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We investigate the large-scale influence of numerical noises as tiny artificial
stochastic disturbances on a sustained turbulence. Using two-dimensional (2-D)
turbulent Rayleigh–Bénard convection (RBC) as an example, we solve numerically the
Navier–Stokes equations, separately, by means of a traditional algorithm with double
precision (denoted RKwD) and the so-called clean numerical simulation (CNS). The
numerical simulation given by RKwD is a mixture of the ‘true’ physical solution and
the ‘false’ numerical noises that are random and can be regarded as a kind of artificial
stochastic disturbances; unfortunately, the ‘true’ physical solution is mostly at the same
level as the ‘false’ numerical noises. By contrast, the CNS can greatly reduce the
background numerical noise to any a required level so that the ‘false’ numerical noises
are negligible compared with the ‘true’ physical solution, thus the CNS solution can
be used as a ‘clean’ benchmark solution for comparison. It is found that the numerical
noises as tiny artificial stochastic disturbances could indeed lead to large-scale deviations
of simulations not only in spatio-temporal trajectories but also even in statistics. In
particular, these numerical noises (as artificial stochastic disturbances) even lead to
different types of flows. The shearing convection occurs for the RKwD simulations,
and its corresponding flow field turns to a kind of zonal flow thereafter; however, the
CNS benchmark solution always sustains the non-shearing vortical/roll-like convection
during the whole process of simulation. Thus we provide rigorous evidence that numerical
noises as a kind of small-scale artificial stochastic disturbances have quantitatively and
qualitatively large-scale influences on a sustained turbulence, i.e. the 2-D turbulent RBC
considered in this paper.
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1. Introduction

Turbulent flows of a compressible viscous fluid are mostly described by the Navier–Stokes
(NS) equations in the conservation form

∂U
∂t

+ ∇ · F a = ∇ · F d, (1.1)

subject to a given proper boundary condition and the initial condition

U |t=0 = U0(r), r ∈ Ω, (1.2)

where U(r, t) = (ρ, ρu,E)T is a vector of conserved variables, ∇ is the Hamiltonian/
gradient operator,

F a =
⎛
⎝ ρu
ρu ⊗ u + PI
(E + P)u

⎞
⎠ , F b =

⎛
⎝ 0

𝞽
u · 𝞽 + q

⎞
⎠ (1.3a,b)

are the advection/hyperbolic and diffusion fluxes, r ∈ Ω is the vector of spatial position, t
denotes the time, U0(r) is a given vector, ρ is the density of mass, u is the velocity vector,
u ⊗ u denotes the tensor product of u and u, P is the pressure, I denotes the unit tensor, E
is the total energy per unit mass, 𝞽 denotes the tensor of viscous stress, and q is the vector
of heat diffusion flux.

Note that tiny stochastic disturbances in fluid flows resulting from either small-scale
thermal fluctuations or environmental noises are unavoidable in practice, and the triggered
deviations might increase exponentially (Leith & Kraichnan 1972; Boffetta & Musacchio
2001, 2017). However, these tiny stochastic disturbances are not considered in the
above-mentioned NS equations (1.1)–(1.3a,b) that are deterministic. Landau & Lifshitz
(1959) proposed a stochastic form of the NS equations that models the effect of thermal
fluctuations via an additional stochastic stress tensor (Graham 1974; Swift & Hohenberg
1977; Bell, Garcia & Williams 2007; Donev et al. 2010, 2014). However, direct numerical
simulations (DNS) of this stochastic model are rather difficult due to the extremely fine
resolution that is required to measure accurately the velocities at dissipation-range length
scales. By contrast, molecular dynamics provides molecular-level simulation techniques
(Bird 1998; Donev et al. 2011; Smith 2015; McMullen et al. 2022) for investigating directly
the role of thermal fluctuations in turbulent flows.

Recently, McMullen et al. (2022) investigated a decaying turbulent flow and found
that, due to thermal fluctuations, the molecular gas dynamics spectra grow quadratically
with wavenumber in the dissipation range, while the NS spectra decay exponentially.
Furthermore, the transition to quadratic growth occurs at a length scale much larger than
the gas molecular mean free path, namely in a regime that the NS equations are widely
believed to describe. Thus they provided the first direct evidence that ‘the Navier–Stokes
equations do not describe turbulent gas flows in the dissipation range because they neglect
thermal fluctuations’ (McMullen et al. 2022), which is in agreement with the results given
by Bandak et al. (2022), Bell et al. (2022), Eyink & Jafari (2022), and others. Separately,
Gallis et al. (2021) used the direct simulation Monte Carlo (DSMC) method (molecular
gas dynamics) and DNS of the NS equations to simulate a freely decaying turbulent flow,
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Large-scale influence of numerical noises on turbulence

