ON THE EQUATION $f(g(x))=f(x) h^{m}(x)$ FOR COMPOSITE POLYNOMIALS

HIMADRI GANGULI and JONAS JANKAUSKAS ${ }^{\boxtimes}$

(Received 26 November 2010; accepted 1 February 2012)

Communicated by I. E. Shparlinski

Abstract

In this paper we solve the equation $f(g(x))=f(x) h^{m}(x)$ where $f(x), g(x)$ and $h(x)$ are unknown polynomials with coefficients in an arbitrary field $K, f(x)$ is nonconstant and separable, deg $g \geq 2$, the polynomial $g(x)$ has nonzero derivative $g^{\prime}(x) \neq 0$ in $K[x]$ and the integer $m \geq 2$ is not divisible by the characteristic of the field K. We prove that this equation has no solutions if $\operatorname{deg} f \geq 3$. If $\operatorname{deg} f=2$, we prove that $m=2$ and give all solutions explicitly in terms of Chebyshev polynomials. The Diophantine applications for such polynomials $f(x), g(x), h(x)$ with coefficients in \mathbb{Q} or \mathbb{Z} are considered in the context of the conjecture of Cassaigne et al. on the values of Liouville's λ function at points $f(r), r \in \mathbb{Q}$.

2010 Mathematics subject classification: primary 11B83; secondary 11C08, 11D57, 11N32, 11R09, 12D05, 12E10.

Keywords and phrases: Chebyshev polynomial, composite polynomials, Pell equation, multiplicative dependence.

1. Introduction

The problem investigated in the present paper is motivated by the following question.
Question 1. Do there exist integer polynomials $f(x), g(x)$ and $h(x)$ of degrees

$$
\operatorname{deg} f \geq 3, \quad \operatorname{deg} g \geq 2,
$$

$f(x)$ separable (and possibly irreducible in $\mathbb{Z}[x]$), such that

$$
f(g(x))=f(x) h^{2}(x) ?
$$

This question has been posed in connection with recent work by Borwein et al. [2] on the sign changes of Liouville's lambda function $\lambda(f(n))$ for the values of integer quadratic polynomials $f(x) \in \mathbb{Z}[x]$ at integer points $n \in \mathbb{Z}$. Recall that for $n \in \mathbb{Z}$, the lambda function $\lambda(n)$ is defined by $\lambda(n)=(-1)^{\Omega(n)}$, where $\Omega(n)$ is the total number of prime factors of n, counted with multiplicity. Alternatively, $\lambda(n)$ is the completely

[^0](C) 2012 Australian Mathematical Publishing Association Inc. 1446-7887/2012 \$16.00
multiplicative function defined by $\lambda(p)=-1$ for each prime p dividing n. Chowla [4] conjectured that
$$
\sum_{n \leq x} \lambda(f(n))=o(x)
$$
for any integer polynomial $f(x)$ which is not of the form $f(x)=b g(x)^{2}$, where $b \in \mathbb{Z}$ and $g(x) \in \mathbb{Z}[x]$. For $f(x)=x$, Chowla's conjecture is equivalent to the prime number theorem and has been proven for linear polynomials $f(x)$, but is open for polynomials of higher degree. The much weaker conjecture of Cassaigne et al. [3] is as follows.
Conjecture 2. If $f(x) \in \mathbb{Z}[x]$ and is not of the form of $b g^{2}(x)$ for some $g(x) \in \mathbb{Z}[x]$, then $\lambda(f(n))$ changes sign infinitely often.

