.s.l. and its
average height is about 3140m (Haeberli and others, 1998).
The exposure of Grosse Aletschgletscher is to the southeast
(accumulation area) and to the south (ablation area). As
shown in Figure 1a, the ice stream consists of three large firn
fields: the Aletschfirn, the Jungfraufirn and the Ewigschnee-
feldfirn. In 1994, depth soundings made by means of radio
echolot (radar) located the glacier bed at depths of 600–
700m in the Konkordia region (VAW/SANW, 1881–2002,
Nos. 115/116 (1999)).

The study site which borders on the upper Valais (Rhone
valley) is characterized by a generally temperate humid
climate. It is more subcontinental than that of the northern

Alpine region, which is more suboceanic (Van der Knaap
and Van Leeuwen, 2003). Frei and Schär (1998) point out
that the dry inner Alpine conditions of the Valais contrast
with the wet anomalies along the Alpine rims, especially in
the north of the Aletsch region. Because the Valais has a
complex topography, like the whole Alpine region, marked
vertical temperature gradients are found over short dis-
tances. Furthermore, the major west–east orientation of the
Valais, occasionally across the main airflow direction, can
cause mesoscale meteorological phenomena like the föhn
(Schüepp and others, 1978).

The fluctuations in length of Grosse Aletschgletscher
have been carefully reconstructed on the basis of docu-
ments, archaeological field studies and precise
dendrochronological dating. In the last 500 years, a very
small advance around 1500 is dated by both dendrochro-
nology and archaeology. Dendrochronological analysis
allows an exact reconstruction of the marked advance,
leading to a maximum glacier extent from 1670 to 1680.
Pictures and texts document fluctuations during the 18th
and 19th centuries, especially the final advance to the last
Little Ice Age maximum extent around 1856. From 1892 to
the present, the continuously decreasing tongue has been
precisely measured every year (VAW/SANW, 1881–2002;
Holzhauser and Zumbühl, 1999; Haeberli and Holzhauser,
2003).

As a continuation of the mass-balance studies of the
1950s (Kasser, 1954, 1967), Aellen and Funk (1990)
estimated an average yearly net balance for the period
1931–87 from a simple hydrological model, calculating
daily to annual water-storage variations in the basin of the
Massa river. Based on water-flux measurements of the Massa
river, a tributary of the Rhone river which issues from Grosse
Aletschgletscher, and precipitation data from the surround-
ing area, a proxy for annual mass balances can be calculated
(Paterson, 1994). Later, in order to correct systematic errors
in these calculations (under- or overestimations of areal
precipitation), the data were revised by a linear regression
approach. Besides the uncorrected data series from Aellen
and Funk (1990), information from direct glaciological
mass-balance measurements on Grosse Aletschgletscher
and a reference mass-balance series (average of Grosse
Aletschgletscher (uncorrected), Limmeren and Plattalva-
gletscher) were incorporated into the linear model to
determine a corrected proxy for annual mass balances
(Müller-Lemans and others, 1995).

Table 1. Principal meteorological stations used in this study (data from the online database of MeteoSwiss)

Climate parameter Usage in study Station name Altitude Time period Geographic coordinates

ma.s.l.

Temperature Forcing Sion 483 1864–2003 468130 N, 78200 E
Temperature Forcing Meiringen 595 1890–2003 468440 N, 88110 E
Precipitation Forcing Fiesch 1060 1899–1991 468240 N, 8880 E
Precipitation Reduction Ernen 1000 1967–99 468240 N, 8880 E
Precipitation Reduction Fieschertal 1095 1999–2003 468250 N, 8890 E
Precipitation Reference Brig 666 1899–1906/1959–2003 468190 N, 78580 E
Precipitation Forcing Kippel 1376 1899–1974 468240 N, 78460 E
Precipitation Reduction Ried 1500 1974–2003 468250 N, 78480 E
Precipitation Reference Leukerbad 1285 1898–2003 468230 N, 78370 E
Precipitation Forcing Lauterbrunnen 818 1899–2003 468360 N, 78540 E
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As a control of the Aletsch data, variations of total
volume, surface area and mean thickness were determined
for the years 1926/27, 1957, 1980 and 1999, using geodetic
methods (terrestrial or aerial surveys). There is clear
agreement between the Aletsch cumulative mass balance
and these geodetic measurements (Vincent and others,
2004). An annual check is also provided by the average
net balances computed from a stake network observed on
Grosse Aletschgletscher from 1950 to 1986 (Aellen, 1995).
Finally, new data made it possible to expand the mass-
balance data to the 1919–99 period with the model
approach presented here.

