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Abstract
One of the basic parameters of a charge coupled device (CCD) camera is its gain, that is, the number of detected electrons per output
Analogue to Digital Unit (ADU). This is normally determined by finding the statistical variances from a series of flat-field exposures with
nearly constant levels over substantial areas, andmaking use of the fact that photon (Poisson) noise has variance equal to themean. However,
when a CCDhas been installed in a spectroscopic instrument fed by numerous optical fibres, or with an echelle format, it is no longer possible
to obtain illumination that is constant over large areas. Instead of making do with selected small areas, it is shown here that the wide variation
of signal level in a spectroscopic ‘flat-field’ can be used to obtain accurate values of the CCD gain, needing only a matched pair of exposures
(that differ in their realisation of the noise). Once the gain is known, the CCD readout noise (in electrons) is easily found from a pair of bias
frames. Spatial stability of the image in the two flat-fields is important, although correction of minor shifts is shown to be possible, at the
expense of further analysis.
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1. Introduction

The gain of an installed charge coupled device (CCD) represents
the number of electrons (detected photons) per analogue to digital
unit (ADU) as produced by the system’s signal chain and analogue
to digital converter. The gain must be known in order to compare
the detected photon rate to the incident flux of a standard star and
hence find the throughput and sensitivity. It is also needed in order
to measure the system’s readout noise in electrons (and then to
show that the readout noise has been adequately sampled by the
digitisation). Further, ongoing monitoring of an installed system’s
gain serves to check for any drifts in the data-handling electronics.
This is particularly important where high-precision spectroscopy
or spectrophotometry is to be performed.

The well-known method of finding the gain is to use the fact
that photon noise obeys Poisson statistics, with variance equal to
the mean. An exposure having uniform illumination over a sub-
stantial area of the detector can be used to assess the pixel-to-pixel
sample variance s2 in ADU2; similar exposures at other illumina-
tion levels can then be used to plot s2 versus the sample mean
x̄. (The bias level must be subtracted from the mean, so that x̄
is proportional to the number of detected photons.) The result
is a straight line plot whose slope gives the reciprocal gain, and
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intercept gives the readout noise (e.g., Janesick, Klaasen, & Elliott
(1987) and Janesick (2007)):

s2 = x̄
g

+ σ 2
ro
g2

(1)

where g is the gain in e−/ADU and σro is the rms readout noise in
electrons.a

The above procedure can be readily applied in laboratory tests
or for imaging instruments with a suitable flat-field illumination.
But it is difficult to apply this procedure for a CCDwhich has been
installed in a fibre-fed spectroscopic instrument, or one with an
echelle format. In this case, ‘flat-field’ illumination refers to the
use of a continuum lamp which outlines the spectrum from each
fibre (or echelle order) on the detector, but with large intensity
variations across the fibres and to a lesser extent along them (e.g.,
Figure 1). Procedures have been devised to use a number of small
areas of nearly constant illumination (e.g., Wilson et al. (2019)),
but the far smaller number of pixels and variation of intensity even
across small areas limit the precision of that technique.

This work takes a different approach, which enables spectro-
scopic flat-fields to be used in their entirety, resulting in accurate
values of the detector gain.

aIn practice, it is necessary to alleviate the effects of small illumination gradients by
taking the difference of two exposures at the same level and then allowing for the doubling
of variance and also to clip off discrepant values due to cosmic rays or defective pixels.

c© The Author(s), 2021. Published by Cambridge University Press on behalf of the Astronomical Society of Australia.
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Figure 1. Example of a 500× 500 pixel subsection from a spectroscopic flat-field of a
fibre-fed instrument. (This is part of one of the flat-fields used in Section 5.2)

