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Abstract

Morozov’s discrepancy principle is one of the simplest and most widely used parameter choice strategies
in the context of regularization of ill-posed operator equations. Although many authors have considered
this principle under general source conditions for linear ill-posed problems, such study for nonlinear
problems is restricted to only a few papers. The aim of this paper is to apply Morozov’s discrepancy
principle for Tikhonov regularization of nonlinear ill-posed problems under general source conditions.
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1. Introduction

Many of the inverse problems that appear in science and engineering can be modelled
as ill-posed equations of the form

F(x)= y, (1.1)

where F : D(F)⊆ X→ Y is an operator (not necessarily linear) between Hilbert
spaces X and Y (see, for example, [1]). We assume that the operator F and the
data y are such that the above equation has a solution x̂ which minimizes the function
x 7→ ‖x − x‖, where x is an initial guess at the unknown solution. As the data
available is often noisy, say yδ in place of y with

‖y − yδ‖ ≤ δ (1.2)

for known noise level δ > 0, the ill-posedness of the equation demands application of
certain regularization methods for obtaining stable approximate solutions. Tikhonov
regularization is one of the most widely used such methods. In Tikhonov
regularization, one looks for a minimizer xδα of the function

x 7→ Jα(x, yδ) := ‖F(x)− yδ‖2 + α‖x − x‖2,

where α > 0 is a parameter to be chosen appropriately.

c© 2009 Australian Mathematical Society 0004-9727/2009 $16.00

337

https://doi.org/10.1017/S0004972708001342 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972708001342


338 M. T. Nair [2]

It is known (see [1]) that if F is weakly closed, then for every (y, x) ∈ Y × X and
for every α > 0, there exists x ∈ D(F) such that

Jα(x, y)= inf
u∈D(F)

Jα(u, y).

Suppose that D(F) contains a neighbourhood of x̂ , and F is Fréchet differentiable
at x̂ . It is known that if x̂ belongs to a source set of the form

Mν,ρ := {(A
∗A)νv : ‖v‖ ≤ ρ}

for some ρ > 0 and 0< ν ≤ 1, with A := F ′(̂x), the Fréchet derivative of F at x̂ , then
by choosing α either a priori as α := c0δ

2/(2ν+1) or by a Morozov-type discrepancy
principle in which α satisfies the inequality

c1δ ≤ ‖F(x
δ
α)− yδ‖ ≤ c2δ (1.3)

with c2 ≥ c1 ≥ 1, then we obtain the ‘optimal estimate’

‖x̂ − xδα‖ = O(δ2ν/(2ν+1)).

But there are many examples of inverse problems where the requirement that x̂ belongs
to Mν,ρ becomes too restrictive (see, for example, [5, 6, 14]). A general form of source
set which was found convenient and useful in many linear ill-posed problems is

Mϕ,ρ := {

√
ϕ(A∗A) v : ‖v‖ ≤ ρ},

where ϕ is a suitable function which is general enough to include many of the standard
source conditions, including the Hölder type in which ϕ(λ) := λν for 0< ν ≤ 1, and
the logarithmic type in which ϕ(λ) := [ln(1/λ)]−p for p > 0.

The general source condition in the context of linear ill-posed problems has been
considered extensively in recent years (see, for example, [10–14, 17]). Extensions
of such source conditions to nonlinear problems have also been considered (see, for
example, [7, 8]). However, the general source condition combined with Morozov’s
discrepancy principle, one of the most widely used parameter choice strategies in the
context of linear ill-posed equations, does not seem to have been studied for nonlinear
problems.

The aim of this short paper is to obtain an order optimal estimate for the error
involved in nonlinear ill-posed equations under a general source condition, along the
lines of the analysis in [13], by choosing the regularization parameter α according to
the Morozov-type discrepancy principle (1.3).

We may observe that if A is injective and ϕ is an index function, that is, if ϕ is a
positive monotonically increasing, continuous function defined on a suitable interval
[0, a] satisfying limλ→0 ϕ(λ)= 0, then the source set Mϕ,ρ defined above can be
thought of as a closed ball of radius ρ in a Hilbert space Xϕ which is the completion
of the subspace

Dϕ := {x ∈ X : ∃vx ∈ X with x =
√
ϕ(A∗A) vx }
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with respect to the norm
‖x‖ϕ := ‖vx‖, x ∈ Dϕ .

The variable Hilbert scale {Xϕ : ϕ an index function } was considered first by
Hegland (see [3, 4]) as a generalization of the concept of Hilbert scale.

In this short paper we consider such general source condition and use Morozov’s
discrepancy principle (1.3) as the parameter choice strategy for choosing the
regularization parameter α.

2. The main result

The following main theorem of this paper extends the known result (see [13]) for
linear ill-posed problems to the nonlinear case. We shall make use of the following
assumptions.

ASSUMPTION 2.1. (a) The exact data y belongs to R(F), the range of F , and
x̂ ∈ D(F) is such that F (̂x)= y.
(b) The operator F is Fréchet differentiable at x̂ and there exists η > 0 such that

‖F ′(̂x)(̂x − x)‖ ≤ η‖F (̂x)− F(x)‖ ∀x ∈ Br (̂x); r ≥ ‖x̂ − x‖.