It should be noted that this proxy for annual balances of
Grosse Aletschgletscher comes from a hydrological model
and not directly from field measurements. So the resulting
series is probably not as reliable as direct measurements,
even though the data have been checked against inde-
pendent geodetic measurements (Vincent and others, 2004).
Nevertheless, this proxy will serve as target function in our
neural network modelling approach.

The forcing data, monthly temperature and precipitation
series from the surroundings of Grosse Aletschgletscher were
provided by MeteoSwiss (online database of MeteoSwiss).
The data are homogenized, i.e. they are adjusted for non-
climatic factors like changes in station location or changes
in observation practices (Begert and others, 2003). Table 1
represents all climate series used in this study. In agreement
with Schüepp and others (1978), we found a lack of long
climatic time series in this region of the Swiss Alps.

As the Alpine precipitation field shows large spatio-
temporal variability, there is a strong need for long-term
precipitation data close to a glacier in order to relate
climatic conditions to glacier activities. The precipitation
series (Fiesch, Kippel) were selected according to the study
by Aellen and Funk (1990). But instead of the precipitation
series for Grindelwald applied there, which is missing values
for the period 1903–10, we chose the highly correlated
(r ¼ 0.92) nearby precipitation series for Lauterbrunnen.
Furthermore, the Sion and Meiringen data were used as
temperature datasets. With this data selection, we climatic-
ally represent both the inner Alpine dry valley of the upper
Valais and the wetter northern part of the Bernese Alps.
However, these data series serve as potential model inputs
for the BPN.

To complete the precipitation series of Fiesch and Kippel
for the missing periods 1992–2003 and 1974–2003, a
method derived from the homogenization process at
MeteoSwiss was used (Begert and others, 2003). Based on
a highly correlated reference series, nearby precipitation
series were reduced to the level of the series with missing
values. For this, average ratios between all precipitation
series and the reference series were calculated for the
overlapping periods. Based on the proportion of these
average ratios, it is possible to determine reduction factors
for the nearby precipitation stations (personal communica-
tion from T. Schlegel, 2004).

The Fiesch precipitation data series (PFiesch) was com-
pleted as follows:

1. The highly correlated (r ¼ 0.92) precipitation series from
Brig was used as reference series.

2. The two nearby precipitation stations, Ernen (PErnen;
1.3 km from Fiesch) and Fieschertal (PFieschertal; 2.2 km
from Fiesch), were then reduced to the level of Fiesch.

3. For the missing time period 1992–98,

ðPFieschÞ ¼ qFiesch
ðPErnenÞ
qErnen

¼ 1:043ðPErnenÞ: ð1Þ

4. For the missing time period 1999–2003,

ðPFieschÞ ¼ qFiesch
ðPFieschertalÞ
qFieschertal

¼ 0:764ðPFieschertalÞ; ð2Þ

where qFiesch, qErnen and qFieschertal are the average ratios
between the Fiesch, Ernen and Fieschertal precipitation
series and the Brig reference series for the overlapping
measured period.

In an analogous procedure, the Kippel data series (PKippel)
was completed using the Leukerbad reference series
(r ¼ 0:90) and the nearby Ried precipitation series (PRied;
3.1 km from Kippel) as a reduction series.

For the missing time period 1974–2003,

ðPKippelÞ ¼ qKippel
ðPRiedÞ
qRied

¼ 1:044ðPRiedÞ, ð3Þ

where qKippel and qRied are the average ratios between the
Kippel and Ried precipitation series and the Leukerbad
reference series for the overlapping measured period.

Fig. 1. (a) Map showing Aletschgletscher with its main branches and
tributaries. (b) The Aletsch region (area with dashed outline) and the
meteorological stations used as forcing or reference data in this
study. Also shown is the grid range (area with solid outline) over
which seasonal averages were calculated.
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2.2. Multi-proxy reconstructions of temperature and
precipitation back to 1500
In the absence of widespread instrumental data, we must
rely upon indirect lines of evidence to provide information
about climate variability over the past several centuries. To
determine annual or higher-resolution climate variations,
however, high-resolution ‘proxy’ climate indicators such as
ice cores and tree-ring measurements, combined with the
scant available documentary or instrumental evidence
available in prior centuries, are required (e.g. Mann, 2002;
Jones and Mann, 2004; Luterbacher and others, 2004).