2. Procedure

2.1. Theoretical basis

The variance of pixel values is calculated using the standard
formula:

s2 = 1
N − 1

∑
(xk − x̄)2, (2)

where N is the number of data points being summed over. In
the standard method as described above, N will be large, say
103 − 106. The procedure introduced here uses the absolute mini-
mum number of points,N = 2. The xk in this case are the values of
a given pixel in two successive flat-fields. The precision of such a
variance determination is low, but there are millions of pixels each
providing a value of s2 at their particular x̄ (which is the mean of
the values of that pixel in the two flat-field frames). The key to the
success of the method is that although the mean x̄ of two expo-
sures for a certain pixel does not in general represent its true mean
μ, it is nevertheless true that for the Poisson noise component the
expectation value of the associated sample variance (s2g2 photon2)
is equal to the samplemean x̄g, not the true mean μg. This means
that the (x̄, s2) pair provides an unbiased point on the plot such as
Figure 2a.b Due to the large scatter of the individual variance val-
ues, they are grouped into bins along the x̄ axis for plotting and
parameter fitting.

In order for this procedure to give accurate results, it is impor-
tant that there is no contribution to variance other than Poisson
(photon) noise and readout noise. In other words, the two flat-field
frames used must be a matched pair. This places quite stringent
limits on the stability of the spectral image between the two frames
used for the test, as described in Section 5. On the other hand, this

bFor example, consider a large ensemble of pairs which have true mean= 100 photons.
Taking the subset which, due to Poisson scatter, have sample mean= 95, it can be shown
that the expectation value of the sample variance of this subset is 95, not 100.

method is not affected by fixed-pattern noise (pixel-to-pixel gain
variations), provided that each pixel’s gain is the same in the two
exposures of the pair. The method is also not troubled by scattered
light between the spectral traces, as long as it remains constant—
in fact, it may provide useful data at the low-illumination end of
the relationship. It is likely that there may be a small change in the
intensity of the illumination lamp between the two exposures of
the pair. This is easily overcome by finding the average intensity
ratio and scaling to equality before finding the variance.

2.2. Analysis steps

The steps used in the analysis here were

1. Bias subtraction
2. Find the average ratio of the two data frames (data1/data2)

and scale the input data appropriately. It is assumed that the
scaling factor is close to unity (since the frames are a matched
pair); hence, the Poisson statistics will not be significantly
disturbed.

3. Set the bin edges in x̄, for the range over which data will be
plotted.

4. For each x̄ bin, calculate for every pixel i in the bin:

x̄i = (x1 + x2)/2, (3)

and specialising equation (2) to the case of N = 2,

s2i = 1
2
(x1 − x2)2. (4)

5. Reject points (pixel pairs) with excessive variance due to bad
pixels, cosmic rays, etc. A simple rejection criterion is to cut
off variances greater than say (5s)2 where s2 is the variance
estimated using equation 1, with preliminary (or iterated)
estimates for the gain and readout noise. Amore sophisticated
criterion is given in Section 4.

6. Find the averages of x̄ and s2 over all the points in the
particular bin j:

x̄j = 1
Nj

∑
x̄i, (5)

and

s2j = 1
Nj

∑
s2i . (6)

where Nj is the number of pixels in bin j after rejection of any
outliers.

7. Find the estimated uncertainty of each binned variance (e.g.,
Barlow (1989)):

σs2j = s2j

√
2
Nj

. (7)

This is important because the number of pixels contributing
to the bins (i.e., Nj) can vary widely.

8. Plot the binned variance versus mean.
9. Fit a straight line to the x̄j, s2j binned data over the selected

suitable range. It is usually necessary to omit from the fit the
values of x̄ close to zero, due to the large fractional change in
x̄ across a bin, and the effect of any small error in subtraction
of the bias. The fit should allow for the differing uncertainties
of the data points and should provide the intercept and slope
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Figure 2. Results of analysis of the example matched pair of flat-fields, from the blue CCD of the GHOST spectrograph. The four panels show: (a) plotted points are the binned
average x̄, s2 values; the green line is the least squares fit to the points; the red segment is an extrapolation of the line beyond the points used for fitting. The inset shows the region
of low sample means, with finer binning. (b) The residuals of the variance values relative to the fitted line, with 1σ error bars. The inset again shows the region of low x̄. (c) Points
show the number of pixels rejected in each bin (left-hand scale); the red line shows the variance cut-off from the simple 5σ rejection criterion (right-hand scale), while the blue line
shows the probability-based criterion as used in this analysis. (d) The number of pixels contributing to each bin (note the×105 scale multiplier). The number varies substantially
with mean signal level due to the nature of the illumination and the format of the spectral image.

with uncertainties, and the reduced χ 2 (i.e., χ 2
ν ) of the fit (e.g.,

Press et al. (1992)).
10. In order to see departures of the data from the straight

line, plot the residuals of the data relative to the fit. This is
necessary because departures may be fractionally small but
statistically significant (because large Nj produces small σs2j ).

