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On Higher Moments of Fourier Coefficients
of Holomorphic Cusp Forms

Guangshi Lü

Abstract. Let Sk(Γ) be the space of holomorphic cusp forms of even integral weight k for the full

modular group. Let λ f (n) and λg (n) be the n-th normalized Fourier coefficients of two holomorphic

Hecke eigencuspforms f (z), g(z) ∈ Sk(Γ), respectively. In this paper we are able to show the following

results about higher moments of Fourier coefficients of holomorphic cusp forms.

(i) For any ε > 0, we have

X

n≤x

λ5
f (n) ≪ f ,ε x

15
16

+ε and
X

n≤x

λ7
f (n) ≪ f ,ε x

63
64

+ε.

(ii) If sym3 π f ≇ sym3 πg , then for any ε > 0, we have

X

n≤x

λ3
f (n)λ3

g (n) ≪ f ,ε x
31
32

+ε;

If sym2 π f ≇ sym2 πg , then for any ε > 0, we have

X

n≤x

λ4
f (n)λ2

g (n) = cx log x + c ′x + O f ,ε

`

x
31
32

+ε´

;

If sym2 π f ≇ sym2 πg and sym4 π f ≇ sym4 πg , then for any ε > 0, we have

X

n≤x

λ4
f (n)λ4

g (n) = xP(log x) + O f ,ε

`

x
127
128

+ε´

,

where P(x) is a polynomial of degree 3.

1 Introduction and Main Results

Let Sk(Γ) be the space of holomorphic cusp forms of even integral weight k for the

full modular group Γ = SL(2, Z). Suppose that f (z) and g(z) are two eigenfunctions

of all Hecke operators belonging to S2k(Γ). Then Hecke eigencuspforms f (z) and

g(z) have the following Fourier expansions at the cusp ∞ :

f (z) =

∞
∑

n=1

a(n)e2πinz, g(z) =

∞
∑

n=1

b(n)e2πinz,
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where we normalize f (z) and g(z) such that a(1) = b(1) = 1. Instead of a(n) and

b(n), one often considers the normalized Fourier coefficients

λ f (n) =
a(n)

n
k−1

2

, λg(n) =
b(n)

n
k−1

2

.

The Fourier coefficients of cusp forms are interesting objects (see [2,16]). In 1974,

P. Deligne [2] proved the Ramanujan–Petersson conjecture

(1.1) |λ f (n)| ≤ d(n),

where d(n) is the divisor function. As a corollary, he proved that for any ε > 0,

S(x) =

∑

n≤x

λ f (n) ≪ f ,ε x
1
3

+ε.

In 1989, Hafner and Ivic’ [6] were able to remove the factor xε in Deligne’s result, i.e.,

S(x) =

∑

n≤x

λ f (n) ≪ f x
1
3 .

In this direction, the best known result is due to Rankin [17]

S(x) =

∑

n≤x

λ f (n) ≪ f x
1
3 (log x)−δ,

where 0 < δ < 0.06.

Rankin [16] and Selberg [19] invented the powerful Rankin–Selberg method, and

then successfully showed that

∑

n≤x

λ2
f (n) = c0x + O f (x

3
5 ).

Later, based on the works about symmetric power L-functions, Moreno and Shahidi

[15] were able to prove

∑

n≤x

τ 4
0 (n) ∼ c1x log x, x → ∞,

where τ0(n) = τ (n)/n
11
2 is the normalized Ramanujan tau-function. Obviously

Moreno and Shahidi’s result also holds true if we replace τ0(n) by the normalized

Fourier coefficient λ f (n). In 2001, Fomenko [3] improved Moreno and Shahidi’s

result by showing that

∑

n≤x

λ4
f (n) = c2x log x + c3x + O f ,ε

(

x
9

10
+ε

)

.

Furthermore, he proved the following results:
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(i) For any ε > 0, we have

∑

n≤x

λ3
f (n) ≪ f ,ε x

5
6

+ε.