In this study, two new gridded (0:5� � 0:5� resolution)
multi-proxy reconstructions of seasonal temperature (Luter-
bacher and others, 2004) and precipitation fields (Pauling
and others, in press) from 1500 to 2000 for European land
areas were used. The temperature reconstruction is based on
a dataset that includes instrumental data series, recon-
structed sea-ice and temperature indices, and proxy tem-
perature reconstructions from ice cores and tree rings (see
Luterbacher and others, 2004, for a detailed description of
the method and the data used). Like the temperature
reconstructions, the precipitation estimates were based on
a combination of instrumental series, documentary indices
(precipitation) and natural proxies (tree rings, corals, ice
cores). As these reconstructions share no common predic-
tors, they can be compared in terms of climate dynamics or
temporal stability of the precipitation–temperature relation-
ship. The temperature reconstructions end in 2004, the
precipitation reconstructions in 2000. As a consequence, we
studied the period mentioned above (1500–2000).

As input data for the model, a seasonal average of both
temperature and precipitation sums was calculated over the
area 46–478N, 7–8.58 E, comprising xy gridpoints (see
Fig. 1b for the grid range). This grid extent covers the entire
Aletsch region and clearly reflects its climatic conditions,
presented in section 2.1. The seasonal averages generally
show higher correlations with the observed precipitation
(Fiesch, Kippel, Lauterbrunnen) and temperature measure-
ments (Sion, Meiringen) for the overlapping 1900–2000
period than nearby single gridpoints. The correlation
coefficients range from 0.87 (June–August; Meiringen) to
0.95 (March–May; Sion) for temperature, and from 0.61
(June–August; Fiesch) to 0.77 (December–February; Kippel)
for precipitation. The generally lower correlation coeffi-
cients for precipitation probably reflect the greater difficulty
in reconstructing and/or representing precipitation fields in
mountainous regions due to their large spatio-temporal
variability. As with all models, the output of a BPN depends
on the quality of the input data, and possible uncertainties in
the precipitation data will significantly reduce the accuracy
of the trained neural networks. Related to this issue, Klein
and Rossin (1999) found that errors in training data affect
neural network models more severely than linear regression
models.

2.3. Back-propagation neural networks as
modelling tools
Neural networks use non-linear functions and a large
number of processing units to reduce the risk of model
mismatch errors. Instead of matching the architecture of the
model to a problem, a model is used that can describe
almost anything, and careful training of the model is used to
constrain it to describe the data.

In this study, the standard NNM, the Back-Propagation
Network (BPN), was applied (Rumelhart and others, 1986).
This network architecture is based on a supervised learning
algorithm to find the minimum of a cost function. Unlike a
simulated annealing schedule (Metropolis and others,
1953), the BPN does not guarantee that the global
minimum of this cost function will be reached, though it
is very likely that a minimum good enough to reproduce
responses in the data can be found. This approach also
bears a certain risk of overfitting, so the data have to be
separated into a training and a validation subset (cali-
bration/verification in reconstruction exercises). The ‘learn-
ing’ process of the network is performed on the training
subset only, whereas the validation subset serves as an
independent reference for the simulation quality. This
technique is called cross-validation (Stone, 1974; Michael-
son, 1987). When applying NNM to a non-stationary time
series, as in this approach, the choice of the training subset
must ensure that the entire amplitude range of all forcing
mechanisms considered is covered; otherwise the algorithm
will fail if confronted with an extreme value during the
validation process, and such an extreme value never
occurred in the learning period. The training must be
carried out using a representative data subset. Therefore the
training data cannot be chosen continuously out of all data
available but must be chosen so that all the amplitudes are
covered. We used 75% of all data for training, and the
remaining 25% for validation (Walter and Schönwiese,
2003).

A typical NNM consists of three layers: input, processing
and output layers. Figure 2 shows a simplified neural
network. Although the units of the processing layer are
sometimes called ‘hidden units’, their weights, activation
and all other internal parameters are easily accessible from
the outside.