i.e. the compressible Taylor–Green vortex flow, and found that both methods produce
basically the same energy decay for the Mach and Reynolds numbers that they examined,
but the molecular fluctuations in DSMC (and in experiments) can break symmetries,
which in turn can cause flows different from but basically similar to those given by
DNS. Note that the above-mentioned investigations focus mainly on the influence of
tiny stochastic disturbances resulting from thermal fluctuations on small-scale properties
of freely decaying turbulence. Might the micro-level stochastic disturbances have huge
influences on large-scale properties of some sustained turbulent flows? This is the primary
motivation for our investigation in this paper.

Some turbulent flows might have multiple states according to Frisch (1986), and his
well-known monograph on turbulence (Frisch 1995) states that ‘it is typical for dissipative
dynamical systems to have more than one attractor’ and ‘each attractor has an associated
basin’, and thus ‘the statistical properties of the solution will then depend on to which
basin the initial condition belongs’. The first evidence of this phenomenon in a turbulent
flow is given by Huisman et al. (2014) in their study on the highly turbulent Taylor–Couette
flow. Note that this work focuses mainly on the influence of initial data on the flow state
of turbulence as well as its statistical properties. Considering that there are some previous
investigations (Knobloch & Weiss 1989; Kraut, Feudel & Grebogi 1999; Masoller 2002; de
Souza et al. 2007) into the effects of noises (in general whose levels are much larger than
the stochastic disturbances considered later in this paper) on the dynamical systems with
multiple attractors, in this paper we aim to demonstrate that not only the initial conditions
but also the weak, small-scale stochastic noises/disturbances can determine in which basin
the solution of a sustained turbulent flow will reside for a long time.

In theory, the influence of tiny stochastic disturbances on turbulent flows is fundamental,
since this kind of stochastic disturbance is often in a micro-level of magnitude and
is unavoidable in practice. There are two kinds of stochastic disturbance: natural and
artificial. Thermal fluctuation belongs to the former, whereas the latter can be caused
by many sources. Note that the background numerical noises, i.e. truncation errors and
round-off errors, always exist for all numerical algorithms. Also, it is widely believed that
turbulence has a close relationship with chaos, and thus the background numerical noises
should increase exponentially (and quickly) up to the same level of ‘true’ physical solution.
Therefore, a computer-generated simulation of the NS equations is a kind of mixture
of the ‘true’ physical solution and ‘false’ numerical noises. Note that the background
numerical noise is tiny and random, dependent on different numerical algorithms and data
accuracy, which itself is a kind of artificial stochastic disturbance. Therefore, in a natural
way, the background numerical noises can be regarded as the sum of all kinds of tiny
artificial stochastic disturbances. In this paper, we investigate the large-scale influences
of numerical noises as tiny artificial stochastic disturbances on a sustained turbulence
by means of solving numerically the above-mentioned NS equations via a traditional
numerical algorithm (the Runge–Kutta method with double precision, denoted RKwD)
and the so-called ‘clean numerical simulation’ (CNS) (Liao 2009, 2013, 2014; Hu & Liao
2020; Qin & Liao 2020; Li, Li & Liao 2021; Xu et al. 2021; Liao, Li & Yang 2022;
Liao & Qin 2022), separately, with the same initial/boundary conditions, using the same
values of physical parameters. The result given by the traditional numerical algorithm
RKwD is a mixture of the ‘true’ physical solution and ‘false’ numerical noises, which
are mostly of the same order of magnitude, where the background numerical noise is
regarded as the sum of all tiny artificial stochastic disturbances. By contrast, the CNS
can greatly reduce the background numerical noise to any a required level so that the
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numerical noises are negligible compared with the ‘true’ physical solution, and thus the
corresponding numerical result is convergent (reproducible) in an interval of time long
enough for statistics, as described below. In other words, results given by the CNS can be
regarded as a ‘clean’ benchmark solution. Thus we can investigate the influences of tiny
artificial stochastic disturbances on turbulent flows by means of comparing the RKwD
simulations with the CNS benchmark solution.