(ii) For any ε > 0, we have

∑

n≤x

λ2
f (n)λg(n) ≪ f ,g,ε x

5
6

+ε.

(iii) Let F1 be the Gelbart–Jacquet lift on GL(3) associated with f , and F2 be the

Gelbart-Jacquet lift on GL(3) associated with g. If F1 and F2 are distinct, then

for any ε > 0, we have

∑

n≤x

λ2
f (n)λ2

g(n) = c4x + O f ,g,ε(x
9

10
+ε).

Recently, inspired by the beautiful paper of Friedlander and Iwaniec [4], I im-

proved Fomenko’s results [13]:

(i) For any ε > 0, we have

∑

n≤x

λ4(n) = c2x log x + c3x + O f ,ε

(

x
7
8

+ε
)

.

(ii) For any ε > 0, we have

∑

n≤x

λ3
f (n) ≪ f ,ε x

3
4

+ε.

(iii) For any ε > 0, we have

∑

n≤x

λ2
f (n)λg(n) ≪ f ,g,ε x

3
4

+ε.

(iv) If f and g are distinct, then for any ε > 0, we have

∑

n≤x

λ2
f (n)λ2

g(n) = c4x + O f ,g,ε

(

x
7
8

+ε
)

.

More recently, in [14], I established the asymptotic formulae for the sixth and

eighth moments of Fourier coefficients of cusp forms, i.e.,

(i) For any ε > 0, we have

∑

n≤x

λ6(n) = xP1(log x) + O f ,ε

(

x
31
32

+ε
)

,

where P1(x) is a polynomial of degree 4.
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(ii) For any ε > 0, we have

∑

n≤x

λ8(n) = xP2(log x) + O f ,ε

(

x
127
128

+ε
)

,

where P2(x) is a polynomial of degree 13.

In this paper we will prove higher moments of Fourier coefficients of cusp forms

of the following types. To introduce our results, for j = 1, 2, 3, 4, let sym jπ f be the

automorphic cuspidal self-dual representation of GL j+1(AQ ) whose local L-factors

agree with the local L-factors of the jth symmetric power L-function associated with

f .

Theorem 1.1 For any ε > 0, we have

∑

n≤x

λ5
f (n) ≪ f ,ε x

15
16

+ε.

Theorem 1.2 For any ε > 0, we have

∑

n≤x

λ7
f (n) ≪ f ,ε x

63
64

+ε.

Theorem 1.3 If sym3π f ≇ sym3πg , then for any ε > 0, we have

∑

n≤x

λ3
f (n)λ3

g(n) ≪ f ,g,ε x
31
32

+ε.

Theorem 1.4 If sym2π f ≇ sym2πg , then for any ε > 0, we have

∑

n≤x

λ4
f (n)λ2

g(n) = cx log x + c ′x + O f ,g,ε

(

x
31
32

+ε
)

.

Theorem 1.5 If sym2π f ≇ sym2πg , and sym4π f ≇ sym4πg , then for any ε > 0, we

have
∑

n≤x

λ4
f (n)λ4

g(n) = xP(log x) + O f ,g,ε

(

x
127
128

+ε
)

,

where P(x) is a polynomial of degree 3.

Remark 1.6 By using the same arguments, our Theorems 1.1–1.5 also hold true for

the holomorphic cusp forms with respect to the congruence group of level N.

Remark 1.7 In his report, the referee introduced me to another article on the same

theme by J. Wu [25]. The main difference between our works is that I insert the

Rankin–Selberg L-function associated with the symmetric powers into the corre-

sponding generating L-functions in Lemmas 2.1–2.5, and hence the generating L-

functions are analytic in a much wider domain (Re s > 1/2). This enables me to

establish the asymptotic formulae with smaller error terms.
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2 Some Lemmas

Let f (z), g(z) ∈ Sk(Γ) be Hecke eigencuspforms of even integral weight k for the

full modular group, and λ f (n) and λg(n) denote their n-th normalized Fourier co-

efficients respectively. For j = 1, 2, 3, 4, let L(sym j f , s) and L(sym jg, s) be the j-th

symmetric power L-functions associated with f and g respectively, and L(symi f ×
sym jg, s) the Rankin–Selberg L-function associated with symi f and sym jg.

