T. Kato, K. Masai and K. Sato Institute of Plasma Physics Nagoya University, Nagoya 464, Japan

The level $2s 2p_4^2({}^4P)$ of OIV is a metastable state and the line intensity I, $(2p_1(S) - 2s 2p_1(P))$ is mainly generated by the excitation from the metastable state $2s 2p_1(P)$ to $2p_1(S)$. Then the line intensity ratio is I, to the resonance line intensity I $(2s 2p_1(D) - 2s_2p_1(P))$ has a dependence on electron density until the metastable level is saturated. The ratio I,/I, obtained from the measurements of JIPPT-IIU Tokamak plasmas has been analyzed. It is found that the recombination from a metastable state of OV $2s 2p_1(P)$ to the metastable state of OIV $2s 2p_1(P)$ is appreciable in high temperature plasmas where the abundance of OV is larger than that of OIV. The recombination rate coefficient between metastable states is determined from the line intensity ratios; $I(2p_1(P) - 2a 2p_1(P))/2$ $I(2s 2p_1(P) - 2s_1(S))$ of OV, $I_1(2s 2p_1(P) - 2s_1(S))/I_1(2s 2p_1(D) - 2s_2(D)) - 2s_2(D)$ and I_1/I_1 of OIV. This recombination process consists of dielectronic recombination and radiative recombination.