Let us discuss briefly the motivation and basic ideas of the CNS. Strictly speaking, all
numerical simulations are not ‘clean’, since background numerical noises (i.e. truncation
errors and round-off errors) always exist there. Indeed, for non-chaotic systems, the
magnitude of numerical noises can be controlled on a tiny level much smaller than
the ‘true’ physical solution so that the influences of the numerical noises can be
neglected. However, for chaotic dynamical systems (Li & Yorke 1975; Parker & Chua
1989; Lorenz 1993; Peter 1998; Sprott 2010), numerical noises increase exponentially due
to the ‘sensitivity dependence on initial condition’ (SDIC), which was first discovered
by Poincaré (1890) and later rediscovered by Lorenz (1963) with the more famous
name ‘butterfly effect’: a hurricane happening in North America might be created by a
flapping of the wings of a distant butterfly in South America several weeks earlier. More
importantly, it was further found by Lorenz (1989, 2006) that a chaotic dynamical system
has the sensitivity dependence not only on initial condition (SDIC) but also on numerical
algorithms (SDNA) in single/double precision. This kind of uncertainty certainly raises
serious doubt about the reliability of numerical simulations of chaotic systems. For
example, Teixeira, Reynolds & Judd (2007) carefully investigated the time-step sensitivity
of three nonlinear atmospheric models by means of some traditional numerical algorithms
(in single/double precision), and made a rather pessimistic conclusion that ‘for chaotic
systems, numerical convergence cannot be guaranteed forever’.

To overcome the above-mentioned limitations/restrictions of traditional numerical
algorithms (in single/double precision) for chaotic dynamical systems, Liao (2009)
suggested a numerical strategy, namely the ‘clean numerical simulation’ (CNS). The basic
idea of the CNS (Liao 2013, 2014; Hu & Liao 2020; Qin & Liao 2020; Li et al. 2021;
Liao et al. 2022; Liao & Qin 2022) is to greatly decrease the background numerical
noises, i.e. truncation errors and round-off errors, to such a tiny level that the influence
of numerical noises can be neglected in an interval of time 0 � t � Tc that is long
enough for statistics, where Tc is the so-called ‘critical predictable time’. The CNS is
based on a well-known phenomenon: for a numerical/computer-generated simulation of
a chaotic dynamical system, the level of simulation deviation (in an average meaning)
from its (‘true’) physical solution increases exponentially to a macroscopic one (at
t = Tc), i.e.

E (t) = E0 exp(Kt), t ∈ [0, Tc], (1.4)

where K > 0 is the so-called ‘noise-growing exponent’, E0 denotes the level of background
numerical noise, and E (t) is the level of simulation deviation (in an average meaning) from
the physical solution. In theory, the critical predictable time Tc is determined by a critical
level Ec of simulation deviation from its physical solution, i.e.

Tc = 1
K

ln
(

Ec

E0

)
. (1.5)

Obviously, for a given critical level Ec, the smaller the level of the background numerical
noise E0, the larger the critical predictable time Tc. This is the reason why in the frame
of the CNS we have to greatly decrease the background numerical noises, i.e. truncation
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errors and round-off errors, to a tiny enough level. So, different from the Taylor series
method, the key point of the CNS is the so-called ‘critical predictable time’ Tc that
determines a temporal interval [0, Tc] in which the numerical simulations are ‘reliable’
and ‘clean’, since their ‘false’ numerical noises are much smaller than the ‘true’ physical
solution and thus are negligible. For more details about the CNS, please refer to Liao
(2009, 2013, 2014) and his co-authors (Hu & Liao 2020; Qin & Liao 2020; Li et al. 2021;
Xu et al. 2021; Liao et al. 2022).

The CNS has been applied successfully to many chaotic dynamical systems. For
example, by means of traditional numerical algorithms (in double precision), one can get
convergent (i.e. reproducible) numerical simulations of the famous Lorenz equations in
a rather short interval of time, i.e. approximately t ∈ [0, 32]. However, using the CNS, a
convergent numerical simulation of the Lorenz equations was obtained first by Liao (2009)
in t ∈ [0, 1000] and then by Liao & Wang (2014) in a much longer interval of time, i.e.
t ∈ [0, 10 000]. Also, since the background numerical noises of the CNS can be much
smaller even than the micro-level physical uncertainty, Lin, Wang & Liao (2017) applied
the CNS successfully to provide direct rigorous evidence that the micro-level thermal
fluctuation is the origin of macroscopic randomness of the turbulent Rayleigh–Bénard
convection (RBC). In particular, it is worth noting that the CNS has been applied
successfully to find more than 2000 new families of periodic orbits of three-body systems
(Li & Liao 2017, 2019; Li, Jing & Liao 2018; Li et al. 2021; Liao et al. 2022). The discovery
of these new periodic orbits was reported twice in the famous popular magazine New
Scientist (Crane 2017; Whyte 2018), because only three families of periodic orbits of the
three-body problem had been reported in three hundred years after Newton mentioned
this problem in 1687. All of these illustrate the validity, novelty and great potential of
the CNS.