Even this has not been proved unconditionally for polynomials of degree $\operatorname{deg} f \geq 2$.
In the paper [2], it has been proved that the sequence $\lambda(f(n))$ cannot be eventually constant for quadratic integer polynomials $f(x)=a x^{2}+b x+c$, provided that at least one sign change occurs for $n>(|b|+(|D|+1) / 2) / 2 a$, where D is the discriminant of $f(x)$. The proof is based on the solutions of Pell-type equations. In practice, using this conditional result, one can prove Cassaigne's conjecture for any particular integer quadratic $f(x)$, for instance, $f(x)=3 x^{2}+2 x+1$. In contrast, the only examples of degree $\operatorname{deg} f \geq 3$ for which the conjecture has been proven in [3] are $f(x)=$ $\prod_{j=1}^{k}\left(a x+b_{j}\right)$, where $a, b_{k} \in \mathbb{N}, b_{k}$ are all distinct, $b_{1} \equiv \cdots \equiv b_{k} \bmod a$. No similar examples of irreducible integer polynomials of degree $d \geq 3$ are known. The problem of finding an irreducible example of degree $d=3$ appears interesting and is probably difficult.

We now explain how the composition identity in Question 1 could be of use to prove that $\lambda(f(n))$ or $\lambda(f(-n))$ is not eventually constant for cubic polynomials $f(x)$. Assume that the leading coefficient of $g(x)$ is positive. Since $\operatorname{deg} g \geq 2$, there exists a positive integer n_{0} such that $g(n)>n$ for integers $n>n_{0}$. Suppose that there exist two integers $k_{0}, l_{0}>n_{0}$ such that $\lambda\left(f\left(k_{0}\right)\right)=-\lambda\left(f\left(l_{0}\right)\right)$. Then $\lambda\left(f\left(k_{j}\right)\right)$ and $\lambda\left(f\left(l_{j}\right)\right)$ also differ in sign for infinite sequences of integers k_{j} and l_{j}, defined by $k_{j+1}=g\left(k_{j}\right)$ and $l_{j+1}=g\left(l_{j}\right), j \geq 0$, since $\lambda(f(g(n)))=\lambda(f(n))$ follows by the composition identity.

Unfortunately, the answer to Question 1 is negative. In the next section we prove a general result which holds for polynomials with coefficients in an arbitrary field K. Our result shows that one cannot prove the conjecture for cubic polynomials $f(x)$ by using the composition identity in Question 1. We also refer to [6], where a certain composition identity was used to investigate multiplicative dependence of integer values of quadratic integer polynomials, and [5] for further results in this direction.

2. Main result

The main result of this paper is the following theorem.
Theorem 3. Let $m \geq 2$ be an integer not divisible by the characteristic of the field K. Suppose that $f(x) \in K[x]$ is nonconstant and separable, and the polynomial $g(x)$ has a
nonzero derivative and $\operatorname{deg} g \geq 2$. Then the equation

$$
f(g(x))=f(x) h^{m}(x)
$$

holds if and only if one of the following conditions holds:
(i) $f(x)=a x+b$ where $a, b \in K, a \neq 0$, and $g(x)=(x+b / a) h^{m}(x)-b / a$;
(ii) $f(x)=a x^{2}+b x+c$ where $a, b, c \in K, a \neq 0$, and $m=2$, and for some $n \geq 1$,

$$
g(x)=\frac{1}{2 a}\left(\pm T_{n}\left(\frac{2 a x+b}{\sqrt{D}}\right) \sqrt{D}-b\right), \quad h(x)= \pm U_{n-1}\left(\frac{2 a x+b}{\sqrt{D}}\right),
$$

$T_{n}(x)$ and $U_{n}(x)$ being Chebyshev polynomials of the first and second kind, and D being the discriminant $b^{2}-4 a c$ of $f(x)$.
We remark that the condition on the separability of $f(x)$ cannot be weakened in Theorem 3, as may be seen by taking $f(x)=g(x)=x(x-1)^{m}$ in $\mathbb{Q}[x]$. Further, the requirement that $g(x)$ has a nonzero derivative for fields K of nonzero characteristic cannot be weakened. Indeed, consider the simple example where $f(x)=x^{d}-1$ and $g(x)=x^{p^{p}}$ in $\mathbb{F}_{p}[x]$. Moreover, if the characteristic p divides the nonzero exponent m in the equation $f(g(x))=f(x) h^{m}(x)$, then one can write $h^{m}(x)=h_{1}^{m / p}\left(x^{p}\right)=h_{2}^{m / p}(x)$, where $h_{2}(x)$ is a polynomial with coefficients in K.

