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R E G U L A R D I G R A P H S C O N T A I N I N G 
A G I V E N D I G R A P H 

BY 

F R A N K H A R A R Y A N D R A Z M I K K A R A B E D 

ABSTRACT. Let the maximum degree d of a digraph D be the 
maximum of the set of all outdegrees and indegrees of the points of 
D. We prove that every digraph D of order P and maximum degree 
d has a d -regular superdigraph H with at most d + 1 more points, 
and that this bound, which is independent of p, is best possible. 

1. Introduction. In the first book on graph theory ever written, Dénes Kônig 
proved that for every graph G, of order p and maximum degree d, there is a 
d-regular graph H containing G as an induced subgraph. Paul Erdôs and Paul 
Kelly solved the extremal problem of determining the minimum number of 
points which must be added to a given graph G to obtain such a supergraph H. 
Lowell Beineke and Raymond Pippert extended this result to digraphs. A 
related problem was studied by Jin Akiyama, Hiroshi Era and Frank Harary 
when they considered G as a subgraph of H which is not necessarily induced 
and showed that at most d + 2 new points are needed. We now settle the 
corresponding problem for digraphs. 

A digraph D has a set V of p > 1 points and a set X of q < p(p -1) arcs, each 
of which is an ordered pair (u, v) of distinct points. The outdegree od(u) of point 
u in D is the number of arcs from u and its indegree id(u) is the number of arcs 
to u. The maximum degree d of digraph D is the maximum of the set of all 
outdegrees and indegrees of the points. 

The digraph DG of a graph G is obtained when each (undirected) line uv of 
G is replaced by the symmetric pair of arcs (u, v) and (v, u). In particular DKP 

is the digraph of the complete graph Kp. 
The previous results concerning regular supergraphs are now stated in 

chronological order. Throughout, p is the number of points and d the max
imum degree. The maximum deficiency of graph G with minimum degree 8 is 
d-8. If (dl9 d2,..., dp) is the degree sequence of G, then the total deficiency 
of G is s=YJ(d-di) = pd-2q. 
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THEOREM A (Kônig [6]). For every graph G there is a d-regular graph H 
containing G as an induced subgraph. 

THEOREM B (Erdôs and Kelly [3,4]). Let G be a graph with p points, 
maximum degree d, maximum deficiency e, and total deficiency s. The minimum 
number of new points in a d-regular super graph H containing G as an induced 
subgraph is the smallest integer m satisfying (1) md>s, (2) m2 — (d-fl)m + s > 
0, (3) m>e, (4) (m-\-p)d is even. Further, this bound is best possible. 

THEOREM C (Beineke and Pippert [2]). Let D be an oriented graph (asym
metric digraph) with maximum degree d, sum of in-deficiencies s and maximum 
combined deficiency t. The minimum number of new points in a d-regular 
oriented supergraph ofD is the smallest integer m satisfying (1) m>t, (2) md > s, 

( m\ 
2)>md-s. 

When D is a digraph having maximum in- or out-deficiency r, m is the least 
integer such that (1) m>r, (2) md > s , (3) m(m — 1) > md — s. 

THEOREM D (Akiyama, Era and Harary [1]). For every graph G there is a 
d-regular supergraph H having at most d + 2 new points and this bound, which is 
independent of p, is best possible. 

2. The result. The proof given below modifies that of [1] to the case of 
digraphs. In a d-regular digraph, each point has both indegree and outdegree d. 

THEOREM 1. Every digraph D, of order p and maximum degree d, has a 
d-regular superdigraph H with at most d+l more points and this bound, which is 
independent of p, is best possible. 

Proof. We begin by filling D with additional arcs without exceeding d. If 
there are two points u, v in D such that od(u), id(v)<d and arc(u, v) is not in 
D, then add this arc to D. Continue this until no such pair of points remains 
and call D ' the resulting superdigraph of D. At the end of this process, 
V(D') = V is partitioned into four subsets At such that, with od(i*) and id(w) 
now referring to D' , 

A1={u: od(w) < d, id(u) = d}, 

A2 = {u: od(u) < d, id(u) < d}, 

A3 = {u : od(u) = d, id(u) < d}, 

A4 = {u : od(u) = d — id(u)}. 