(c) There exist c1, c2 with c2 ≥ c1 ≥ 1 such that for every δ > 0, there exists α :=
α(δ, yδ) satisfying

c1δ ≤ ‖F(x
δ
α)− yδ‖ ≤ c2δ.

(d) There exists ρ > 0 such that

x̂ − x ∈ {
√
ϕ(A∗A) v : ‖v‖ ≤ ρ},

where A := F ′(̂x) and ϕ : [0, a] → [0,∞) with a ≥ ‖A‖2 is a monotonically
increasing, continuous and concave function satisfying limλ→0 ϕ(λ)= 0.

We now state and prove the main theorem of this paper.

THEOREM 2.2. Under Assumption 2.1,

‖x̂ − xδα‖ ≤ c0

√
ψ−1(δ2/ρ2),

where c0 :=max{2, η(1+ c2)} and ψ(λ) := λϕ−1(λ) for λ ∈ [0, a].

PROOF. By the definition of xδα and by the fact that y = F (̂x), we have

δ2
+ α‖xδα − x‖2 ≤ c1δ

2
+ α‖xδα − x‖2

≤ ‖F(xδα)− yδ‖2 + α‖xδα − x‖2

≤ ‖F (̂x)− yδ‖2 + α‖x̂ − x‖2

≤ δ2
+ α‖x̂ − x‖2.
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Hence, ‖xδα − x‖2 ≤ ‖x̂ − x‖2. Thus, by Assumption 2.1(d),

‖xδα − x̂‖2 ≤ ‖x̂ − x‖2 + ‖xδα − x̂‖2 − ‖xδα − x‖2

= 2〈xδα − x̂, x̂ − x〉

= 2〈xδα − x̂,
√
ϕ(A∗A) v〉

= 2〈
√
ϕ(A∗A)(xδα − x̂), v〉

≤ 2ρ‖
√
ϕ(A∗A) (xδα − x̂)‖

≤ c0ρ‖
√
ϕ(A∗A) (xδα − x̂)‖.

Therefore,
‖xδα − x̂‖2

c2
0ρ

2
≤
‖
√
ϕ(A∗A)(xδα − x̂)‖2

‖xδα − x̂‖2
.

Using the spectral representation of the self-adjoint operator A∗A (see [9]),

‖
√
ϕ(A∗A)x‖2

‖x‖2
=

∫ a
0 ϕ(λ) d〈Eλx, x〉∫ a

0 d〈Eλx, x〉

and hence, by Jensens’s inequality (see [16]),

ϕ−1
(
‖
√
ϕ(A∗A)x‖2

‖x‖2

)
≤

∫ a
0 λ d〈Eλx, x〉∫ a

0 d〈Eλx, x〉
=
‖Ax‖2

‖x‖2
.

Thus,

ϕ−1
(
‖xδα − x̂‖2

c2
0ρ

2

)
≤ ϕ−1

(
‖
√
ϕ(A∗A)(xδα − x̂)‖2

‖xδα − x̂‖2

)
≤
‖A(xδα − x̂)‖2

‖xδα − x̂‖2
.

By (a) and (b) in Assumption 2.1,

‖A(xδα − x̂)‖ ≤ η‖y − F(xδα)‖ ≤ η(‖y − yδ‖ + ‖yδ − F(xδα)‖)= η(δ + c2δ)= c0δ.

Thus,

ϕ−1
(
‖xδα − x̂‖2

c2
0ρ

2

)
≤
‖A(xδα − x̂)‖2

‖xδα − x̂‖2
≤

c2
0δ

2

‖xδα − x̂‖2

so that

ψ

(
‖xδα − x̂‖2

c2
0ρ

2

)
≤
δ2

ρ2 .

Equivalently, ‖xδα − x̂‖2 ≤ c0ρ
√
ψ−1(δ2/ρ2). This completes the proof. 2
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REMARK 2.3.

(i) Well-known special cases for ϕ in Assumption 2.1(d) are ϕ(λ) := λν for 0<
ν ≤ 1 and ϕ(λ) := [ln(1/λ)]−p for p > 0; the first case corresponds to the
so-called mildly ill-posed problems, and second to the exponentially ill-posed
problems (see, for example [5, 6]).

(ii) It is known that many of the ill-posed problems that occur in applications satisfy
a condition of the form

‖F(x)− F (̂x)− F ′(̂x)(̂x − x)‖ ≤ η0‖F (̂x)− F(x)‖

for all x ∈ Br (̂x) for some η0 > 0. This is known in the literature as the
η-condition ([2]). Clearly, condition (b) in Assumption 2.1 is equivalent to the
above η-condition.

(iii) Ramlau [15] has given sufficient conditions under which the regularization
parameter α satisfying

c1δ ≤ ‖F(x
δ
α)− yδ‖ ≤ c2δ

as in Assumption 2.1(d) exists.

3. Conclusion

We have applied a Morozov-type discrepancy principle for choosing the
regularization parameter in Tikhonov regularization of a nonlinear ill-posed equation.
Under suitable assumptions on the nonlinear operator, it is shown that the procedure
yields order optimal error estimates under a general source condition.
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