HOW INTRICATE ARE $(2 s+1)$-FACTORIZATIONS?

A. J. W. HILTON

> AbSTRACT. The intricacy of the problem of $(2 s+1)$-factorizating K_{n} is determined. Some generalizations are also given.

The subject of "The intricacy of combinatorial construction problems" was introduced by W. E. Opencomb in [6], where a formal definition was given, together with a wide variety of examples. Many problems have intricacy 1 ; for example, the problem of filling up a latin square row by row [an $r \times n(r<n)$ latin rectangle on n symbols can always be extended to an $(r+1) \times n$ latin rectangle]. When the intricacy of a problem is not 1 , then usually all that is known are bounds on the value of the intricacy. For example, the intricacy of the problem of completing partial latin squares (without the stipulation that the completion be done row-by-row) is between 2 and 4: what is meant by this is that the elements of any partial $n \times n$ latin square L on n symbols can be shared between $4 n \times n$ matrices of cells to form 4 partial $n \times n$ latin squares (the sharing being performed in such a way that if a cell (i, j) of L is occupied by a symbol σ, then in exactly one of $L_{1}, L_{2}, L_{3}, L_{4}$ is the cell (i, j) occupied by σ, and in the other partial latin squares, cell (i, j) is unfilled), and the sharing can be done so that each of L_{1}, L_{2}, L_{3} and L_{4} can be completed; thus the intricacy is at most 4. Furthermore, there are some partial latin squares which cannot be completed, so the intricacy is at least 2. It is usually thought that the intricacy of this problem and of a number of similar problems is 2 . But apart from the problem of filling an $n \times n$ chess board with dominos, and a problem involving Cayley tables, for no problem where the intricacy is not 1 is the exact value of the intricacy known. Here we introduce another problem for which the intricacy is not 1 but can be determined.

Let n be even, let $1 \leqq 2 s+1<n$ and let $n-1=q(2 s+1)+r$, where $0 \leqq r$ $<2 s+1$. Let $Q(2 s+1, n)$ be the problem of finding q edge-disjoint $(2 s+1)$-factors in K_{n} (leaving an r-factor). Suppose that a student, acting without foresight, attempted to find q edge-disjoint $(2 s+1)$-factors as follows. First he removed a $(2 s+1)$-factor F_{1}, then he removed a $(2 s+1)$-factor F_{2} from $K_{n} \backslash F_{1}$, then he removed a $(2 s+1)$-factor F_{3} from $K_{n} \backslash\left(F_{1} \cup F_{2}\right)$, and so on; but after a while he gets stuck: the graph remaining, say $K_{n} \backslash\left(F_{1} \cup \ldots \cup F_{t}\right)$, has no $(2 s+1)$-factor! We show that the student need not be unduly perturbed, for the $t(2 s+1)$-factors need not be wasted. The set $\left\{F_{1}, \ldots, F_{t}\right\}$

Received by the editors November 14, 1985, and, in revised form, July 8, 1986.
AMS Subject Classification (1980): 05C99
(C) Canadian Mathematical Society 1985.
can be partitioned into two, $\left\{F_{\sigma(1)}, \ldots, F_{\sigma(w)}\right\}$ and $\left\{F_{\sigma(w+1)}, \ldots, F_{\sigma(t)}\right\}$, for some permutation σ of $\{1, \ldots, t\}$, in such a way that the graphs $K_{n} \backslash\left(F_{\sigma(1)} \cup \ldots \cup F_{\sigma(w)}\right)$ and $K_{n} \backslash\left(F_{\sigma(w+1)} \cup \ldots \cup F_{\sigma(t)}\right)$ contain $q-w$ and $q-(t-w)$ edge-disjoint $(2 s+1)$ factors, respectively. In other words, $\kappa(Q(2 s+1, n))$, the intricacy of the problem $Q(2 s+1, n)$, is in this case given by $\kappa(Q(2 s+1, n))=2$.

More precisely we have the following theorem.
Theorem 1. Let n be even, let $3 \leqq 2 s+1<n$ and let $n-1=q(2 s+1)+r$, where $0 \leqq r<2 s+1$. Then

$$
\kappa(Q(2 s+1, n))=\left\{\begin{array}{lll}
2 & \text { if } & q \geqq 4, \\
1 & \text { if } & q \leqq 3 .
\end{array}\right.
$$

It is shown by Chetwynd and Hilton in [1] that $\kappa(Q(1, n)) \leqq 7$, and it would follow from a conjecture in [1] that $\kappa(Q(1, n))=2$; this would be a deep result of considerable interest, so it is a little surprising that Theorem 1 is provable without a great deal of difficulty.