Then we have the following results.

Lemma 2.1 Define

L1(s) =

∞
∑

n=1

λ5
f (n)

ns
,

for Re s > 1. Then we have that for Re s > 1,

L1(s) = L4( f , s)L3(sym3 f , s)L(sym2 f × sym3 f , s)U1(s),

where U1(s) is a Dirichlet series, which converges uniformly and absolutely in the half

plane Re s ≥ 1/2 + ε for any ε > 0.

Proof According to Deligne [2], for any prime number p there are α f (p) and β f (p)

such that

(2.1) λ f (p) = α f (p) + β f (p), and |α f (p)| = α f (p)β f (p) = 1.

The L-function attached to f ∈ Sk(Γ) is defined by

(2.2) L( f , s) =

∞
∑

n=1

λ f (n)

ns
=

∏

p

(1 − α f (p)p−s)−1(1 − β f (p)p−s)−1

for Re s > 1. The j-th symmetric power L-function attached to f ∈ Sk(Γ) is defined

by

(2.3) L(sym j f , s) =
∏

p

j
∏

m=0

(1 − α f (p) j−mβ f (p)m p−s)−1 :=
∏

p

Lp(sym j f , s)

for Re s > 1. The product over primes gives a Dirichlet series representation for

L(sym j f , s): for Re s > 1,

L(sym j f , s) =

∞
∑

n=1

λsym j f (n)

ns
,

where λsym j f (n) is a multiplicative function. Then we have that for Re s > 1,

(2.4) L(sym j f , s) =
∏

p

(

1 +
λsym j f (p)

ps
+ · · · +

λsym j f (pk)

pks
+ · · ·

)

.
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From (2.3) and (2.4), we have

(2.5) λsym j f (p) =

j
∑

m=0

α f (p) j−mβ f (p)m.

From (2.1), we have

(2.6) |λsym j f (n)| ≤ d j+1(n),

where dk(n) is the n-th coefficient of the Dirichlet series ζk(s).

The Rankin–Selberg L-function associated with symi f and sym j f is defined by

(2.7) L(symi f × sym j f , s) :=

∏

p

i
∏

m=0

j
∏

u=0

(1 − α f (p)i−mβ f (p)mα f (p) j−uβ f (p)u p−s)−1

for Re s > 1. The product over primes also gives a Dirichlet series representation for

L(symi f × sym j f , s): for Re s > 1,

L(symi f × sym j f , s) =

∞
∑

n=1

λsymi f×sym j f (n)

ns
,

where λsymi f×sym j f (n) is a multiplicative function. Then we have that for Re s > 1,

(2.8) L(symi f × sym j f , s) =

∏

p

(

1 +
λsymi f×sym j f (p)

ps
+ · · · +

λsymi f×sym j f (pk)

pks
+ · · ·

)

.

From (2.7) and (2.8), we have

λsymi f×sym j f (p) =

i
∑

m=0

j
∑

u=0

α f (p)i−mβ f (p)mα f (p) j−uβ f (p)u

= λsymi f (p)λsym j f (p).

(2.9)

From (2.1), we have

(2.10) |λsymi f×sym j f (n)| ≤ d(i+1)( j+1)(n).

For Re s > 1, we can write L4( f , s)L3(sym3 f , s)L(sym2 f × sym3 f , s) as an Euler

product

(2.11) L4( f , s)L3(sym3 f , s)L(sym2 f × sym3 f , s) :=

∏

p

(

1 +
b(p)

ps
+ · · · +

b(pk)

pks
+ · · ·

)

.
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From (2.2), (2.4), and (2.8), we have

b(p) = 4λ f (p) + 3λsym3 f (p) + λsym2 f×sym3 f (p).