The input to an NNM is a vector of elements ðxkÞ, where
the index k stands for the number of input units in the
network. In our study, k ¼ 12 indicates the major short-term
climatic influences on the mass balance of Aletschgletscher
in the 20th century. For the long-term reconstructions of
annual glacier mass balance since 1500, we chose k ¼ 2
(see section 3 for the selection of the input variables). These
inputs are weighted with weights wjk , where j represents the
number of processing units, to give the inputs to the
processing units

hj ¼
X
k

wjkxk : ð4Þ

Using too few/many processing units can lead to under-
fitting/overfitting problems. That is, the simulation results are
highly sensitive to the number of processing units and
learning parameters chosen. The best number of processing
units can be determined by repeated simulations with
increasing numbers of processing units, i.e. j ¼ 1, 2, . . . , n,
and by observing the performance of these different network
architectures on the validation sample. Multiple versions of
the BPN must be tried to obtain robust results. Typically, the
validation error decreases with increasing numbers of
processing units until the network has too many degrees of
freedom, i.e. too many processing units. After that, the
validation error increases and the model with the optimal
number of processing units, i.e. the model configuration
with the lowest validation error, must be chosen for the final
simulations.
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For the 20th century we used 12 input units as forcings. In
addition, there are 6 processing units in one processing layer
and 1 output unit as a target function. This neural network
architecture is abbreviated as 12–6-1. For long-term simula-
tions back to 1500, a 2–2-1 architecture was applied.

After weighting and summation of the inputs, the non-
linear aspects of the BPN were encountered first, as the
results were passed to non-linear activation functions in
each processing unit. These functions produced the output
of the processing layer

Xj ¼ g hj
� � ¼ g

X
k

wjkxk

 !
: ð5Þ

To retain the original analogy between NNM and learning
mechanisms in the brain (Adrian, 1926; Amit, 1989), the
activation functions are commonly chosen from the class of
sigmoid functions, which also will keep the model response
bounded. We have chosen

gðhÞ ¼ tanhðhÞ ¼ eh � e�h

eh þ e�h : ð6Þ

The outputs of the processing units are fed to the output layer
where they are again weighted

Hi ¼
X
j

WijXj ¼
X
j

Wij g
X
k

wjkxk

 !
: ð7Þ

The use of a second activation function will finally produce
the output of the network

Y ¼ f ðHiÞ ¼ f
X
j

Wij g
X
k

wjkxk

 !2
4

3
5, ð8Þ

where f is the output activation function, xk are the chosen
input variables, wjk are the weights from the k input units to
the j processing units, and Wij are the weights from the
processing units to the output unit. As an output activation

function we apply the identity function f ðxÞ ¼ x, so that
Equation (7) is the complete BPN function.

This model is very general. However, it has been shown
that ‘with one layer and an arbitrary continuous sigmoidal
function, this model can approximate any continuous
function, provided that no constraints are placed on the
number of units or the size of the weights’ (Cybenko, 1989).

2.4. The back-propagation architecture
The purpose of training an NNM is to find a set of
coefficients that reduces the error between the model
outputs and the given test data yðxkÞ. This is usually done
by adjusting the weights Wij and wjk to minimize the least-
squares error

�2 ¼ 1
2

X
n

X
i

yðxkÞ � YðxkÞ½ �2

¼ 1
2

X
n

X
i

yðxkÞ � g
X
j

Wijg
X
k

wjkxk

 !2
4

3
5

8<
:

9=
;, ð9Þ

where n is the length of the time series. One way to adjust
these weights, and thus to reduce �2, is gradient descent.
The update step in the output weights can be found by
differentiating

�Wij ¼ ��
@�2

@Wij

¼ �
X
n

½yðxkÞ � Y ðxkÞ�g 0ðHiÞXj

¼ �
X
n

�iXj, ð10Þ

defining

�i ¼ ½yðxkÞ � YðxkÞ�g 0ðHiÞ: ð11Þ
The so-called learning constant �, given in Equation (10), is a
scale factor which controls how big the update step is, and
g 0 is the derivation of the sigmoidal activation function used,

Fig. 2. An example of a simplified three-layer k-j-1 BPN architecture. Also shown is the concept behind the back-propagation training
algorithm (arrows).
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here tanhðxÞ. The choice of � is crucial because �
determines the step width of the gradient descent algorithm.
If � is too small, the algorithm might get stuck in steep
canyons of the �2 hypersurface. If it is too large, the
algorithm might just jump over minima.

The update in the input weights can be found using the
chain rule:

�wjk ¼ ��
@�2

@wjk

¼ �
X
n

X
i

yðxkÞ � YðxkÞ½ �g 0ðHiÞWijg 0ðhjÞxk

¼ �
X
n

X
i

�iWijg 0ðhjÞxk

� �
X
n

�jxk , ð12Þ

defining

�j ¼ g 0ðhjÞ
X
i

Wij�i : ð13Þ

The deltas for the input layer are found in terms of the deltas
for the output layer by running them backwards through the
network’s Wij‘s. Thus, the errors between model output and
observations are propagated backwards through the weights
of the output and the processing layer, and these errors are
used to adjust the weights throughout the network. Training
a network by gradient descent and feeding the errors
backwards through the network is called error back-propa-
gation.

