REGULAR DIGRAPHS CONTAINING A GIVEN DIGRAPH

BY
FRANK HARARY AND RAZMIK KARABED

Abstract

Let the maximum degree d of a digraph D be the maximum of the set of all outdegrees and indegrees of the points of D. We prove that every digraph D of order P and maximum degree d has a d-regular superdigraph H with at most $d+1$ more points, and that this bound, which is independent of p, is best possible.

1. Introduction. In the first book on graph theory ever written, Dénes König proved that for every graph G, of order p and maximum degree d, there is a d-regular graph H containing G as an induced subgraph. Paul Erdös and Paul Kelly solved the extremal problem of determining the minimum number of points which must be added to a given graph G to obtain such a supergraph H. Lowell Beineke and Raymond Pippert extended this result to digraphs. A related problem was studied by Jin Akiyama, Hiroshi Era and Frank Harary when they considered G as a subgraph of H which is not necessarily induced and showed that at most $d+2$ new points are needed. We now settle the corresponding problem for digraphs.

A digraph D has a set V of $p \geq 1$ points and a set X of $q \leq p(p-1)$ arcs, each of which is an ordered pair (u, v) of distinct points. The outdegree $\operatorname{od}(u)$ of point u in D is the number of arcs from u and its indegree $\operatorname{id}(u)$ is the number of arcs to u. The maximum degree d of digraph D is the maximum of the set of all outdegrees and indegrees of the points.

The digraph $D G$ of a graph G is obtained when each (undirected) line $u v$ of G is replaced by the symmetric pair of arcs (u, v) and (v, u). In particular $D K_{p}$ is the digraph of the complete graph K_{p}.

The previous results concerning regular supergraphs are now stated in chronological order. Throughout, p is the number of points and d the maximum degree. The maximum deficiency of graph G with minimum degree δ is $d-\delta$. If $\left(d_{1}, d_{2}, \ldots, d_{p}\right)$ is the degree sequence of G, then the total deficiency of G is $s=\sum\left(d-d_{i}\right)=p d-2 q$.

Theorem A (König [6]). For every graph G there is a d-regular graph H containing G as an induced subgraph.

Theorem B (Erdös and Kelly [3,4]). Let G be a graph with p points, maximum degree d, maximum deficiency e, and total deficiency s. The minimum number of new points in a d-regular supergraph H containing G as an induced subgraph is the smallest integer m satisfying (1) $m d \geq s$, (2) $m^{2}-(d+1) m+s \geq$ 0 , (3) $m \geq e$, (4) $(m+p) d$ is even. Further, this bound is best possible.

Theorem C (Beineke and Pippert [2]). Let D be an oriented graph (asymmetric digraph) with maximum degree d, sum of in-deficiencies s and maximum combined deficiency t. The minimum number of new points in a d-regular oriented supergraph of D is the smallest integer m satisfying (1) $m \geq t$, (2) $m d \geq s$, (3) $\binom{m}{2} \geq m d-s$.

When D is a digraph having maximum in- or out-deficiency r, m is the least integer such that (1) $m \geq r$, (2) $m d \geq s$, (3) $m(m-1) \geq m d-s$.

Theorem D (Akiyama, Era and Harary [1]). For every graph G there is a d-regular supergraph H having at most $d+2$ new points and this bound, which is independent of p, is best possible.
2. The result. The proof given below modifies that of [1] to the case of digraphs. In a d-regular digraph, each point has both indegree and outdegree d.

Theorem 1. Every digraph D, of order p and maximum degree d, has a d-regular superdigraph H with at most $d+1$ more points and this bound, which is independent of p, is best possible.

Proof. We begin by filling D with additional arcs without exceeding d. If there are two points u, v in D such that $\operatorname{od}(u), \operatorname{id}(v)<d$ and $\operatorname{arc}(u, v)$ is not in D, then add this arc to D. Continue this until no such pair of points remains and call D^{\prime} the resulting superdigraph of D. At the end of this process, $V\left(D^{\prime}\right)=V$ is partitioned into four subsets A_{i} such that, with $\operatorname{od}(u)$ and $\operatorname{id}(u)$ now referring to D^{\prime},

$$
\begin{aligned}
& A_{1}=\{u: \operatorname{od}(u)<d, \operatorname{id}(u)=d\}, \\
& A_{2}=\{u: \operatorname{od}(u)<d, \operatorname{id}(u)<d\}, \\
& A_{3}=\{u: \operatorname{od}(u)=d, \operatorname{id}(u)<d\}, \\
& A_{4}=\{u: \operatorname{od}(u)=d=\operatorname{id}(u)\} .
\end{aligned}
$$

Let $a_{i}=\left|A_{i}\right|, i=1,2,3,4$. For each point u in D^{\prime}, call $\operatorname{im}(u)=d-\operatorname{id}(u)=$ the in-deficiency of u (with the letter " m " standing for missing) and similarly $\operatorname{om}(u)=d-\operatorname{od}(u)=$ the out-deficiency of u.