From (2.1), (2.5), and (2.9), it is easy to check that

b(p) = 4(α f (p) + β f (p)) + 3(α f (p)3 + α f (p) + β f (p) + β f (p)3)

+ (α f (p)2 + 1 + β f (p)2)(α f (p)3 + α f (p) + β f (p) + β f (p)3)

= (α f (p) + β f (p))5
= λ5(p).

(2.12)

On the other hand, from (1.1) we learn that

L1(s) =

∞
∑

n=1

λ5
f (n)

ns

is absolutely convergent in the half plane Re s > 1. On noting that λ5
f (n) is a multi-

plicative function, we have that for Re s > 1

(2.13) L1(s) =

∞
∑

n=1

λ5
f (n)

ns
=

∏

p

(

1 +
λ5

f (p)

ps
+

λ5
f (p2)

p2s
+ · · · +

λ5
f (pk)

pks
+ · · ·

)

.

Therefore from (2.11), (2.12), and (2.13), we have that for Re s > 1

L1(s) = L4( f , s)L3(sym3 f , s)L(sym2 f × sym3 f , s)

×
∏

p

(

1 +
λ5(p2) − b(p2)

p2s
+ · · ·

)

:= L4( f , s)L3(sym3 f , s)L(sym2 f × sym3 f , s)U1(s).

From (1.1), (2.6), and (2.10), it is obvious that U1(s) converges uniformly and ab-

solutely in the half plane Re s ≥ 1
2

+ ε for any ε > 0. This completes the proof of

Lemma 2.1.

The key point in the proof of Lemma 2.1 is the following. Let t f = α f (p) + β f (p).

The polynomials S j( f ) for the trace of j-th symmetric power associated with f are

defined by

S0( f ) = 1; S1( f ) = α f (p) + β f (p) = t f ;

S2( f ) = α f (p)2 + 1 + β f (p)2
= t2

f − 1;

S3( f ) = α f (p)3 + α f (p) + β f (p) + β f (p)3
= t3

f − 2t f ;

S4( f ) = α f (p)4 + α f (p)2 + 1 + β f (p)2 + β f (p)4
= t4

f − 3t2
f + 1;
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S5( f ) = α f (p)5 + α f (p)3 + α f (p) + 1 + β f (p) + β f (p)3 + β f (p)5
= t5

f − 4t3
f + 3t f ;

S6( f ) = α f (p)6 + α f (p)4 + α f (p)2 + 1 + β f (p)2 + β f (p)4 + β f (p)6

= t6
f − 5t4

f + 6t2
f − 1;

S7( f ) = α f (p)7 + α f (p)5 + α f (p)3 + α f (p) + 1

+ β f (p) + β f (p)3 + β f (p)5 + β f (p)7

= t7
f − 6t5

f + 10t3
f − 4t f .

Then t5
f = 5S1( f ) + 4S3( f ) + S5( f ). On the other hand, we have

(2.14) S2( f )S3( f ) = S1( f ) + S3( f ) + S5( f ).

Therefore, t5
f = 4S1( f ) + 3S3( f ) + S2( f )S3( f ). This identity determines Lemma 2.1.

In addition, we have t7
f = 14S1( f ) + 14S3( f ) + 6S5( f ) + S7( f ). On noting (2.14)

and S3( f )S4( f ) = S1( f ) + S3( f ) + S5( f ) + S7( f ), we have

(2.15) t7
f = 8S1( f ) + 8S3( f ) + 5S2( f )S3( f ) + S3( f )S4( f ).

If we use the similar notations tg = αg(p) + βg(p), S j(g) for g, then we can prove

the following identities:

t3
f t3

g = 4S1( f )S1(g) + 2S3( f )S1(g) + 2S1( f )S3(g) + S3( f )S3(g),(2.16)

t4
f t2

g = 2 + 3S2( f ) + 2S2(g) + S4( f ) + 3S2( f )S2(g) + S4( f )S2(g),(2.17)

and

t4
f t4

g = 4 + 6S2( f ) + 6S2(g) + 2S4( f ) + 2S4(g) + 9S2( f )S2(g)(2.18)

+ 3S2( f )S4(g) + 3S4( f )S2(g) + S4( f )S4(g).