As mentioned above, this network architecture risks being
stuck in local minima on the �2 hypersurface. To reduce this
risk, an enhanced version of standard back-propagation with
a momentum term � was used. The momentum term
introduces the old weight change as a parameter for
computing the new weight change. This avoids the
oscillation problems common with the standard back-
propagation algorithm when the error hypersurface has a
very narrow minimum area. The new weight change is
computed by

�wðtÞ ¼ ��
@�2

@w
þ ��wðt � 1Þ: ð14Þ

The term �, a number between 0 and 1, is the so-called
momentum parameter, and �wðt � 1Þ the weight change in
the time-step t � 1. The effect of these enhancements is that
flat spots of the error hypersurface are traversed relatively
rapidly with a few large steps, while the step size is
decreased as the hypersurface gets rougher. This adaption of
the step size increases learning speed significantly.

One obvious problem concerning BPN is that Equa-
tion (14) contains two parameters, � and �, whose optimum
values will typically vary from one iteration to the next. We
might therefore seek some procedure for setting these
automatically as part of the training algorithm. One
approach for doing this is the Polak–Ribière variant of the
conjugate gradient descent. Conjugate gradient is a method
of accelerating gradient descent in which the learning rate �
and the momentum parameter � are determined in each
iteration. In ordinary gradient descent, one uses the gradient
to find the steepest downhill direction, then moves along
that line to the minimum in that direction. With conjugate
gradient, a search is made along the conjugate gradient
direction to determine the step size, which minimizes the
error function along that line. The momentum term � is

calculated by the Polak–Ribière formula, since this controls
the search direction, while the learning rate � is determined
by the golden section method for line minimization (Press
and others, 1992; Bishop, 1995). For an excellent overview
of the conjugate gradient descent method, see the unpub-
lished draft by J.R. Shewchuk (http://www.cs.cmu.edu/
�quake-papers/painless-conjugate-gradient.ps). It should
be noted that for many applications the Polak–Ribière
method gives slightly better results than other conjugate
gradient methods or even the conventional gradient descent
approach (Press and others, 1992; Bishop, 1995; Dao and
Vemuri, 2002).

A second uncertainty in the BPN simulation is related to
the fact that the minimum, found from the algorithm, is
dependent on the initial starting point on the �2 hypersur-
face. Since the BPN represents a non-linear mapping
function, slightly different initial conditions can lead to
large differences in the simulation results. To eliminate this
kind of uncertainty, the BPN was driven 30 times, each time
only varying the initial starting point for the conjugate
gradient algorithm on the �2 hypersurface.

3. RESULTS

3.1. Mass balance in the 20th century
One of the most important factors in determining the success
of a practical application of neural networks is the form of
pre-processing applied to the data. In the simplest case, pre-
processing may take the form of a linear transformation of
the input and output data (see the z-transformation below).
More complex pre-processing may also involve reduction of
the dimensionality of the input data. The fact that such
dimensionality reduction can improve performance may at
first appear somewhat paradoxical, since it will decrease the
information content of the input data in most cases (Bishop,
1995). Some of these techniques, such as genetic algorithms,
are highly heuristic, while other methods such as principal
components analysis make assumptions as to the linearity of
relationships between the input data items. Finally, an
exhaustive search of optimal input configurations is highly
effective but computationally intensive. With the 60 input
variables used in this study (five datasets with monthly
resolution, each) there are 260 � 1018 possible subsets to
consider.

In the present study, we therefore used the stepwise
multiple linear regression approach to extract the potential
influences on the mass balance of Grosse Aletschgletscher.
Although there is an assumption of linearity behind this
method, Addison and others (2004) show that the use of
stepwise multiple linear regression could perform compar-
ably to, if not better than, most other reduction methods.
Stepwise multiple linear regression examines variables
incorporated in the model at every stage of the regression.
A variable that may have been the best choice to enter the
model at an early stage may later be non-significant because
of the relationships between it and other variables now in
the regression. Once a variable is proven to be non-
significant, it is removed from the model. This process
continues until no more variables can be accepted and no
more can be rejected (Von Storch and Zwiers, 1999).

We performed a stepwise multiple linear regression with
the monthly averages of temperature and precipitation as
independent variables and the proxy of annual mass balance
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of Grosse Aletschgletscher as an output dataset (dependent).
As model inputs for the BPN, we found the following subset
of 12 independent variables (>99% confidence level):
Meiringen (August, September), Sion (June, July), Fiesch
(January, May, July, November) and Kippel (February, July,
October, December).