We shall need the following lemmas. The first is due to the author [4].
Lemma 1. Let $s \geqq 1$, let n be even, let $d=x(2 s+1)+y$, where $0 \leqq y<2 s$ +1 , and let $n / 2 \leqq d \leqq n-1$. A regular simple graph of degree d and order n can be expressed as the union of $x(2 s+1)$-factors and a y-factor.

The next is an old and very well known result of Petersen [7].
Lemma 2. A regular graph of even degree is the union of edge-disjoint 2-factors.
The next is a nice result of Bill Jackson [5]; it, and Petersen's theorem, are the tools by which Lemma 1 was proved.

Lemma 3. Let G be a regular 2-connected graph of order $n \geqq 9$ and degree $d(G)$. Then G contains a set of

$$
\left[\frac{1}{6}(3 d(G)-n+4)\right]
$$

edge-disjoint Hamiltonian circuits.
We also need the following result of Chvatal [2].
Lemma 4. Let G be a simple graph of order n with degrees $d_{1} \leqq d_{2} \leqq \ldots \leqq d_{n}$. If, for every k with $0<k<n / 2$, the following condition holds:

$$
d_{k} \leqq k \Rightarrow d_{n-k} \geqq n-k,
$$

then G contains a Hamiltonian circuit.
Finally we shall use the following special case, due to Dirac [3], of Lemma 4.
Lemma 5. Let G be a simple graph of order $n \geqq 3$ and minimum degree $\delta(G)$. If $\delta(G) \geqq n / 2$ then G contains a Hamiltonian circuit.

Proof of Theorem 1. The conditions imply that $q \geqq 1$. Suppose $q=1$. By Lemma $1, K_{n}$ contains a $(2 s+1)$-factor. Therefore $\kappa(Q(2 s+1, n))=1$.

Now suppose $q=2$. By Lemma $1, K_{n}$ contains two edge-disjoint $(2 s+1)$ factors. Furthermore, suppose a $(2 s+1)$-factor F_{1} is given. If $r=0$ then $n-1-$ $(2 s+1)=2 s+1$, so $K_{n} \backslash F_{1}$, is another $(2 s+1)$-factor. If $r>0$ then the degree of $K_{n} \backslash F_{1}$ is $\geqq n / 2$, so, by Lemma $1, K_{n} \backslash F_{1}$ contains a $(2 s+1)$-factor. Thus $\kappa(Q(2 s+1, n))=1$.

Now suppose that $q=3$. Then, since n is even and $n-1=3(2 s+1)+r$, it follows that r is even. By Lemma $1, K_{n}$ contains 3 edge-disjoint $(2 s+1)$-factors. If one $(2 s+1)$-factor, say F_{1}, is given, then the degree of $K_{n} \backslash F_{1}$ is $\geqq n / 2$, so, by Lemma 1, $K_{n} \backslash F_{1}$ contains two edge-disjoint $(2 s+1)$-factors. Now suppose that two edge-disjoint $(2 s+1)$-factors, say F_{1} and F_{2}, are given. If $r=0$ then $K_{n} \backslash\left(F_{1} \cup F_{2}\right)$ is a $(2 s+1)$-factor. Therefore suppose that $r>0$. Then $K_{n} \backslash\left(F_{1} \cup F_{2}\right)$ is a regular graph of degree $(2 s+1)+r$ and order $n=3(2 s+1)+r+1$. We now proceed to show that $K_{n} \backslash\left(F_{1} \cup F_{2}\right)$ has a 1-factor. Since the degree of $K_{n} \backslash\left(F_{1} \cup F_{2}\right)$ is more than $(1 / 3) n$, $K_{n} \backslash\left(F_{1} \cup F_{2}\right)$ can have at most two components. A regular graph of odd degree must have even order, so if there are two components, say G_{1} and G_{2}, then they both have even order. Then $\min \left(\left|V\left(G_{1}\right)\right|,\left|V\left(G_{2}\right)\right|\right) \geqq(2 s+1)+r+1$, so $\max \left(\left|V\left(G_{1}\right)\right|,\left|V\left(G_{2}\right)\right|\right)$ $\leqq n-(2 s+1)-r-1=2(2 s+1)$. Therefore, by Lemma 5, both G_{1} and G_{2} have Hamiltonian circuits, and therefore both have 1-factors. Therefore $K_{n} \backslash\left(F_{1} \cup F_{2}\right)$ has a 1 -factor. Now suppose $K_{n} \backslash\left(F_{1} \cup F_{2}\right)$ has a cut vertex, w. Let $K_{n} \backslash\left(F_{1} \cup F_{2}\right)=$ $G_{1}^{*} \cup G_{2}^{*}$, where $V\left(G_{1}^{*}\right) \cap V\left(G_{2}^{*}\right)=\{w\}$ and $\min \left(\left|V\left(G_{1}^{*}\right)\right|,\left|V\left(G_{2}^{*}\right)\right|\right) \geqq(2 s+1)+$ $r+1$. Then one of G_{1}^{*} and G_{2}^{*} has even order, say G_{1}^{*}, and one, G_{2}^{*}, has odd order. Then $\max \left(\left|V\left(G_{1}^{*}\right)\right|,\left|V\left(G_{2}^{*}\right)\right|\right) \leqq 2(2 s+1)+1$. Then, by Lemma 5, both G_{1}^{*} and G_{2}^{*} have Hamiltonian circuits, and so G_{1}^{*} has a 1-factor, and G_{2}^{*} has a near 1-factor which excludes w. Therefore $K_{n} \backslash\left(F_{1} \cup F_{2}\right)$ has a 1-factor. Finally suppose that $K_{n} \backslash\left(F_{1} \cup F_{2}\right)$ is 2 -connected. By Lemma 3, $K_{n} \backslash\left(F_{1} \cup F_{2}\right)$ contains