These identities (2.15), (2.16), (2.17), and (2.18) determine Lemmas 2.2, 2.3, 2.4,

and 2.5 below respectively.

Lemma 2.2 Define

L2(s) =

∞
∑

n=1

λ7
f (n)

ns
,

for Re s > 1. Then we have that for Re s > 1,

L2(s) = L8( f , s)L8(sym3 f , s)L5(sym2 f × sym3 f , s)L(sym3 f × sym4 f , s)U2(s),

where U2(s) is a Dirichlet series, which converges uniformly and absolutely in the half

plane Re s ≥ 1/2 + ε for any ε > 0.
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Lemma 2.3 Define

L3(s) =

∞
∑

n=1

λ3
f (n)λ3

g(n)

ns
,

for Re s > 1. Then we have that for Re s > 1,

L3(s) = L4( f × g, s)L2(sym3 f × g, s)L2( f × sym3g, s)L(sym3 f × sym3g, s)U3(s)

where U3(s) is a Dirichlet series, which converges uniformly and absolutely in the half

plane Re s ≥ 1/2 + ε for any ε > 0.

Lemma 2.4 Define

L4(s) =

∞
∑

n=1

λ4
f (n)λ2

g(n)

ns
,

for Re s > 1. Then we have that for Re s > 1,

L4(s) = ζ2(s)L3(sym2 f , s)L2(sym2g, s)L(sym4 f , s)

× L3(sym2 f × sym2g, s)L(sym4 f × sym2g, s)U4(s),

where U4(s) is a Dirichlet series, which converges uniformly and absolutely in the half

plane Re s ≥ 1/2 + ε for any ε > 0.

Lemma 2.5 Define

L5(s) =

∞
∑

n=1

λ4
f (n)λ4

g(n)

ns
,

for Re s > 1. Then we have that for Re s > 1,

L5(s) = ζ4(s)L6(sym2 f , s)L6(sym2g, s)L2(sym4 f , s)L2(sym4g, s)

× L9(sym2 f × sym2g, s)L3(sym2 f × sym4g, s)L3(sym4 f × sym2g, s)

× L(sym4 f × sym4g, s)U5(s),

where U5(s) is a Dirichlet series, which converges uniformly and absolutely in the half

plane Re s ≥ 1/2 + ε for any ε > 0.

As a part of the far-reaching Langlands program, the analytic properties of sym-

metric power L-functions L(sym j f , s) are important topics in contemporary mathe-

matics and have a significant impact on modern number theory. The analytic con-

tinuation of the symmetric power L-functions L(sym j f , s) with j = 2, 3, 4 over the

whole complex plane and the predicted functional equations have been established

by Gelbart and Jacquet [5], Kim and Shahidi [11, 12], and Kim [10] respectively.
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Lemma 2.6 Let f (z) ∈ Sk(Γ) be a Hecke eigencuspform of even integral weight k.

The jth symmetric power L-function L(sym j f , s) is defined in (2.3).

For j = 1, 2, 3, 4, there exists an automorphic cuspidal self-dual representation, de-

noted by

sym jπ f =

′
⊗

sym jπ f ,v of GL j+1(AQ )

whose local L-factors L(sym jπ f ,p, s) agree with the local L-factors Lp(sym j f , s) in (2.3).

Therefore for j = 1, 2, 3, 4, L(sym j f , s) have analytic continuations to the whole com-

plex plane C, and satisfy certain functional equations.

More precisely, for j = 1, 2, 3, 4 the archimedean local factor of L(sym j f , s) is

L∞(sym j f , s) =

{

∏n
v=0 ΓC(s + (v + 1

2
)(k − 1)), if j = 2n + 1,

ΓR(s + δ2∤n)
∏n

v=1 ΓC(s + v(k − 1)), if j = 2n,

where ΓR = π−s/2
Γ(s/2), ΓC = 2(2π)−s

Γ(s), and

δ2∤n =

{

1, if 2 ∤ n,

0, otherwise.