11. Other plots that may be useful include the variation ofNj with
x̄j, as well as the number of rejected points, and the cut-off
variance beyond which pixels are ignored.

12. In practice, there may be some additional errors in the vari-
ances, which while fractionally small can result in a value of
χ 2

ν significantly greater than its expected value of 1, despite
the line being able to give a moderately accurate value of
the slope (hence, the gain). In this case, the uncertainty
values of the slope and intercept as reported by the line fit-
ting routine should be scaled by

√
χ 2

ν (Press et al. 1992). If
the errors lead to any form of systematic behaviour of the
residuals, this scaling will still underestimate the parameter
errors.

13. From the fitted intercept and slope, find the gain and read-
out noise from equation (1), with uncertainties from standard
formulas (e.g., Bevington & Robinson (1992)).

A Bayesian approach has not been used in this analysis for sev-
eral reasons: (a) there is a great deal of data contributing to the
posterior, but little useful prior information; (b) there is no ben-
efit in obtaining the joint probability distribution showing the
correlation of the gain and readout noise estimates because the

readout noise will in any case be derived separately, as described
in Section 3.1; (c) with numerous bins on the x̄ axis, any improve-
ment in precision due to an unbinned treatment would be negligi-
ble; and (d) it is desirable to keep the analysis as simple as possible
so it can be readily applied in practice.

3. Application

3.1. Example

Figure 2 shows an example from testing of one quadrant of the
blue CCD of the Gemini High-resolution Optical SpecTrograph
(GHOST), an echelle spectrograph under construction for Gemini
South (Sheinis et al. (2017)). The data are binned between 0 and
1000 ADU, and the variance versus mean line in panel (a) fit-
ted between 40 and 1000 ADU. This shows the straight line due
to increasing Poisson noise, and intercept due to readout noise.
The intercept is close to zero due to the very low readout noise of
modern CCDs.

The residuals show no significant systematic errors, and
the fit has χ 2

ν = 1.27. The fitted line gives gain= 0.5835±
0.0012 e−/ADU (i.e., 0.2% precision) and readout noise= 2.93±
0.03 e−. However, the readout noise should be obtained using
the above gain figure in conjunction with the standard deviation
computed from two bias frames:

σro = g√
2

σx1−x2 , (8)
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Figure 3. Histogram of the pixel variance values from the GHOST example data, for
x̄ values between 800 and 850, illustrating the strongly skew nature of the sampling
distribution. The red curve shows the theoretical distribution as modelled by a scaled
χ 2 distribution with one degree of freedom; the blue curve shows the approximated
integral of this theoretical curve from each value of the abscissa to infinity (i.e., the
expected number of pixels above that value of the variance). Where the blue integrated
curve crosses the horizontal grey line at a count of unity is a suitable variance value for
the outlier cut-off.

where σx1−x2 is the standard deviation of the differences of pixels
in two bias (zero exposure dark) frames over a suitable large area
excluding any discrepant pixels, and the result σro is in e−. This
will give a more accurate value than the intercept of the fitted line.

3.2. Simulations

A number of simulations have been performed to check the valid-
ity of the above analysis method. One of the two flat-fields from
the above GHOST example data was used as a template for the
distribution of pixel intensities. For the purpose of the simulation,
these data can be regarded as giving the exact mean values μ, then
from this two frames of test data were calculated using the Poisson
and normal random number generators inMatlabc, for the photon
noise and readout noise, respectively. The values of gain and read-
out noise used for generating the data are thus known exactly. The
resulting two frames were analysed as before. The results showed
that gain and readout noise are recovered within 1− 2σ of the true
values, and χ 2

ν ∼ 1. This shows that the gain and readout noise
values are unbiased, and that the error estimates are realistic.