$$
\begin{aligned}
& {\left[\frac{1}{6}\left(3 d\left(K_{n} \backslash\left(F_{1} \cup F_{2}\right)\right)-\mathrm{n}+4\right)\right] } \\
= & {\left[\frac{1}{6}(3(2 s+1)+3 r-3(2 s+1)-r-1+4)\right]=\left[\frac{1}{6}(2 r+3)\right] \geqq 1 }
\end{aligned}
$$

Hamiltonian circuits, since $n \geqq 9$. Therefore $K_{n} \backslash\left(F_{1} \cup F_{2}\right)$ contains a 1-factor in this final case also. Let F^{*} be a 1-factor of $K_{n} \backslash\left(F_{1} \cup F_{2}\right)$. Then $K_{n} \backslash\left(F_{1} \cup F_{2} \cup F^{*}\right)$ is a regular graph of even degree, and so, by Lemma 2, it is the union of edgedisjoint 2 -factors, and so, in particular, it contains a ($2 s$)-factor. But the union of this with F^{*} yields the $(2 s+1)$-factor we wished for. Therefore, in this case also, $\kappa(Q(2 s+1, n))=1$.

Now suppose that $q \geqq 4$. We first show that $\kappa(Q(2 s+1, n)) \leqq 2$. Let $\left\{F_{1}, \ldots, F_{t}\right\}$ be a set of t edge-disjoint $(2 s+1)$-factors of K_{n}. We may assume that $t \leqq q-1$, for if $t=q$ there is nothing to show. Then the graphs $K_{n} \backslash\left(F_{1} \cup \ldots \cup F_{1 / 21}\right)$ and $K_{n} \backslash\left(F_{\mid t / 2]+1} \cup \ldots \cup F_{t}\right)$ both have degree $\geqq n / 2$. Therefore, by Lemma 1, they contain $q-[t / 2]$ and $q-t+[t / 2]$ edge-disjoint $(2 s+1)$-factors respectively. Therefore the
set $\left\{F_{1}, \ldots, F_{[t / 2]}\right\}$ can be extended to a set of q edge-disjoint ($2 s+1$)-factors of K_{n}, and so can the set $\left\{F_{|t / 2|+1}, \ldots, F_{t}\right\}$. Therefore $\kappa(Q(2 s+1, n)) \leqq 2$ in this case.

Next we show that $\kappa(Q(2 s+1, n)) \geqq 2$. Suppose first that r is odd. Let H be a graph consisting of two components, one a $K_{2 s+2+r}$ and the other a graph formed by uniting $\frac{1}{2}(r+2 s+1)$ edge-disjoint Hamiltonian circuits from a $K_{n-(2 s+2+r)}$. Then H is a regular of order n and degree $2 s+1+r$, and, since both components are of odd order, it contains no $(2 s+1)$-factor. However \bar{H} (the complement of H) is a regular graph of order n and degree $n-(2 s+2)-r=(q-1)(2 s+1) \geqq \frac{1}{2}(q(2 s+1)+$ $r+1)=n / 2$, so, by Lemma 1 , it is the union of $(q-1)(2 s+1)$-factors, say F_{1}, \ldots, F_{q-1}. Thus the set $\left\{F_{1}, \ldots, F_{q-1}\right\}$ cannot be extended to a set of q edgedisjoint $(2 s+1)$-factors of K_{n}. Therefore, in this case, $\kappa(Q(2 s+1, n)) \geqq 2$.