For 1 ≤ j ≤ 4, it is known that the complete L-function

Λ(sym j f , s) = L∞(sym j f , s)L(sym j f , s)

is an entire function on the whole complex plane C, and satisfies the functional equation

Λ(sym j f , s) = ǫsym j f Λ(sym j f , 1 − s),

where ǫsym j f = ±1.

Proof This lemma follows from Gelbart and Jacquet [5] for k = 2 and from the

recent works of Kim and Shahidi [11, 12] and Kim [10] when k = 3, 4. The current

explicit version of this lemma can be found in [17].

From the famous works of Gelbart and Jacquet [5], Kim and Shahidi [11, 12],

and Kim [10], we learn that for 1 ≤ j ≤ 4 the j-th symmetric power L-function

L(sym j f , s) agrees with the L-function associated with an automorphic cuspidal self-

dual representation sym jπ f of GL j+1(AQ ). Then from the works of Jacquet and Sha-

lika [8, 9], Shahidi [20–24], and the reformulation of Rudnick and Sarnak [18], we

know the analytic properties for the Rankin–Selberg L-functions L(symi f ×sym jg, s)

with i, j = 1, 2, 3, 4. Therefore, corresponding to Lemmas 2.1–2.5, we have the fol-

lowing results.

Lemma 2.7 Let f ∈ Sk(Γ) be a Hecke eigencuspform of even integral weight k. Then

L1(s) =

∞
∑

n=1

λ5
f (n)

ns

can be extended to be an entire function in the half plane Re s > 1/2.
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Lemma 2.8 Let f ∈ Sk(Γ) be a Hecke eigencuspform of even integral weight k. Then

L2(s) =

∞
∑

n=1

λ7
f (n)

ns

can be extended to be an entire function in the half plane Re s > 1/2.

Lemma 2.9 Let f , g ∈ Sk(Γ) be Hecke eigencuspforms of even integral weight k such

that sym3π f ≇ sym3πg . Then

L3(s) =

∞
∑

n=1

λ3
f (n)λ3

g(n)

ns

can be extended to be an entire function in the half plane Re s > 1/2.

Lemma 2.10 Let f , g ∈ Sk(Γ) be Hecke eigencuspforms of even integral weight k such

that sym2π f ≇ sym2πg . Then

L4(s) =

∞
∑

n=1

λ4
f (n)λ2

g(n)

ns
,

can be extended to be a meromorphic function in the half plane Re s > 1/2 with only a

pole s = 1 of order 2.

Lemma 2.11 Let f , g ∈ Sk(Γ) be Hecke eigencuspforms of even integral weight k such

that sym2π f ≇ sym2πg and sym4π f ≇ sym4πg . Then

L5(s) =

∞
∑

n=1

λ4
f (n)λ4

g(n)

ns
,

can be extended to be a meromorphic function in the half plane Re s > 1/2 with only a

pole s = 1 of order 4.

To prove our results, we also need the following two folklore results about the

convexity bound and mean square value for nice L-functions.

Lemma 2.12 Let j = 1, 2, 3, 4. Then for any ε > 0 and 0 ≤ σ ≤ 1, we have

L(sym j f , σ + it) ≪ f ,ε (1 + |t|)
j+1
2

(1−σ)+ε,

and

L(symi f × sym jg, σ + it) ≪ f ,g,ε (1 + |t|)
(i+1)( j+1)

2
(1−σ)+ε.

Lemma 2.13 Let L( f , s) be a Dirichlet series with Euler product of degree m ≥ 2,

which means

L( f , s) =

∞
∑

n=1

λ f (n)n−s
=

∏

p<∞

m
∏

j=1

(

1 −
α f (p, j)

ps

)−1

,
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where α f (p, j), j = 1, . . . , m are the local parameters of L( f , s) at prime p and

λ f (n) ≪ nε. Assume that this series and its Euler product are absolutely convergent

for Re s > 1. Assume also that it is entire except possibly for simple poles at s = 0, 1 and

satisfies a functional equation of Riemann type. Then we have that for T ≥ 1

∫ 2T

T

|L( f , 1/2 + ε + it)|
2

dt ≪ T
m
2

+ε.