Recall that for a field K of characteristic other than 2, the Chebyshev polynomials $T_{n}(x) \in K[x]$ of the first kind are defined by the linear recurrence of order two,

$$
\begin{equation*}
T_{0}(x)=1, \quad T_{1}(x)=x \quad \text { and } \quad T_{n+2}(x)=2 x T_{n+1}(x)-T_{n}(x) \tag{1}
\end{equation*}
$$

Similarly, the Chebyshev polynomials of the second kind $U_{n}(x) \in K[x]$ are defined by the recurrence

$$
\begin{equation*}
U_{0}(x)=1, \quad U_{1}(x)=2 x \quad \text { and } \quad U_{n+2}(x)=2 x U_{n+1}(x)-U_{n}(x) . \tag{2}
\end{equation*}
$$

The polynomials $T_{n}(x)$ and $U_{n}(x)$ contain only even powers of x for even n and odd powers of x for odd n. Thus, the coefficients of $g(x)$ and $h(x)$ in Theorem 3(ii) lie in K if n is odd and in $K(\sqrt{D})$ if n is even. Chebyshev polynomials have many other remarkable properties; see, for instance, [12]. They play a key role in the theorems of Ritt on decompositions of polynomials [13]. In addition, Chebyshev polynomials are related to permutation polynomials over finite fields called Dickson polynomials [8]. In our proof, the following property of Chebyshev polynomials will be useful.

Proposition 4. Suppose that the characteristic of the field K is not equal to 2 . Then all the solutions of the Pell equation

$$
P^{2}(x)-\left(x^{2}-1\right) Q^{2}(x)=1
$$

in the ring $K[x]$ are given by

$$
P(x)= \pm T_{n}(x) \quad \text { and } \quad Q(x)= \pm U_{n-1}(x)
$$

where $T_{n}(x)$ and $U_{n}(x)$ are Chebyshev polynomials of the first and second kind, respectively.

The equation that appears in Proposition 4 is a special case of a general polynomial Pell equation, $P(x)^{2}-D(x) Q^{2}(x)=1$. Solutions to general Pell equations in polynomials over complex number field $K=\mathbb{C}$ were investigated by Pastor [11]. Dubickas and Steuding [7] gave an elementary algebraic proof for arbitrary field K. The proof of Proposition 4 can be found in [7]. Alternative proofs (in the case where $K=\mathbb{C}$) are given in $[1,11]$.

3. Proof of Theorem 3

In this section we prove Theorem 3.
Proof. Set $d=\operatorname{deg} f$. Let $a \in K$ and $b \in K$ be the leading coefficients of polynomials $f(x)$ and $g(x)$; then $a b \neq 0$. Suppose that L is the field extension of K generated by the roots of the three polynomials $f(x), x^{m}-1$ and $x^{m}-b$. Then

$$
\begin{equation*}
f(x)=a \prod_{\alpha \in V(f)}(x-\alpha) \tag{3}
\end{equation*}
$$

Here $V(f) \subset L$ denotes the set of the roots of the polynomial $f(x)$. The composition equation $f(g(x))=f(x) h^{m}(x)$ factors in $L[x]$ into

$$
\begin{equation*}
a \prod_{\alpha \in V(f)}(g(x)-\alpha)=a \prod_{\alpha \in V(f)}(x-\alpha) h^{m}(x), \tag{4}
\end{equation*}
$$