Now suppose that r is even. By assumption, $q \geqq 4$. But since $n-1=q(2 s+1)$ $+r$ and n and r are even, q must be odd, so, in fact, $q \geqq 5$. In this case, instead of H, we construct a regular graph H^{*} of order n and degree $4 s+2$ which does not contain a $(2 s+1)$-factor. The argument is then more or less the same as in the case above, except that $\overline{H^{*}}$ is the union of $(q-2)(2 s+1)$-factors. Let H^{*} consist of two components, one a $K_{4 s+3}$ and the other the union of $(2 s+1)$ edge-disjoint Hamiltonian circuits from a Hamiltonian decomposition of $K_{n-(4 s+3)}$. Then H^{*} is regular of order n and degree $2(2 s+1)$, and contains no $(2 s+1)$-factor. It follows that, in this case also, $\kappa(Q(2 s+1, n)) \geqq 2$.

Thus, if $q \geqq 4$ then $\kappa(Q(2 s+1, n))=2$. This proves Theorem 1 .
Next we consider a slightly less tractable variation on the same theme. Again, let n be even and let $n-1=q(2 s+1)+r$, where $0 \leqq r<2 s+1$. Let R be a regular graph of order n and degree r. We are now concerned to determine the intricacy of the problem of finding a $(2 s+1)$-factorization of $K_{n} \backslash R$; we denote this problem by $P(R, 2 s+1, n)$. Thus, in the previous problem, we were left with some r-factor, and it did not matter which. In this problem, the r-factor is predetermined.

Theorem 2. Let n be even, let $3 \leqq 2 s+1<n$ and let $n-1=q(2 s+1)+r$, where $0 \leqq r<2 s+1$. Let R be an r-factor of K_{n}. Then

$$
\kappa(P(R, 2 s+1, n))=\left\{\begin{array}{lll}
1 & \text { if } & q \leqq 3, \\
2 & \text { if } & q \geqq 11,
\end{array}\right.
$$

and,

$$
1 \leqq \kappa(P(R, 2 n+1, n)) \leqq 2 \quad \text { if } \quad 4 \leqq q \leqq 11 .
$$

Proof. The conditions imply that $q \geqq 1$. If $q=1$ then $K_{n} \backslash R$ is a $(2 s+1)$-factor, so $\kappa(P(R, 2 s+1, n))=1$ in this case. Suppose that $q=2$. By Lemma $1, K_{n} \backslash R$ is the union of two edge-disjoint ($2 s+1$)-factors. If one $(2 s+1)$-factor F_{1} of $K_{n} \backslash R$ is given, then $K_{n} \backslash\left(F_{1} \cup R\right)$ is another $(2 s+1)$-factor. Therefore, $\kappa(P(R, 2 s+1, n))=1$ in this case also. Now suppose that $q=3$. By Lemma $1, K_{n} \backslash R$ can be $(2 s+1)$-factorized. If F_{1} is a given $(2 s+1)$-factor of $K_{n} \backslash R$, then $K_{n} \backslash\left(R \cup F_{1}\right)$ is a regular graph of degree $(n-1)-(2 s+1)-r=2(2 s+1) \geqq n / 2$, so, by Lemma $1, K_{n} \backslash\left(R \cup F_{1}\right)$ is the
union of two edge-disjoint $(2 s+1)$-factors. Finally, if F_{1} and F_{2} are two edge-disjoint ($2 s+1$)-factors of $K_{n} \backslash R$, then $K_{n} \backslash\left(R \cup F_{1} \cup F_{2}\right)$ is another $(2 s+1)$-factor. Therefore $\kappa(P(R, 2 s+1, n))=1$ in this case also.