Recently, an efficient CNS algorithm has been proposed to solve spatio-temporal chaotic
systems, i.e. the complex Ginzburg–Landau equation (Hu & Liao 2020) and the damped
driven sine-Gordon equation (Qin & Liao 2020). Using the CNS result as a benchmark
solution, one can investigate the influence of numerical noises on the computer-generated
simulation of a spatio-temporal chaotic system. It was found (Hu & Liao 2020; Qin &
Liao 2020) that numerical noises might lead to huge deviations of computer-generated
simulations of some spatio-temporal chaotic systems, not only in trajectories but also even
in statistics.

In this paper, we apply the CNS and a traditional algorithm (based on the fourth-order
Runge–Kutta method with double precision, denoted RKwD), separately, to solve a
sustained turbulence, i.e. the two-dimensional (2-D) turbulent RBC. Note that using the
CNS, the background numerical noises can be decreased to such a tiny level that the
numerical noises are negligible in a long enough interval of time, so that the CNS result
can be regarded as a benchmark solution of the ‘true’ physical result to investigate the
influence of tiny artificial stochastic disturbances by comparing the RKwD simulations
with the CNS benchmark solution. In this way, we provide rigorous evidence that tiny
artificial stochastic disturbances have huge influences on large-scale properties of the
turbulent RBC not only in statistics but also even in flow types. The CNS benchmark
solution always keeps the vortical/roll-like turbulent convection; however, for the RKwD
simulations, the shearing convection occurs and its corresponding flow field turns to zonal
flow thereafter. This phenomenon is reasonable if the boundaries of different attractor
basins (mentioned above) in this multistable system are intricately interwoven, as has been
observed in other cases (Shrimali et al. 2008).
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(a) (b)

T0 + �T

T0

H

L

g

Figure 1. Schematic drawings of 2-D turbulent RBC in two totally different flow types: (a) typical
vortical/roll-like flow, and (b) zonal flow. The fluid layer between two parallel plates that are separated by
a height H obtains heat from the bottom boundary surface because of the constant temperature difference
�T > 0, where L is the horizontal length of the computational domain, and the downward direction of gravity
acceleration g is indicated.

2. Mathematical model for 2-D turbulent RBC

The buoyancy-driven convection in a fluid layer between two horizontal parallel plates
heated from below and cooled from above, known as the RBC for compressible viscous
fluids, is one of the most fundamental and classic paradigms of nonlinear dynamics in fluid
mechanics. It was first investigated by Rayleigh (1916), and the continuous efforts devoted
to the study of this problem have greatly enriched our understanding (Chandrasekhar
1961; Schlüter, Lortz & Busse 1965; Heslot, Castaing & Libchaber 1987; Kadanoff 2001;
Niemela & Sreenivasan 2006; Ahlers, Grossmann & Lohse 2009; Lohse & Xia 2010; Zhou
& Xia 2013; Goluskin et al. 2014; Wang et al. 2020).

As illustrated in figure 1, a thin layer of fluid is confined between two horizontal plates
that are separated by a distance H, where T0 and T0 +�T denote the temperatures of
the top and bottom boundary surfaces, respectively, L is the horizontal length of the
computational domain, and g is the gravity acceleration. The typical vortical/roll-like
motions of 2-D RBC, as illustrated in figure 1(a), and their corresponding turbulent
states, have been studied extensively by means of DNS (Saltzman 1962; Fromm 1965;
Veronis 1968; Moore & Weiss 1973; Curry et al. 1984; Zienicke, Seehafer & Feudel
1998; Johnston & Doering 2009; Huang & Zhou 2013; Zhang, Zhou & Sun 2017; Zhu
et al. 2018). However, there is another type of flow in the 2-D turbulent RBC in the case
of the free-slip boundary conditions imposed on two horizontal parallel plates and the
periodic boundary conditions on the left and right sides, namely zonal flow (Goluskin
et al. 2014; van der Pol et al. 2014; von Hardenberg et al. 2015; Wang et al. 2020),
as shown in figure 1(b). It is worth noting that such a turbulent zonal flow has been
widely found in nature and the laboratory, such as in the atmosphere of Jupiter (Heimpel,
Aurnou & Wicht 2005; Kaspi et al. 2018) and some Jovian planets (Sun, Schubert &
Glatzmaier 1993; Cho & Polvani 1996; Yano, Talagrand & Drossart 2003), in the oceans
(Maximenko, Bang & Sasaki 2005; Richards et al. 2006), in the Earth’s outer core
(Miyagoshi, Kageyama & Sato 2010), in toroidal tokamak devices (Diamond et al. 2005),
and so on. Thus here we choose the 2-D turbulent RBC with free-slip boundary conditions
at the upper and lower plates, and periodic boundary conditions in the horizontal
direction, as our mathematical model for the sustained turbulence, governed by the NS
equations.