4. Variance distribution and rejection criterion

While the expectation of the sample variance computed from
N = 2 realisations at each pixel gives an unbiased point on the
variance versus mean relation, it is nevertheless the case that the
distribution of the pixel variance values s2i (in any narrow range
of x̄ values) has a very skew form. Figure 3 shows a histogram of
the values of pixel variances for the example data from Section 3.1.
Low values are overwhelmingly more common, with the distribu-
tion dropping exponentially overmost of the range, and evenmore
rapidly at low variance. This is expected, because the variances
calculated from equation (4) have close to a χ 2 distribution with

cwww.mathworks.com.au

one degree of freedom. The theoretical form of the probability
distribution function in this case is

f (Z)= 1
2
√

π

(
Z
2

)− 1
2

exp
(

−Z
2

)
, (9)

(e.g., Eadie et al. (1971); Stuart & Ord (1987)). The observed dis-
tribution of variance values will follow this form to the extent that
(x1 − x2) has a normal distribution. At large x̄ values, this will be
a good approximation, but deviations can be expected for lower x̄.
The exact form is not important here, since the distribution is to
be used only to set a rejection criterion for outlier variances.

In order to relate this theoretical probability distribution to the
data as plotted, it is necessary to scale the independent variable,
such that

Z = gV/x̄, (10)
where V is the variance value for the computation, and to nor-
malise by multiplying the function given in equation (9) by a
further factor gNjWV/x̄ where Nj is the total number of pixels
contributing to the histogram, and WV is the width of the bins
on the variance axis (assuming constant bin widths are used). A
preliminary (or iterated) value for the gain g is required.

The red line plotted on Figure 3 shows this theoretical distribu-
tion is a good fit to the observed histogram points.

A reasonable criterion for rejection of outlier variance values is
to find the variance limit beyond which say 1 pixel pair might be
expected on the basis of the theoretical model. It is immaterial to
reject one valid point out of some 104 − 105, and this criterion will
catch the large outliers. Implementation requires integration of the
above χ 2 distribution from each value of variance to infinity, then
location of the variance limit at which this number falls to unity.
As Figure 3 shows, the histogram values in the vicinity of the cut-
off point are falling close to exponentially, that is, the variation of
the (Z/2)−1/2 factor is no longer significant. For the present pur-
pose, it is therefore sufficient to treat that factor as constant (equal
to its value at the lower limit of the integral) and integrate only the
exponential factor. The result is

nc =Nj

√
2x̄

πgVlim
exp

(
− gVlim

2x̄

)
, (11)

where nc is the estimated total number of counts above the vari-
ance Vlim and is shown as the blue curve in Figure 3. The rejection
criterion is to omit all variances above the value Vlim which gives
nc = 1 (an approximate numerical solution of the equation is ade-
quate). This criterion has the advantage that it adapts to differing
total numbers of pixels included in the x̄ bin.

5. Image stability requirements

It is clear that the success of the method developed here depends
on the true mean illumination for each pixel being the same for
the two members of the matched pair of flat-fields, which should
differ only in their realisations of the photon and readout noises.
Since the illumination is very non-uniform across the CCD (being
dispersed images of individual fibres or echelle orders), even a
slight shift of the spectra between the two frames can give spurious
contributions to the variance. This section considers the result-
ing stability requirements and illustrates with an example showing
that small spatial shifts can bemitigated. Variations in the intensity
of the illumination lamp are not considered because they should
be removed as part of the routine analysis (Section 2.2).
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5.1. Effect of imagemotion

The precise effects of a given image shift between frames 1 and 2
of the pair will clearly depend on the detailed form of the spectral
images, especially the width of the spectra in the spatial direction.
Shifts in the spectral direction are likely to cause much lower levels
of anomalous variance than shifts in the spatial direction.