We now show that $a_{1}+a_{2}<d$, from which it follows at once by directional duality that $a_{2}+a_{3}<d$. Each point $w \in A_{3}$ has positive in-deficiency while points $u \in A_{1}$ and $v \in A_{2}$ have positive out-deficiency. Now if u and v are not adjacent to w, then D^{\prime} has not yet been completely constructed. Hence both u and v are adjacent to w, so $\operatorname{id}(w) \geq a_{1}+a_{2}$. But as $w \in A_{3}, \operatorname{id}(w)<d$ and we have $a_{1}+a_{2}<d$.

Obviously $\sum \operatorname{im}(u)=\sum \mathrm{om}(u)$ with the sum taken over all points u in D^{\prime}.
Lemma. Let r, p be positive integers with $r<p$ and let s, t be nonnegative integers such that $2 s+t=p$. Then there exist two digraphs D_{1}, D_{2} with p points in both of which s points have degree pair $(r, r-1)$, another s have $(r-1, r)$, and the remaining t points have $(r-1, r-1)$ in D_{1} and (r, r) in D_{2}.

Proof. We first construct D_{1}, and begin by taking p even. It is well-known, König [6, p. 85], that K_{p} has a 1-factorization into $p-11$-factors F_{i}. In $r-1$ of these, replace each edge by a symmetric pair of arcs. Then in F_{r} take any s remaining edges and orient them arbitrarily to make them arcs. The result is D_{1} for p even.

When p is odd, we use the well-known decomposition of K_{p} into $(p-1) / 2$ hamiltonian cycles [5, p. 89] and make $r-1$ of these cycles directed. Now orient the r th cycle C to become a directed cycle C^{\prime}, and retain any s arcs of C^{\prime} no two of which are consecutive while discarding the remaining $p-s$ arcs. This completes D_{1} when p is odd.

The construction of D_{2} is the same for the first $r-1$ steps. But for the final step it must be modified. When p is even, in addition to orienting any s edges of F_{r}, we also take $t / 2$ additional edges of F_{r} and convert them to symmetric pairs of arcs. And when p is odd, we take the directed cycle C^{\prime} above and delete any s nonconsecutive arcs, retaining the remaining $p-s$ arcs. The resulting digraph D_{2} has the specified degree pairs.

We can now continue the proof of the theorem.
We add a set W of $d+1$ new points w_{0}, \ldots, w_{d} to D^{\prime}. Let the points of $A_{1} \cup A_{2}$ be u_{1}, \ldots, u_{m}, and join u_{1} to the first om $\left(u_{1}\right)$ points w_{0}, w_{1}, \ldots, then u_{2} to the next om $\left(u_{2}\right)$ points of W, and so forth in a cyclic manner. Similarly, let $v_{1}, v_{2}, \ldots, v_{n}$ be the points in $A_{2} \cup A_{3}$ and join to v_{1} the last $\operatorname{im}\left(v_{1}\right)$ points w_{d}, w_{d-1}, \ldots, to v_{2} the preceding $\operatorname{im}\left(v_{2}\right)$ points, etc. In the resulting digraph E, all points of D have both out- and in-degree equal to d, while in E the degree pairs of the points of W are either all $(x, x-1),(x-1, x)$ and $(x-1, x-1)$ or all $(x, x-1),(x-1, x)$ and (x, x), where $0<x \leq d$ since $0<a_{1}+a_{2}<d$ and $0<a_{2}+a_{3}<d$. In both cases it follows from the lemma that digraph E can be extended to d-regularity, by embedding D_{1} or D_{2} as required into the deficient points of E.

To prove that the bound $d+1$ is best possible, we exhibit two digraphs D

Figure 1. Two digraphs and their smallest regular superdigraphs.
having maximum degree d that require $d+1$ new points to obtain a desired d-regular superdigraph H. The first of these is a digraph D_{1} with $p=4$ and $d=2$. In Fig. 1, it is verified that $d+1=3$ new points suffice, and the role of the point w mentioned as K_{1} in the proof is shown in the construction of the 2-regular superdigraph H_{1}.

The second of these has d odd and is a symmetric digraph D_{2} with $p=5$ points and $d=3$ so that $r=4$. In fact D_{2} is $D G_{2}$ where G_{2} is the graph used as an illustration in [1]. In accordance with Theorem D above, this graph G_{2} requires five, i.e. $d+2$, new points in order to build a 3-regular supergraph. However, the digraph D_{2} requires only four new points as shown in Fig. 1, in which each symmetric pair of arcs in H_{2} is depicted for simplicity as an undirected edge.

Acknowledgement. We are grateful to the referee for improving the proof of Theorem 1.

References

1. J. Akiyama, H. Era and F. Harary, Regular graphs containing a given graph. Elem. Math. 38 (1982), 15-17.
2. L. W. Beineke and R. E. Pippert, Minimal regular extensions of oriented graphs. Amer. Math. Monthly 76 (1969) 145-151.
3. P. Erdös and P. J. Kelly, The minimal regular graph containing a given graph. Amer. Math. Monthly 70 (1963) 1074-1075.
4. P. Erdös and P. J. Kelly, The minimal regular graph containing a given graph. A Seminar on Graph Theory (F. Harary, ed.), Holt, New York (1967) 65-69.
5. F. Harary, Graph Theory. Addison-Wesley, Reading, (1969).
6. D. König, Theorie der endlichen und unendlichen Graphen. Leipzig (1936), Reprinted, Chelsea, New York (1950).

University of Michigan

Ann Arbor, MI 48109, U.S.A.