Using the length scale H, velocity scale
√

gαH�T and temperature scale �T as the
characteristic scales, the corresponding dimensionless NS equations, combined with the
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Boussinesq approximation (Saltzman 1962), read

∂

∂t
∇2ψ + ∂(ψ,∇2ψ)

∂(x, z)
− ∂θ

∂x
−

√
Pr
Ra

∇4ψ = 0, (2.1)

∂θ

∂t
+ ∂(ψ, θ)

∂(x, z)
− ∂ψ

∂x
− 1√

Pr Ra
∇2θ = 0, (2.2)

where ψ is a stream function with the definition

u = −∂ψ
∂z
, w = ∂ψ

∂x
, (2.3a,b)

in which u and w are the horizontal and vertical velocities, θ is the temperature departure
from a linear variation background (i.e. the temperature is expressed as T = θ − z + 1 in
the case of T0 = 0), t denotes the time, x ∈ [0, Γ ] and z ∈ [0, 1] are the horizontal and
vertical position coordinates, Γ = L/H denotes the aspect ratio, and ∇2 is the Laplace
operator, thus ∇4 = ∇2∇2. Also,

∂(a, b)
∂(x, z)

= ∂a
∂x
∂b
∂z

− ∂b
∂x
∂a
∂z

(2.4)

is the Jacobi operator, and the Rayleigh number Ra and Prandtl number Pr are defined by

Ra = gαH3�T
νκ

, Pr = ν

κ
, (2.5a,b)

respectively, in which α is the thermal expansion coefficient, and ν = μ/ρ is the kinematic
viscosity.

Note that free-slip boundary conditions are adopted at the upper and lower plates where
temperatures are assumed to be constant. Hence the NS equations (2.1)–(2.2) have the
following boundary conditions:

ψ = ∂2ψ

∂z2 = θ = 0 (2.6)

at z = 0 and z = 1. On the other hand, since the fluid layer can extend to infinity in the
horizontal direction, we adopt the periodic boundary conditions for ψ and θ at the lateral
boundaries in the horizontal direction, i.e. at x = 0 and x = Γ .

Without loss of generality, in this paper let us consider the case with aspect ratio
Γ = L/H = 2

√
2, which is large enough for the approximation of heat flux at an infinite

aspect ratio (Saltzman 1962; Curry et al. 1984; Lin et al. 2017), Prandtl number Pr =
6.8 (corresponding to water at room temperature, 20 ◦C), and Rayleigh number Ra =
6.8 × 108 (corresponding to a turbulent state). In addition, the initial temperature and
velocity fields are generated randomly by the thermal fluctuations in Gaussian white noises
(Lin et al. 2017), with temperature standard deviation σT = 10−10 and velocity standard
deviation σu = 10−9.

3. Influence of numerical noises as artificial stochastic disturbances

The deterministic NS equations (2.1)–(2.2) are solved numerically here, separately, by
means of the traditional algorithm RKwD whose numerical noises are mostly of the same
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order of magnitude as the ‘true’ physical solution, and the CNS whose numerical noises
are much less than the physical solution and thus are negligible. By means of comparing
the RKwD simulations with the CNS benchmark solution, it is found that the numerical
noises indeed might lead to huge large-scale differences even in statistics and flow types
of the 2-D turbulent RBC, as described below.

First, we apply the CNS to greatly decrease the background numerical noises, i.e. the
truncation errors and round-off errors, to such a tiny level that the numerical noises are
much smaller than, and thus negligible compared with, the ‘true’ physical solution of
the 2-D turbulent RBC in an interval of time that is long enough for statistics. In this
way, a convergent (reproducible) solution of the 2-D turbulent RBC can be obtained,
which is used here as the ‘clean’ benchmark solution. On the other hand, with the
same initial/boundary conditions and the same physical parameters as described in the
previous section, the NS equations (2.1)–(2.2) are also solved numerically by a traditional
algorithm, i.e. RKwD, using the time step �t = 1 × 10−4, whose numerical noises
increase exponentially up to the same level of the ‘true’ physical solution and thus are
not negligible. By comparing these RKwD simulations with the CNS benchmark solution,
we can investigate in detail the influence of the numerical noises as tiny artificial stochastic
disturbances on the 2-D turbulent RBC. In this section, we show only briefly some results
for comparison. For details about the CNS algorithms, please refer to Appendix A.