Changes in glacier mass balance can be viewed as a
direct, undelayed reaction of a glacier to climatic variations
(Reichert and others, 2001; Nesje and Dahl, 2003).
Furthermore, glacier mass is determined by taking into
account the accumulation of snow, mostly in winter, and
warm-season ablation, and thus shows an immediate re-
sponse to climate variability and site meteorological condi-
tions. Therefore, it is not surprising that ‘summer’ (June–
September) temperature and ‘winter’ (October–February)
precipitation turn out to be highly correlated with the annual
glacier mass balance. The high correlations of May and July
precipitation could indicate that the mass balance also
responds to effects of spring and summer precipitation.
Furthermore, it seems that there is no (linear) relationship
between the mass-balance series of Grosse Aletschgletscher
and the Lauterbrunnen precipitation series.

In contrast to the proxy-based reconstruction back to 1500
(see section 3.2), we use monthly data for a reconstruction of
the 20th-century mass balance. In this way a choice of
potential climatic driving factors is more differentiated and
probably leads to better model performance.

Before feeding the BPN, the data are standardized to
1919–99 mean and standard deviation (z-transformation) so
that temperature and precipitation are in comparable units
(for robust NNM performance). After fitting the BPN with the
conjugate gradient descent method, the full model was used
to reconstruct a proxy of annual mass balance from the
forcing data when no output data were available. In a final
step, the data were rescaled by the inverse z-transformation.

Figure 3 is the composite made up of the annual glacier
mass balance for the 1919–99 training/validation period,
presented in section 2.1, and BPN predictions for those
years when estimations are missing (1900–18, 2000–03). An
error envelope (95% confidence interval) based on the rms
errors in predictions appears around each section of BPN
prediction (Mann and Jones, 2003; Reusch and Alley, 2004).
The simulation and the reconstruction are the average
outputs of 30 model runs to reduce the effect of falling into
local minima (see section 2.4).

The simulation quality over the 1919–99 training/valida-
tion period amounts to 97.3% of explained variance, while
the stepwise multiple linear regression model driven by the
same input data ends with an explained variance of 86.3%.
Chen and Funk (1990) applied a similar multiple linear
regression approach to reconstruct the mass balance of
Rhonegletscher. They used mean annual precipitation and
mean summer temperature of nearby stations as model
inputs. So our stepwise multiple linear regression model
represents a refinement of their approach with higher-
resolution data.

To ensure that the neural network has captured most
relevant mechanisms, the residuals of the simulations must
be tested. This is usually done by testing for Gaussian
distribution of the residuals. In the case of a non-linear
neural network, the residuals undergo non-linear transfor-
mations during the training of the network. Therefore the
residuals do not have to be Gaussian-distributed even if the
model captures all relevant mechanisms and the residuals

are in fact (white) noise. An alternative statistical method for
testing residuals of this kind is the autocorrelation function.
If the residuals are indeed white noise, i.e. uncorrelated at
all lags, the autocorrelation function should have no
structure (Von Storch and Zwiers, 1999; Walter and
Schönwiese, 2002).

The autocorrelation coefficient of our simulations shows
no significant deflection from zero (95% confidence level);
therefore the BPN captured all relevant mechanisms and the
remaining residuals can be treated as white noise.

The BPN used here can simulate a proxy of annual
glacier mass balance for the 20th century. While the
stepwise multiple linear regression approach often under-
or overestimates the extremes of the mass-balance function,
the trained BPN is better able to learn the intrinsic data
features. A small number of NN misfits were found.
Furthermore, it is possible to reconstruct missing mass-
balance data. For the 2000–03 period we estimated a
cumulative mass balance of about –2.2m (Fig. 3), consistent
with several studies and measurements that show persistent
melting of Alpine glaciers during the last two decades
(BUWAL, BWG, MeteoSchweiz, 2004; Vincent and others,
2004). The beginning of the 20th century is characterized by
a short period of negative mass balances (minimum around
1905) followed by a relative maximum in 1910. In 1911, a
strongly negative mass balance was found, after which a
period with mainly positive mass balances can be detected
(maximum around 1914). Again, this is in good agreement
with other mass-balance reconstructions of Alpine glaciers,
such as Hintereisferner (Nicolussi, 1994; Kuhn and others,
1997).