A simple model can be used to find indicative values of pixel
shifts that could cause problems. Errors due to spatial shifts
depend on the slope of the pixel intensities across the pixel of inter-
est. The model considers a fibre image in the spatial direction as
a peak with sides of constant slope, that is, a triangle. Let its full
width at half maximum (FWHM) be � pixels, and its peak height
P ADU. Consider a spatial shift of δ, measured as a fraction of a
pixel. The intensity error �i introduced as the shift slides the pixel
up or down the sloping profile is

�i= Pδ/�. (12)
When the pixel variance is calculated using equation (4) this will
cause an additional variance of

Vδ = 1
2
�i2 = 1

2

(
Pδ

�

)2

. (13)

When averaged over all pixels across the spatial profile of the fibre
track, the measured value x̄ will be about half the peak value, that
is, P ≈ 2x̄.

A reasonable criterion for the spatial shift δlim at which the
effects become serious is to set the additional variance due to the
spatial shift equal to the 1σ uncertainty of the Poisson variance
(equation (7)). This leads to

δlim = �(gx̄)−1/2 (
2Nj

)−1/4 . (14)
As expected, the limit on shifts δlim is tighter for narrower features
(smaller �) and for pixels recording higher intensities (x̄). There is
only a weak dependence on the number of pixels Nj contributing
to the particular x̄ bin. As an example, if the fibre tracks are 3 pixels
wide at FWHM, gain is 0.6 e−/ADU, Nj = 2× 105 and x̄= 300,
then δlim = 0.009, which is a quite stringent stability requirement.

This approximate indicative calculation shows the importance
of spatial stability, and that it is particularly important at higher
values of pixel mean x̄.

5.2. A second example

Figure 4 shows the result of analysis of two flat-field frames from
the AAOmega spectrograph at the Anglo-Australian Telescope
(Saunders et al. 2004). The fitted line (over the range 20− 300
ADU) gives gain= 1.77± 0.02 e−/ADU, readout noise 2.9±
0.5 e−, and χ 2

ν = 49.6. The high χ 2
ν shows that the fit is not

ideal. The calculated ∼ 1.3% precision of the gain (which includes
scaling by

√
χ 2

ν , Section 2.2) may underestimate the actual uncer-
tainty due to systematic errors. The larger uncertainty of the gain
leads to significant uncertainty in the intercept, and the readout
noise would be much better determined using the gain value in
conjunction with a pair of bias frames (equation (8)).

These two flat-field frames were not acquired with the specific
aim of gain and noise tests, and some spatial instability can be sus-
pected as a possible cause of the imperfect fit. (Unlike GHOST
which has a fixed format, AAOmega has adjustable grating tilt and
an articulated camera.) The rise of residual variance for higher val-
ues of the sample mean is consistent with additional variance from
a small spatial mismatch.

Sample mean
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Figure 4. Residual variance about the fitted line for the AAOmega flat-field pair. The s2
versus x̄ line has been fitted over the range 20–300 ADU.
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Figure 5. The Q statistic diagnoses the presence of a small spatial shift between the
two flat-fields of a pair. It has been averaged along the fibre spectra for 100 columns.
The characteristic+/− signature when crossing individual fibres is seen.

In order to diagnose the presence of spatial shifts between a pair
of flat-fields, a useful quantity to calculate (for every pixel) is

Qi = √g
(x1 − x2)√
x1 + x2

, (15)

The numerator is sensitive to shifts and will show a characteris-
tic +/− signature across a shifted fibre profile. The denominator
provides normalisation so that Poisson noise in high-signal areas
is not mistaken for a shift. For Poisson noise, Q is distributed with
a mean of zero and standard deviation of unity (except for values
of x̄ close to zero). Inspection of the Q image from this pair of flat-
fields did show distinct traces of the fibre spectra; Figure 5 shows
this quantity averaged over 100 columns. Poisson noise would
be expected to give an unstructured plot with standard deviation
∼ 0.1 after averaging, but the Figure shows clear indications of the
effect of some spatial shift.