Briefly speaking, to decrease the spatial truncation error to a small enough level, we
discretize the spatial domain of flow field by a uniform mesh Nx × Nz = 1024 × 1024,
and also apply the Fourier spectral method with the 3/2 rule for dealiasing (Pope 2001).
The corresponding spatial resolution is high enough for the considered turbulent RBC:
the horizontal (maximum) grid spacing Δx = L/Nx = 0.00276 is less than the minimum
Kolmogorov scale (Pope 2001), which will be shown later in detail. Also, to decrease
the temporal truncation error to a small enough level for the CNS, we use the 45th-order
(i.e. M = 45) Taylor expansion with time step �t = 10−3. In addition, to decrease the
round-off error to a small enough level, we use 70 significant digits (i.e. Ns = 70) in
multiple precision for all physical/numerical variables and parameters. Similarly, we
get another CNS result using the Fourier spectral method on the same uniform mesh
Nx × Nz = 1024 × 1024 with even smaller background numerical noises by means of a
higher-order (i.e. M = 47) Taylor expansion with the same time step (�t = 10−3) and the
higher multiple precision with more significant digits (i.e. Ns = 72). Comparing these
two CNS results, it is found that they have no distinct differences in an interval of
time 0 � t � 500, which is long enough for statistics. This verifies the convergence and
reliability of our CNS result in t ∈ [0, 500] given by means of M = 45, �t = 10−3 and
Ns = 70, which is therefore used below as the ‘clean’ benchmark solution.

As shown in figures 2 and 3, the numerical simulation given by RKwD is compared
with the ‘clean’ benchmark solution given by the CNS; see the supplementary movie
available at https://doi.org/10.1017/jfm.2022.710. Note that these two simulations have
exactly the same initial conditions caused by the micro-level thermal fluctuations. For both
the CNS and RKwD simulations, the tiny initial disturbances of velocity and temperature
evolve progressively from micro-level to macro-level until t ≈ 25, when the transition
from laminar flow to turbulence occurs, then the strong mixing occurs in t ∈ [25, 36],
and the typical vortical/roll-like convection appears at t ≈ 50, as shown in figure 2.
Thereafter, as the time increases, the RKwD simulation deviates from the CNS benchmark
solution more and more, so that a distinct large-scale difference between them can be
observed, indicating that the numerical noises (as artificial stochastic disturbances) could
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indeed lead to some large-scale differences of flow fields of velocity and temperature at a
macroscopic level, for example, as shown in figure 2 at t = 100 and t = 185. However, even
so, the flow type of these two simulations stays the same (i.e. vortical/roll-like turbulent
convection) until t ≈ 188, when the shearing convection occurs for the RKwD simulation
and its corresponding flow field turns to a kind of zonal flow thereafter, as shown in
figures 2 and 3. On the contrary, the CNS benchmark solution thereafter always sustains
the non-shearing vortical/roll-like convection during the whole process of simulation.
Therefore, the RKwD simulation and the CNS benchmark solution have different types
of turbulent convection after t > 188. It should be emphasized that such a qualitative
large-scale difference is triggered only by the numerical noises (as artificial stochastic
disturbances). All of these highly suggest that the numerical noises (as artificial stochastic
disturbances) have quantitatively and qualitatively large-scale influences on the sustained
turbulence, i.e. the 2-D turbulent RBC considered in this paper.

How about the influence of numerical noises (as artificial stochastic disturbances) on
statistical results? The heat transport of 2-D turbulent RBC can be quantified typically by
the Nusselt number defined by

Nu(t) = 1 − ∂〈θ(x, z, t)〉x

∂z

∣∣∣∣
z=1

, (3.1)

where 〈a〉x = ∫ Γ
0 a dx/Γ denotes the spatial average in the horizontal direction. As

shown in figure 4(a), the distinct deviation between the two time histories of Nu(t)
given respectively by the CNS benchmark solution and the RKwD simulation happens
at t ≈ 80 when the numerical noises of the RKwD simulation have been enlarged to a
macroscopic level because of the butterfly effect of chaos. Note that the Nu(t) given by
the RKwD simulation drops down greatly at t ≈ 188 until Nu(t) ≈ 30 after t > 300, one
order of magnitude less than that of the CNS benchmark solution. Such a huge difference
is not only quantitative but also qualitative, which is definitely due to the appearance
of the zonal flow at t ≈ 188 that is triggered by the numerical noises of the RKwD
simulation (as artificial stochastic disturbances). On the other hand, the Reynolds number
is also calculated to measure the global convection strength, which is obtained via the
root-mean-square (r.m.s.) velocity Urms (Sugiyama et al. 2009; Zhang et al. 2017), i.e.