3.2. Proxy-based reconstructions of mass balance
back to 1500
To reconstruct annual glacier mass balance back to 1500,
we used the same method described in section 3.1 but with
different inputs. We focused attention on a longer-
term reconstruction of mass balance. Because our data
were not available in monthly resolution back to 1500, we

Fig. 3. Results of the BPN simulation and reconstruction (solid
curve). Also shown is the proxy of annual glacier mass balance
(thick curve) for the 1919–99 period and the output of the stepwise
multiple linear regression (dotted curve). Confidence intervals
derived from rms errors appear as grey envelopes around
predictions.
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used seasonal averages. After a stepwise multiple linear
regression with the seasonal averages, calculated from
gridded datasets, as independent variables and with annual
glacier mass balance as output dataset (dependent), the
potential climate influences were chosen. Significant data-
sets (>99% confidence level) were winter (December–
February) precipitation and summer (June–August) tempera-
ture. As presented in section 3.1, the input data were
standardized before training.

Figure 4 shows the simulation (1919–99) and the
reconstruction (1500–1918) of the annual glacier mass
balance, with an error envelope (grey shaded) around each
section of BPN predictions based on its rms errors (95%
confidence interval). Also given are a 30 year low-pass
filtered time series for the BPN simulation and reconstruc-
tion of yearly mass balance (thick line), and the output of the
stepwise multiple linear regression (solid line). Figure 5
represents the cumulative glacier mass-balance changes
back to 1500, also with an error envelope (95% confidence
interval). A positive slope in Figure 5 is the result of years
with positive mass balance, indicating a mass gain, and the
opposite for a negative slope.

Again, the BPN was trained by the conjugate gradient
descent method to simulate the mass balance over the
1919–99 training/validation period. The model was then
used to reconstruct annual mass changes since 1500 by
averaging 30 different BPN runs that started from different
points in the space of possible weights. In this case, the
simulation skill amounts to 60.8% of explained variance,
while the stepwise multiple linear regression approach
driven by the same input data accounts for 54.8% of
explained variance. Again, the autocorrelation coefficient
function indicates no significant deflection from zero (95%
confidence level).

A comparison of the reconstructed cumulative mass
balance of Grosse Aletschgletscher and the statistics of
front positions of nearby Unter Grindelwaldgletscher (e.g.

Zumbühl and others, 1983; Holzhauser and Zumbühl,
2003), provided in Figure 5, shows correlation coefficients
of r ¼ 0:89 for the overlapping 1535–1983 period and
r ¼ 0:69 for the 1535–1918 reconstruction period.

Figures 4 and 5 show significant trends in glacier mass-
balance fluctuations over the past five centuries.

Around the mid-16th century, Grosse Aletschgletscher
showed generally negative mass balances, with a conse-
quent minimum in cumulative mass balance at this time. As
shown in Figures 6 and 7 (Luterbacher and others, 2004;
Pauling and others, in press), this coincides with an extended
period of higher summer temperatures. This period ends
when winter precipitation increases.

The maximum mass balances around 1600 are connected
with low summer temperatures and average winter pre-
cipitation. These conditions led to low ablation rates and an
extended period of increasing mass balance.

During the next century (~1610–1710), mass balance
remained static and showed a slight negative trend. Summer
temperature and winter precipitation are also found to
stagnate. Cumulative mass balance shows a broad plateau in
the 17th century, with two relative minima in the mid-17th
century and at the beginning of the 18th century.

From around 1710, decreasing summer temperatures and
very high winter precipitation caused a phase of uniform
positive mass balance with a mass gain. The later stagnancy
of glacier mass balance is represented by a nearly constant
cumulative mass balance. This period of maximal cumu-
lative mass balance coincides with a minimum in glacier
length (Haeberli and Holzhauser, 2003).

From 1770 to 1810, low winter accumulation potential
and high summer ablation potential overlap, producing
conditions favourable for negative mass balances and a
resulting continuous mass loss, with a minimum of cumu-
lative mass balance around 1810. The 1856 glacial max-
imum was likely produced by 40–50 years of cool summers
without anomalous positive winter precipitation, identifiable

Fig. 4. Results of the BPN simulation and reconstruction (solid
curve) of yearly mass balance. Confidence intervals derived from
rms errors appear as grey envelopes around predictions. Also
shown is the proxy of annual glacier mass balance for the 1919–99
period. The smoothed thick curve represents the 30 year low-pass
filtered time series of the results of the BPN simulation and
reconstruction. The smoothed solid curve is the 30 year low-pass
filtered output of the stepwise multiple linear regression model.