Let at = \At\, i = 1, 2, 3, 4. For each point u in Df, call im(w) = d — id(u) = the 
in-deficiency of u (with the letter "m" standing for missing) and similarly 
om(u) = d — od(u) = the out-deficiency of u. 
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We now show that a1 + a2<d, from which it follows at once by directional 
duality that a2 + a3<d. Each point w e A 3 has positive in-deficiency while 
points ueA1 and v e A2 have positive out-deficiency. Now if u and v are not 
adjacent to w, then D ' has not yet been completely constructed. Hence both u 
and v are adjacent to w, so id(w) >a1 + a2. But as w e A 3 , id(w)<d and we 
have a1 + a2<d. 

Obviously £ im(w) = £ om(w) with the sum taken over all points u in D'. 

LEMMA. Let r, p be positive integers with r<p and let s, t be nonnegative 
integers such that 2s +1 = p. Then there exist two digraphs Dl9 D2 with p points 
in both of which s points have degree pair (r, r — 1), another s have (r — 1, r), and 
the remaining t points have (r— 1, r — 1) in Dx and (r, r) in D2. 

Proof. We first construct D1? and begin by taking p even. It is well-known, 
Kônig [6, p. 85], that Kp has a 1-factorization into p - 1 1-factors Ft. In r-1 of 
these, replace each edge by a symmetric pair of arcs. Then in Fr take any s 
remaining edges and orient them arbitrarily to make them arcs. The result is 
D1 for p even. 

When p is odd, we use the well-known decomposition of Kp into (p —1)/2 
hamiltonian cycles [5, p. 89] and make r — 1 of these cycles directed. Now 
orient the rth cycle C to become a directed cycle C", and retain any s arcs of 
C no two of which are consecutive while discarding the remaining p — s arcs. 
This completes Dx when p is odd. 

The construction of D 2 is the same for the first r — l steps. But for the final 
step it must be modified. When p is even, in addition to orienting any s edges 
of Fr, we also take f/2 additional edges of Fr and convert them to symmetric 
pairs of arcs. And when p is odd, we take the directed cycle C above and 
delete any s nonconsecutive arcs, retaining the remaining p-s arcs. The 
resulting digraph D2 has the specified degree pairs. 

We can now continue the proof of the theorem. 
We add a set W of d + 1 new points w 0 , . . . , wd to D' . Let the points of 

Ai U A 2 be ul9..., Urn, a n d join ux to the first ovs\(u^ points w0, w l 5 . . . , then 
u2 to the next om(u2) points of W, and so forth in a cyclic manner. Similarly, 
let ul5 v2,..., vn be the points in A 2 U A 3 and join to v1 the last im^i) points 
wd, w d _! , . . . , to v2 the preceding im(i>2) points, etc. In the resulting digraph E, 
all points of D have both out- and in-degree equal to d, while in E the degree 
pairs of the points of W are either all (x, x -1), (x -1, x) and (x — 1, x - 1 ) or 
all (x, x —1), ( x - l , x ) and (x, x), where 0 < x < d since 0<a1 + a2<d and 
0 < a2 + a3 < d. In both cases it follows from the lemma that digraph E can be 
extended to d -regularity, by embedding Dx or D2 as required into the deficient 
points of E. 

To prove that the bound d + 1 is best possible, we exhibit two digraphs D 

https://doi.org/10.4153/CMB-1984-020-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1984-020-0


1 3 2 FRANK HARARY AND RAZMIK KARABED [June 

t<M 
Figure 1. Two digraphs and their smallest regular superdigraphs. 

having maximum degree d that require d + 1 new points to obtain a desired 
d -regular superdigraph H. The first of these is a digraph Dx with p = 4 and 
d = 2. In Fig. 1, it is verified that d + 1 = 3 new points suffice, and the role of 
the point w mentioned as Kx in the proof is shown in the construction of the 
2-regular superdigraph Hx. 

The second of these has d odd and is a symmetric digraph D 2 with p = 5 
points and d = 3 so that r = 4. In fact D2 is DG2 where G2 is the graph used as 
an illustration in [1]. In accordance with Theorem D above, this graph G2 

requires five, i.e. d + 2, new points in order to build a 3-regular supergraph. 
However, the digraph D2 requires only four new points as shown in Fig. 1, in 
which each symmetric pair of arcs in H2 is depicted for simplicity as an 
undirected edge. 
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