From now suppose that $q \geqq 4$. We now show that $\kappa(P(R, 2 s+1, n)) \leqq 2$. Let $\left\{F_{1}, \ldots, F_{t}\right\}$ be a set of edge-disjoint $(2 s+1)$-factors of $K_{n} \backslash R$. If $t=q$ there is nothing to prove. If $t=q-1$, then $K_{n} \backslash\left(R \cup F_{1} \cup \ldots \cup F_{t}\right)$ is a $(2 s+1)$-factor of K_{n}. Therefore suppose that $t \leqq q-2$. Then $K_{n} \backslash\left(R \cup F_{1} \ldots \cup F_{|t / 2|}\right)$ is a regular graph of order n and degree at least

$$
\begin{aligned}
n-1-r-\left[\frac{t}{2}\right](2 s+1) & =\left(q-\left[\frac{t}{2}\right]\right)(2 s+1) \\
& \geqq\left(q-\left[\frac{q-2}{2}\right]\right)(2 s+1) \\
& \geqq\left(\frac{q}{2}+1\right)(2 s+1) \\
& \geqq \frac{n}{2},
\end{aligned}
$$

and $K_{n} \backslash\left(R \cup F_{|t / 2|+1} \cup \ldots \cup F_{t}\right)$ is a regular graph of order n and degree at least

$$
\begin{aligned}
n-1-r-\left(t-\left[\frac{t}{2}\right]\right)(2 s+1) & =\left(q-\left(t-\left[\frac{t}{2}\right]\right)\right)(2 s+1) \\
& \geqq\left(q-\left(q-2-\left[\frac{q-2}{2}\right]\right)\right)(2 s+1) \\
& \geqq\left(\frac{q+1}{2}\right)(2 s+1) \\
& \geqq \frac{n}{2} .
\end{aligned}
$$

Therefore, by Lemma 1, both these graphs are $(2 s+1)$-factorizable. This shows that $\kappa(P(R, 2 s+1, n)) \leqq 2$.

Finally, suppose that $q \geqq 11$. We show that $\kappa(P(R, 2 s+1, n)) \geqq 2$. Let H be a regular spanning subgraph of $K_{n} \backslash R$ of degree $2(2 s+1)$ consisting of two components. If $n \equiv 2(\bmod 4)$ let the two components be H_{1} and H_{2} and both have order $n / 2$. If $n \equiv 0(\bmod 4)$, let the two components be H_{3} and H_{4} and have orders $(n / 2)-1$ and $(n / 2)+1$ respectively. Then in both cases the orders are odd, so neither component is the union of two $(2 s+1)$-factors. If $n \equiv 2(\bmod 4)$, then H_{1} and H_{2} are constructed as follows. Let $\left\{v_{1}, \ldots, v_{n}\right\}$ be the vertex set of $K_{n} \backslash R$, and let G_{1} and G_{2} be the subgraphs induced by $\left\{v_{1}, \ldots, v_{n / 2}\right\}$ and $\left\{v_{(n / 2)+1}, \ldots, v_{n}\right\}$ respectively. Then the minimum degree $\delta\left(G_{1}\right)$ of G_{1} satisfies $\delta\left(G_{1}\right) \geqq(n / 2)-1-r$. We remove from G_{1} a set of $(2 s+1)$ edge-disjoint Hamiltonian circuits, one after the other. That this can be done may be seen as follows. Suppose that $1 \leqq i \leqq 2 s+1$ and that $i-1$ edge-disjoint Hamiltonian circuits have been removed. Then the minimum degree of the graph G^{*}
remaining satisfies

$$
\begin{aligned}
\delta\left(G^{*}\right) \geqq \frac{n}{2}-1-r-2(i-1) & \geqq \frac{n}{2}+1-r-2(2 s+1) \\
& =\frac{q}{2}(2 s+1)+\frac{r}{2}+\frac{3}{2}-r-2(2 s+1) \\
& =\frac{1}{2}\{(q-4)(2 s+1)-r+3\} \\
& \geqq \frac{1}{2}\{(q-5)(2 s+1)+4\} \\
& \geqq \frac{1}{2}\left\{\left(\frac{q+1}{2}\right)(2 s+1)+4\right\}, \text { since } q \geqq 11, \\
& >\frac{1}{2}\left\{\frac{q}{2}(2 s+1)+\frac{r+1}{2}\right\} \\
& =\frac{1}{2}\left|V\left(G^{*}\right)\right|,
\end{aligned}
$$

and so, by Lemma 5, G^{*} contains a Hamiltonian circuit. We let H_{1} be the union of $2 s+1$ edge-disjoint Hamiltonian circuits in G_{1}. A similar construction works for H_{2}, and, in the case when $n \equiv 0(\bmod 4)$, a similar construction works for H_{3} and H_{4}. The graph $G \backslash(R \cup H)$ is, by Lemma 1, $(2 s+1)$-factorizable; let F_{1}, \ldots, F_{q-2} be edgedisjoint $(2 s+1)$-factors of $K_{n} \backslash(R \cup H)$. Then $K_{n} \backslash\left(R \cup F_{1} \cup \ldots \cup F_{q-2}\right)=H$, so $\left\{F_{1}, \ldots, F_{q-2}\right\}$ cannot be extended to a set of q edge-disjoint $(2 s+1)$-factors of $K_{n} \backslash R$. Therefore $\kappa(P(R, 2 s+1, n)) \geqq 2$ in this case. This proves Theorem 2.