5.3. Correction for spatial shift

The following procedure was found to be successful in charac-
terising and then largely removing the effect of the spatial shift,
that is, bringing the two flat-fields into alignment. Only the shift
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Figure 6. Results of analysis of the AAOmega flat-field pair, after correction of the second member of the pair to remove the relative shifts. The panels show the same quantities
as in Figure 2. The s2 versus x̄ line has been fitted over the entire plotted range of 30− 6250 ADU.

component perpendicular to the spectral traces was examined,
since shifts along the smooth flat-field spectra have little effect.

1. The flat-field frames were divided into 100× 100 pixel blocks.
2. In each block, the pixel intensities were averaged along the

spectral rows.
3. The Q parameter was calculated, giving a 1D scan similar to

Figure 5.
4. Using spline interpolation, the scan of pixel intensities from

the second flat-field was moved along the direction perpendic-
ular to the spectral traces in 11 steps over a range of ±0.03
pixels, and the standard deviation of the Q scan calculated for
each shift step. A fourth-degree polynomial was fitted to the
standard deviations and from it the pixel offset producing the
minimum standard deviation of Q was recorded for that posi-
tion on the CCD. (It is interesting to note that the optimum
offsets could not be found by cross-correlation, even with edge
tapers. This is due to the dominance of edge effects, which do
not affect the Q parameter because it makes full use of the fact
that the two scans are almost identical once correctly aligned.)

5. The array of shifts was examined and found to show a lin-
ear slope along both axes of the CCD, that is, the amplitudes
of the shifts lay on a tilted plane. This is consistent with the
shifts being due to a small rotation with a possible translation
component. The three-parameter fit to a tilted plane was found
using the Matlab function fit.

The shifts were small, ranging from −0.0017 pixel in one
corner to +0.0186 pixel in the opposite corner. For normal
astronomical observations, they would be negligible, but they
are large enough to affect the variance versus mean method.

6. Spline interpolation was used to move each spatial column in
each block of the second flat field by the amount indicated
by the value of the fitted tilted plane at that position. (Note

that linear interpolation cannot accurately shift a peak, since
it can never give a value higher than the two values being
interpolated.)

The shifts are too small for the interpolation to cause signifi-
cant noise correlations or data smoothing, so the interpretation
of variances remains valid.

Figure 6 shows the results of analysis after this alignment pro-
cedure. Comparison with Figure 4 shows that the residuals have
been greatly reduced, and the variance fit could now be used
up to much greater pixel mean values. This fit gives gain=
1.791± 0.002 e−/ADU (0.12% precision) and readout noise=
3.43± 0.07 e−, with χ 2

ν = 2.77. These results improve on the pre-
determined values given in the FITS header, viz gain = 1.99 and
readout noise = 4.25. (As noted in Section 3.1, further improve-
ment in the readout noise precision can be obtained using the
accurate value of gain in conjunction with the variance from two
bias frames.)

6. Conclusions

This work has shown that spectroscopic flat-fields can be used
to find accurate values of the CCD gain (e−/ADU), despite there
being no substantial areas of the CCD with uniform intensity. The
data required are a matched pair of flat-fields, that is, a pair taken
under identical conditions, hence differing only in the realisation
of the photon and readout noises. Once the gain value has been
found, the rms readout noise (in e−) can be readily found from a
pair of bias frames.

Although this procedure could in principle reveal any non-
linearity in the CCD response, departures from the straight line
variance versus mean relationship can be due to other causes, and
the number of pixels at high mean values may in any case be
inadequate for this purpose. Linearity is better checked using a
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stable lamp and finding the mean levels in exposures of various
durations.

The principal caveat to the method presented here is the need
for spatial stability, since small shifts can disturb the analysis. If
flat-fields are taken specifically for the purpose of gain and noise
tests, precautions should be taken to ensure temperature stability
and avoidance of mechanical motion for some time preceding the
tests. The two frames should be taken with minimal delay between
them. Nevertheless, even with some instability, a useful value of
gain can still be found, and with further analysis a small spatial
shift between the pair of flat-fields can be corrected.
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