and one can cancel a on both sides. Observe that distinct factors $g(x)-\alpha$ on the left-hand side of (4) are relatively prime in $L[x]$ since their difference is a nonzero constant. We claim that at most one factor $g(x)-\alpha$ may be relatively prime to $f(x)$ if $m \geq 2$ and the characteristic of K does not divide m. Indeed, suppose that $g(x)-\beta$, where $\beta \in V(f)$ and $\beta \neq \alpha$, is another such factor. Then both $g(x)-\alpha$ and $g(x)-\beta$ divide $h^{m}(x)$, so $g(x)-\alpha$ and $g(x)-\beta$ must be the m th powers of polynomials $u(x)$ and $v(x)$ in $L[x]$ which divide $h(x)$, say, $g(x)-\alpha=u^{m}(x)$ and $g(x)-\beta=v(x)^{m}$ (note that $u(x)$ and $v(x)$ belong to $L[x]$ since the field L contains all roots of $f(x)$ and the m th roots of the leading coefficient b of the polynomial $g(x)$). Then $u(x)^{m}-v(x)^{m}=\beta-\alpha$ is a nonzero constant polynomial. On the other hand,

$$
u^{m}(x)-v^{m}(x)=\prod_{j=0}^{m-1}\left(u(x)-\zeta^{j} v(x)\right),
$$

where ζ is a primitive m th root of unity in L and at least one of the polynomials $u(x)-\zeta^{j} v(x)$ has degree greater than orequal to one, which is impossible.

Now, suppose that $V(f)=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d}\right\}$. Let V_{j} be the set containing all distinct common roots of the polynomial $g(x)-\alpha_{j}$ and the polynomial $f(x)$,

$$
V_{j}=V\left(g(x)-\alpha_{j}\right) \cap V(f)
$$

Then $g(x)-\alpha_{j}=f_{j}(x) u_{j}(x)$, where $u_{j}(x) \in L[x]$ and

$$
f_{j}(x)=\prod_{\alpha \in V_{j}}(x-\alpha)
$$

Note that $f_{j}(x)$ are all separable and coprime in $L[x]$. Since $f(x)$ is also separable, the equation (4) implies that

$$
\begin{equation*}
a \prod_{j=1}^{d} f_{j}(x)=f(x) \tag{5}
\end{equation*}
$$

and consequently

$$
\begin{equation*}
\prod_{j=1}^{d} u_{j}(x)=h^{m}(x) . \tag{6}
\end{equation*}
$$

The polynomials $u_{j}(x)$ are relatively prime, thus $u_{j}(x)=h_{j}^{m}(x), j=1, \ldots, d$, for some polynomials $h_{j}(x) \in L[x]$ whose product is equal to $h(x)$ in (6). Let $n_{j}=\operatorname{deg} f_{j}$, for $j=1, \ldots, d$. Without loss of generality, assume that $n_{1} \leq n_{2} \leq \cdots \leq n_{d}$. Then $n_{1} \geq 0$. Observe that $n_{2} \geq 1$ if $n_{1}=0$, since no two factors $g(x)-\alpha_{j}$ can be coprime with $f(x)$, as noted above. The identity (5) gives

$$
\begin{equation*}
n_{1}+n_{2}+\cdots+n_{d}=\operatorname{deg} f=d \tag{7}
\end{equation*}
$$

Since $g(x)=f_{j}(x) h_{j}(x)^{m}+\alpha_{j}$, one also has $\operatorname{deg} g \equiv n_{j} \bmod m$. We now consider two cases for $\operatorname{deg} g$ modulo m.

Case 1. Assume that $\operatorname{deg} g \equiv 0 \bmod m$. Then $n_{j} \geq m$ for $j \geq 2$, hence

$$
\begin{equation*}
d \geq m(d-1) \tag{8}
\end{equation*}
$$

by (7). Since $m \geq 2$, one has $d \geq 2 d-2$ which is only possible if $d=1$ or $d=2$. Suppose that $d=2$. Then $m \leq 2$ by (8).