For some regular graphs R it is possible to be more precise about the value of $\kappa(P(R, 2 s+1, n))$. In particular we have the following result for the case when R is bipartite.

Theorem 3. Let $n \equiv 2(\bmod 4)$, let $3 \leqq 2 s+1<n$ and let $n-1=q(2 s+1)+$ r, where $0 \leqq r<2 s+1$. Let R be a bipartite r-factor of K_{n}. Then

$$
\kappa(P(R, 2 s+1, n))=\left\{\begin{array}{lll}
1 & \text { if } & q \leqq 3, \\
2 & \text { if } & q \geqq 4 .
\end{array}\right.
$$

Proof. In view of Theorem 2, it is only necessary to show that $\kappa(P(R, 2 s+1, n))$ $\geqq 2$ for $q \geqq 4$. Let the vertex set of R be $A \cup B$, where $|A|=|B|=n / 2$ and each edge of R joins a vertex of A to a vertex of B. Let H be a regular spanning subgraph of $K_{n} \backslash R$ of degree $2(2 s+1)$ which consists of two components, $H(A)$ on the vertex set A, and $H(B)$ on B. Since the orders of $H(A)$ and $H(B)$ are odd, H does not contain a $(2 s+1)$-factor. The subgraph of $K_{n} \backslash R$ induced by A is a $K_{n / 2}$, and $H(A)$ may be formed by taking $2 s+1$ edge-disjoint Hamiltonian circuits from a Hamiltonian decomposition of the $K_{n / 2} . H(B)$ may be formed similarly. By Lemma $1, K_{n} \backslash(R \cup H)$ has a $(2 s+1)$-factorization if $q \geqq 5$, say $\left\{F_{1}, \ldots, F_{q-2}\right\}$. If $q=4$ then $K_{n} \backslash(R \cup H)$ is a connected $2(2 s+1)$-factor of $K_{n} \backslash R$. It is Eulerian therefore, so colouring the edges
alternately red and blue yields two $(2 s+1)$-factors, say F_{1} and F_{2}, of $K_{n} \backslash(R \cup H)$. Thus, for $q \geqq 4$, the set $\left\{F_{1}, \ldots, F_{q-2}\right\}$ of edge-disjoint $(2 s+1)$-factors of $K_{n} \backslash R$ cannot be extended to a $(2 s+1)$-factorization of $K_{n} \backslash R$. Therefore $\kappa(P(R, 2 s+1, n))$ $\geqq 2$, as required. This proves Theorem 3 .

It is not clear whether the precise value of $\kappa(P(R, 2 s+1, n))$ given in Theorem 3 holds for all R, whether bipartite or not. In fact when $q=4$ then $\kappa(P(R, 2 s+1, n))$ $=2$ if and only if $K_{n} \backslash R$ can be split into two $2(2 s+1)$-factors, one of which consists of two components, each of odd order. It seems unlikely that this can always be done; it seems probable that the number 11 occurring in Theorem 2 should be replaced by 5 .

References

1. A. G. Chetwynd and A. J. W. Hilton, Regular graphs of high degree are I-factorizable, Proc. London Math. Soc., 50 (1985), pp. 193-206.
2. V. Chvatal, On Hamilton's ideals, J. Comb. Theory (B), 12 (1972), pp. 163-168.
3. G. A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. (3), 2 (1952), pp. 69-81.
4. A. J. W. Hilton, Factorizations of regular graphs of high degree, J. Graph Theory, 9 (1985), 193-196.
5. Bill Jackson, Edge-disjoint Hamilton cycles in regular graphs of large degree, J. London Math. Soc. (2), 19 (1979), pp. 13-16.
6. W. E. Opencomb, On the intricacy of combinatorial construction problems, Discrete Math. 50 (1984), pp. 71-97.
7. J. Petersen, Die Theorie der regulären Graphen, Acta Math., 15 (1891), pp. 193-220.

Department of Mathematics
University of Reading
Whiteknights, Reading
U.K.