Re(t) =
√

Ra
Pr

Urms, (3.2)

with Urms =
√

〈u2 + w2〉A, where 〈a〉A = ∫ Γ
0

∫ 1
0 a dx dz/Γ denotes the spatial average. As

shown in figure 4(b), the CNS benchmark solution and RKwD simulation give almost the
same values of Re(t) when t < 188. However, the departure begins at t ≈ 188 when the
shearing convection occurs, and thereafter the deviation between the RKwD simulation
and the CNS benchmark solution becomes more and more obvious. Here, it should be
emphasized that the Reynolds number Re of the CNS benchmark solution at t = 500
is about 3500 times larger than that of the RKwD simulation! This is indeed a huge
difference. Similar phenomena are observed in the comparisons of the spatially averaged
heat flux 〈wT〉A and kinetic energy 〈EV〉A, given respectively by the CNS benchmark
solution and RKwD simulation, as shown in figures 5(a) and 5(b), where the maximum
ratio of kinetic energy reaches about 2.5. Indeed, the numerical noises (as artificial
stochastic disturbances) might lead to qualitatively huge deviations of the 2-D turbulent
RBC.

Besides the above-mentioned large-scale quantities, the comparisons of some
small-scale properties of fluid flows such as the kinetic energy dissipation rate 〈εV〉A and
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Figure 2. Evolutions of the θ (dimensionless temperature departure from a linear variation background)
field in the case Pr = 6.8, Ra = 6.8 × 108 and L/H = 2

√
2: (a,c,e,g,i,k,m,o) the CNS benchmark solution;

(b,d, f,h, j,l,n, p) the RKwD simulation using �t = 10−4. See the supplementary movie.
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Figure 3. More evolutions of the θ (dimensionless temperature departure from a linear variation background)
field in the case Pr = 6.8, Ra = 6.8 × 108 and L/H = 2

√
2: (a,c,e,g,i,k,m,o) the CNS benchmark solution;

(b,d, f,h, j,l,n, p) the RKwD simulation using �t = 10−4. See the supplementary movie.
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Figure 4. Comparisons of the instantaneous Nusselt number Nu and Reynolds number Re in the case Pr = 6.8,
Ra = 6.8 × 108 and L/H = 2

√
2: (a) the Nusselt number Nu; (b) the Reynolds number Re. Solid line in red

denotes the CNS benchmark solution; dashed line in black denotes the RKwD simulation using �t = 10−4.
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Figure 5. Comparisons of the spatially averaged heat flux 〈wT〉A and kinetic energy 〈EV 〉A in the case Pr =
6.8, Ra = 6.8 × 108 and L/H = 2

√
2, where 〈a〉A = ∫ Γ

0

∫ 1
0 a dx dz/Γ denotes the spatial average: (a) the heat

flux 〈wT〉A; (b) the kinetic energy 〈EV 〉A. Solid line in red denotes the CNS benchmark solution; dashed line in
black denotes the RKwD simulation using �t = 10−4.

the thermal dissipation rate 〈εT〉A of this 2-D turbulent RBC given by the CNS solution
and the RKwD simulation are as shown in figure 6, where

εV(x, z, t) = 1
2

√
Pr
Ra

∑
ij

[
∂iuj(x, z, t)+ ∂jui(x, z, t)

]2 (3.3)

and

εT(x, z, t) = 1√
Pr Ra

|∇ [θ(x, z, t)− z]|2 , (3.4)

with i, j = 1, 2, u1(x, z, t) = u(x, z, t), u2(x, z, t) = w(x, z, t), ∂1 = ∂/∂x, ∂2 = ∂/∂z. Here,
∇ is the Hamiltonian operator, and 〈 〉A denotes the spatial average. Note that for the RKwD
simulation, both the kinetic energy dissipation rate 〈εV〉A and the thermal dissipation
rate 〈εT〉A greatly drop down at t ≈ 188 when the shearing convection (i.e. the zonal
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Figure 6. Comparisons of the spatially averaged kinetic energy dissipation rate 〈εV 〉A and thermal dissipation
rate 〈εT 〉A in the case Pr = 6.8, Ra = 6.8 × 108 and L/H = 2

√
2, where 〈a〉A = ∫ Γ

0

∫ 1
0 a dx dz/Γ denotes the

spatial average: (a) the kinetic energy dissipation rate 〈εV 〉A; (b) the thermal dissipation rate 〈εT 〉A. Solid line in
red denotes the CNS benchmark solution; dashed line in black denotes the RKwD simulation using�t = 10−4.

flow) occurs, which is triggered only by the numerical noises (as artificial stochastic
disturbances).