Case 2. Assume that $\operatorname{deg} g \not \equiv 0 \bmod m$. Then $n_{1}=\cdots=n_{d}=1$ by (7). Suppose that $\operatorname{deg} g=s m+1$, where $s:=\operatorname{deg} h_{j} \geq 1$ for $1 \leq j \leq d$. Since $h_{j}^{m}(x) \mid g(x)-\alpha_{j}$, the polynomials $h_{j}^{m-1}(x)$ are (relatively prime) factors of the derivative $g^{\prime}(x)$. By the conditions of the theorem, $g^{\prime}(x)$ is a nonzero polynomial, hence

$$
m s \geq \operatorname{deg} g^{\prime} \geq \operatorname{deg} h_{1}^{m-1}+\cdots+\operatorname{deg} h_{d}^{m-1}=d(m-1) s
$$

and, consequently,

$$
\begin{equation*}
m \geq d(m-1) \tag{9}
\end{equation*}
$$

Then $d \leq m /(m-1) \leq 2$. Suppose that $d=2$. Then, in addition, (9) gives $m \leq 2$.
Thus it remains to consider the cases where $d=1$ and $d=2$. If $d=1$, then the polynomial $f(x)$ is linear, thus $f(x)=a x+b$ where $a, b \in K$ and $a \neq 0$. The equation $f(g(x))=f(x) h^{m}(x)$ is equivalent to

$$
a g(x)+b=(a x+b) h^{m}(x)
$$

so one simplification solves $g(x)$ and this completes the proof in this case.
Suppose that $d=2$. Then $f(x)=a x^{2}+b x+c$ where $a, b, c \in K$ and $a \neq 0$. Let $D=b^{2}-4 a c$; then $D \neq 0$ since $f(x)$ is separable. Further, $m=2$ by the conditions of Theorem 3 and the degree inequalities in the two cases above. Hence, it suffices

Table 1. Examples of polynomials $f(x), g(x), h(x) \in \mathbb{Z}[x]$ in Theorem 3.

$f(x)$	$g(x)$	$h(x)$
$x^{2}+1$	$4 x^{3}+3 x$	$4 x^{2}+1$
$x^{2}-1$	$4 x^{3}-3 x$	$4 x^{2}-1$
$x^{2}+2$	$2 x^{3}+3 x$	$2 x^{2}+1$
$x^{2}-2$	$2 x^{3}-3 x$	$2 x^{2}-1$
$x^{2}+4$	$x^{3}+3 x$	$x^{2}+1$
$x^{2}-4$	$x^{3}-3 x$	$x^{2}-1$

to find the polynomials $g(x)$ and $h(x)$ in the equation $f(g(x))=f(x) h^{2}(x)$. Since the characteristic of the field K is not equal to 2 by the conditions of Theorem 3, the linear change of variables $x \rightarrow x(t)$ defined by

$$
x=\frac{t \sqrt{D}-b}{2 a}
$$

transforms the polynomial $f(x)$ into

$$
f(x)=\frac{D}{4 a} F(t),
$$

where $F(t)=t^{2}-1$. Set

$$
G(t)=\frac{1}{\sqrt{D}}\left(2 a g\left(\frac{t \sqrt{D}-b}{2 a}\right)+b\right) \quad \text { and } \quad H(t)=h\left(\frac{t \sqrt{D}-b}{2 a}\right) .
$$

By straightforward substitution, one can easily check that the map $x \rightarrow x(t)$ transforms the composition equation $f(g(x))=f(x) h^{2}(x)$ into $(D / 4 a) F(G(t))=(D / 4 a) F(t) H^{2}(t)$. Cancelling the factor $D / 4 a$ on both sides, one obtains

$$
F(G(t))=F(t) H^{2}(t)
$$

or, equivalently,

$$
G^{2}(t)-\left(t^{2}-1\right) H^{2}(t)=1
$$

By Proposition 4, the solutions to this equation are all of the form $G(t)= \pm T_{n}(t)$, $H(t)= \pm U_{n-1}(t)$, where $T_{n}(t)$ and $U_{n}(t)$ are Chebyshev polynomials of the first and second kind. Application of the inverse map $t \rightarrow t(x)$ now yields the result.