Fig. 5. Cumulative mass-balance changes in Grosse Aletsch-
gletscher for the 1500–1999 period (1919 ¼ 0). The thick curve
represents the mass changes observed (1919–99); the solid curve is
the result of the BPN simulation and reconstruction. Also shown is
an error envelope (grey shading) around the predictions of
cumulative mass balance. The dashed curve shows the length
fluctuations of nearby Unter Grindelwaldgletscher, 1535–1983.
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as two short periods of positive mass balance. After 1856,
higher summer temperatures and low winter precipitation
caused an extended ablation-dominated mode with an
enormous mass loss until the beginning of the 20th century.
From then until the 1920s, retreat rates slowed substantially,
and a small mass gain was determined. Low summer
temperatures coupled with increasing winter precipitation
coincided with an increasing (positive) mass balance. Note
that for this time a little stagnancy in length was documented
for Grosse Aletschgletscher (VAW/SANW, 1881–2002;
Zumbühl and Holzhauser, 1988). The mid-1950s mass loss
was characterized by high summer temperatures, while the
subsequent positive mass balances in the 1980s can be
explained by lower summer temperatures and high winter
precipitation.

The evidence presented here suggests that maxima in the
mass balance of Grosse Aletschgletscher are predominantly
caused by cold summers, often coupled with high winter
precipitation. This is in good agreement with Oerlemans
and Reichert (2000) who show that summer temperature is
the important factor in drier (inner Alpine) climates.
Negative mass balance is mainly driven by high summer
temperature. There is probably a weaker dependence on
low winter precipitation, which can be influential under
strong enough forcing. This longer-term model was driven
by a very small number of forcing factors, so spring and fall
conditions, and the effects of summer precipitation, are not
taken into account.

4. CONCLUSIONS AND OUTLOOK
For the first time, an NNM has been used to reconstruct the
mass balance of Grosse Aletschgletscher. Two new gridded
datasets of temperature and precipitation were applied to
the NNM as potential driving factors of the glacier system.
This was a unique opportunity to bring these two aspects, a
new method and two new datasets, together.

The results of this study show that the NNM approach is a
useful tool for quantifying Grosse Aletschgletscher’s mass-
balance changes in a non-linear way. In fact, the recon-
structed mass balance is the result of a combination of
several climatic input variables (precipitation and tempera-
ture) that vary in their composition and input importance. It
can be shown how the mass balance reacts to changes in
local to regional temperature and precipitation. We ob-
served maximum mass balances for Grosse Aletschgletscher
around 1600, 1730, 1815/45 and 1920. Minima in glacier
mass balance were found in the 1540s, 1790s, 1870s and
1950s.

Furthermore, we confirm that summer temperature is an
important driving factor for variations in mass balance. Thus
the results presented here suggest that neural network
models capture the appropriate dependence on the relevant
inputs that likely affect a glacier system. We also conclude
that the climate–mass-balance relation of Grosse Aletsch-
gletscher consists of a significant non-linear part.

In our approach we used only temperature and precipita-
tion data as inputs for the BPN. It would be interesting to see
whether other data (e.g. North Atlantic Oscillation, solar
irradiance or tree rings) could improve the quality of the
model. In the absence of widespread mass-balance data that
can be used as training sets, the possibility of using the
present approach to model glacier length variations should
be further investigated.
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Vincent, C., G. Kappenberger, F. Valla, A. Bauder, M. Funk and
E. Le Meur. 2004. Ice ablation as evidence of climate change in

the Alps over the 20th century. J. Geophys. Res.
109(D10),D10104. (10.1029/2003JD003857.)

Von Storch, H. and F.W. Zwiers. 1999. Statistical analysis in climate
research. Cambridge, Cambridge University Press.

Walter, A. 2001. Zur Anwendung neuronaler Netze in der
Klimatologie. Offenbach, Berichte des Deutschen Wetter-
dienstes 218.

Walter, A. and C.D. Schönwiese. 2002. Attribution and
detection of anthropogenic climate change using a
backpropagation neural network. Meteorol. Z., 11(5),
335–343.

Walter, A. and C.D. Schönwiese. 2003. Nonlinear statistical
attribution and detection of anthropogenic climate change using
a simulated annealing algorithm. Theor. Appl. Climatol.,
76(1–2), 1–12.

Wu, A. and W. W. Hsieh. 2003. Nonlinear interdecadal changes of
the El Niño–Southern Oscillation. Climate Dyn., 21(7–8),
719–730.
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