3 Proofs of Theorems

In this section we give the proof of Theorem 1.1. The proofs of Theorems 1.2–1.5 are

similar to that of Theorem 1.1. In order to avoid repetition, we omit the proofs of

Theorems 1.2–1.5.

Recall that we have defined

(3.1) L1(s) =

∞
∑

n=1

λ5
f (n)

ns

for Re s > 1. From Lemma 2.7, we learn that

L1(s) = L4( f , s)L3(sym3 f , s)L(sym2 f × sym3 f , s)U1(s)

can be analytically continued to be an entire function in the half plane Re s > 1/2.

By (3.1) and Perron’s formula (see [7, Proposition 5.54]), we have

∑

n≤x

λ5
f (n) =

1

2πi

∫ b+iT

b−iT

L1(s)
xs

s
ds + O

( x1+ε

T

)

,

where b = 1 + ε and 1 ≤ T ≤ x is a parameter to be chosen later. Here we have used

(1.1).

Then we move the integration to the parallel segment with Re s =
1
2

+ ε. By

Cauchy’s theorem, we have

∑

n≤x

λ5
f (n) =

1

2πi

{

∫ 1
2

+ε+iT

1
2

+ε−iT

+

∫ b+iT

1
2

+ε+iT

+

∫ 1
2

+ε−iT

b−iT

}

L1(s)
xs

s
ds

+ O

(

x1+ε

T

)

:= J1 + J2 + J3 + O

(

x1+ε

T

)

.

(3.2)

To go further, we recall that L4( f , s)L3(sym3 f , s)L(sym2 f × sym3 f , s) is a Rie-

mann-type nice L-function with Euler product of degree m = 32.

For J1, from Lemma 2.1 we have

J1 ≪ x
1
2

+ε

∫ T

1

|{L4( f , s)L3(sym3 f , s)L(sym2 f × sym3 f , s)}|s=1/2+ε+it |t
−1dt + x

1
2

+ε.
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Then by Cauchy’s inequality, we have

J1 ≪ x1/2+ε log T max
T1≤T







1

T1

(

∫ T1

T1/2

∣

∣

{

L4( f , s)L3(sym3 f , s)
}

|s=1/2+ε+it

∣

∣

2
dt

)
1
2

×

(

∫ T1

T1/2

∣

∣L(sym2 f × sym3 f , 1/2 + ε + it)
∣

∣

2
dt

)
1
2







+ x
1
2

+ε

≪ x
1
2

+εT7+ε,

(3.3)

where we have used Lemma 2.13 in the following forms

∫ T1

T1/2

∣

∣

{

L4( f , s)L3(sym3 f , s)
}

|s=1/2+ε+it

∣

∣

2
dt ≪ T10+ε,

and
∫ T1

T1/2

∣

∣L(sym2 f × sym3 f , 1/2 + ε + it)
∣

∣

2
dt ≪ T6+ε.

For the integral over the horizontal segments, we use Lemma 2.12 to bound

J2 + J3 ≪

∫ b

1
2

+ε

xσ
∣

∣L4( f , s)L3(sym3 f , s)L(sym2 f × sym3 f , s)}|s=σ+iT

∣

∣ T−1dσ

≪ max
1
2

+ε≤σ≤b
xσT16(1−σ)+εT−1

= max
1
2

+ε≤σ≤b

( x

T16

)σ

T15+ε

≪
x1+ε

T
+ x

1
2

+εT7+ε.

(3.4)

From (3.2), (3.3), and (3.4), we have

∑

n≤x

λ5
f (n) ≪

x1+ε

T
+ x

1
2

+εT7+ε.

On taking T = x
1

16 in (3.6), we have

∑

n≤x

λ5
f (n) ≪ x

15
16

+ε.

This completes the proof of Theorem 1.1.
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