4. Rational and integer examples

Let $f(x)=a x^{2}+b x+c$ be a quadratic polynomial with rational coefficients. For $n=3$ in Theorem 3, one has $T_{3}(x)=4 x^{3}-3 x$ and $U_{2}(x)=4 x^{2}-1$. By Theorem 3, $f(g(x))=f(x) h^{2}(x)$ holds for

$$
\begin{align*}
& g(x)=\left(16 a^{2} x^{3}+24 a b x^{2}+\left(9 b^{2}+12 a c\right) x+8 b c\right) / D \\
& h(x)=\left(16 a^{2} x^{2}+16 a b x+3 b^{2}+4 a c\right) / D \tag{10}
\end{align*}
$$

Extend the definition of the λ function to the whole set of rationals \mathbb{Q} by complete multiplicativity. Then, using the method outlined in Section 1, one can easily prove the following analogue of Theorem 2 in [2] for the sign changes of λ function at rational points: either $\lambda(f(r))$ is constant for all rational numbers r greater than the largest real root of $g(x)-x$ or it changes sign infinitely many often.

The question of finding all solutions of the composition equation in integer polynomials $f(x), g(x)$, and $h(x)$ is closely related to the solution of the polynomial Pell equations in $\mathbb{Z}[x]$; see $[9,10,14]$. This does not seem to be easy. Examples of such polynomials are $f(x)=x^{2} \pm 1, f(x)=x^{2} \pm 2, f(x)=x^{2} \pm 4$. The corresponding polynomials $g(x)$ and $h(x)$ with integer coefficients can be found using (10); see Table 1.

References

[1] E. J. Barbeau, Pell's Equation, Problem Books in Mathematics (Springer, New York, 2003).
[2] P. Borwein, S. Choi and H. Ganguli, 'Sign changes of the Liouville function on quadratics', Canad. Math. Bull., to appear.
[3] J. Cassaigne, S. Ferenczi, C. Mauduit, J. Rivat and A. Sárközy, 'On finite pseudorandom binary sequences, IV. The Liouville function. II', Acta Arith. 95(4) (2000), 343-359.
[4] S. Chowla, The Riemann Hypothesis and Hilbert's Tenth Problem, Mathematics and Its Applications, 4 (Gordon and Breach Science Publishers, New York, 1965).
[5] P. Drungilas and A. Dubickas, 'Multiplicative dependence of shifted algebraic numbers', Colloq. Math. 96(1) (2003), 75-81.
[6] A. Dubickas, 'Multiplicative dependence of quadratic polynomials', Liet. Mat. Rink. 38(3) (1998), 295-303.
[7] A. Dubickas and J. Steuding, 'The polynomial Pell equation', Elem. Math. 59(4) (2004), 133-143.
[8] R. Lidl and H. Niederreiter, Finite Fields, 2nd edn, Encyclopedia of Mathematics and its Applications, 20 (Cambridge University Press, Cambridge, 1997).
[9] J. McLaughlin, 'Polynomial solutions of Pell's equation and fundamental units in real quadratic fields', J. London Math. Soc. (2) 67(1) (2003), 16-28.
[10] M. B. Nathanson, 'Polynomial Pell's equations', Proc. Amer. Math. Soc. 56 (1976), 89-92.
[11] A. V. Pastor, 'Generalized Chebyshev polynomials and the Pell-Abel equation', Fundam. Prikl. Mat. 7(4) (2001), 1123-1145.
[12] T. J. Rivlin, Chebyshev Polynomials, 2nd edn, Pure and Applied Mathematics (New York) (Wiley, New York, 1990).
[13] A. Schinzel, Polynomials with Special Regard to Reducibility, Encyclopedia of Mathematics and its Applications, 77 (Cambridge University Press, Cambridge, 2000).
[14] W. A. Webb and H. Yokota, 'Polynomial Pell's equation', Proc. Amer. Math. Soc. 131(4) (2003), 993-1006 (electronic).

HIMADRI GANGULI, Department of Mathematics, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
e-mail: hganguli@sfu.ca
JONAS JANKAUSKAS, Department of Mathematics and Informatics, Vilnius University, Naugarduko 24, Vilnius LT-03225, Lithuania e-mail: jonas.jankauskas@gmail.com

[^0]: A visit of the second author to IRMACS Centre, Simon Fraser University was funded by the Lithuanian Research Council (Student research support project).