By the way, as shown in figure 6(a), we have the maximum kinetic energy dissipation
rate (〈εV〉A)max = 0.00646 at t = 26.9 when the transition from the laminar flow to
turbulence occurs, corresponding to the minimum Kolmogorov scale

(〈η〉A)min ≈ (Pr/Ra)3/8 [(〈εV〉A)max]−1/4 = 0.00353. (3.5)

Thus the criterion on the maximum horizontal grid spacing Δx = Γ/Nx = 0.00276 <
0.8(〈η〉A)min = 0.00282 is indeed satisfied, so the spatial resolution used in this paper
is fine enough for the 2-D turbulent RBC under consideration.

Figure 7 shows comparisons of the kinetic energy dissipation rate 〈εV〉x,t(z) and the heat
flux 〈wT〉x,t(z), where 〈a〉x,t = ∫ Γ

0

∫ 500
0 a dx dt/Γ/500 denotes the horizontally spatial and

temporal average. Obviously, both the kinetic energy dissipation rate 〈εV〉x,t and the heat
flux 〈wT〉x,t of the CNS benchmark solution are significantly larger than those given by the
RKwD simulation. In particular, near the lower and upper plates, 〈εV〉x,t given by the CNS
benchmark solution has a much sharper peak than that given by the RKwD simulation,
as shown in figure 7(a). This indicates that the numerical noises (as artificial stochastic
disturbances) can lead to large-scale deviations in statistics of the 2-D turbulent RBC under
consideration.

The comparison of the probability density functions (p.d.f.s) of the stream function
ψ(x, z, t) in 0 � x < Γ , 0 � z � 1 and 0 � t � 500 given by the CNS benchmark solution
and the RKwD simulation is as shown in figure 8. Unlike the p.d.f. of the CNS benchmark
solution that has a kind of asymmetry about ψ = 0, the p.d.f. of the RKwD simulation
has no such kind of asymmetry but two peaks at ψ ≈ 0 and ψ ≈ 0.25. Furthermore, the
comparison of the p.d.f.s of θ(x, z, t) given by the CNS benchmark solution and RKwD
simulation is as shown in figure 9. As shown in figure 9(a), except at θ ≈ 0, the p.d.f.
of θ(x, z, t) given by the CNS benchmark solution remains at almost the same value. In
contrast, the p.d.f. of θ given by the RKwD simulation is relatively more typical, as shown
in figure 9(b). Thus the numerical noises (as artificial stochastic disturbances) indeed lead
to large-scale deviations even in the p.d.f.s of the 2-D turbulent RBC under consideration.
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Figure 7. Comparisons of the horizontally and temporally averaged kinetic energy dissipation rate 〈εV 〉x,t(z)
and the heat flux 〈wT〉x,t(z) in the case Pr = 6.8, Ra = 6.8 × 108 and L/H = 2

√
2, where 〈a〉x,t =∫ Γ

0

∫ 500
0 a dx dt/Γ/500 denotes the horizontal and temporal average: (a) the kinetic energy dissipation rate

〈εV 〉x,t(z); (b) the heat flux 〈wT〉x,t(z). Solid line in red denotes the CNS benchmark solution; dashed line in
black denotes the RKwD simulation using �t = 10−4.
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Figure 8. Probability density functions (p.d.f.s) of ψ(x, z, t) in 0 � x < Γ , 0 � z � 1 and 0 � t � 500 in the
case Pr = 6.8, Ra = 6.8 × 108 and L/H = 2

√
2: (a) the p.d.f. given by the CNS benchmark solution; (b) the

p.d.f. given by the RKwD simulation using �t = 10−4.

All of the above-mentioned comparisons indicate that the micro-level background
numerical noises as a kind of artificial stochastic disturbances can lead to large-scale
differences not only in spatio-temporal trajectories but also even in flow types of the 2-D
turbulent RBC, which further affects the statistics of the Nusselt number, the Reynolds
number, the kinetic energy, the kinetic energy dissipation rate, the thermal dissipation
rate, and so on. Note that it is currently reported by McMullen et al. (2022) that ‘the
Navier–Stokes equations do not describe turbulent gas flows in the dissipation range
because they neglect thermal fluctuations’; that is, tiny stochastic disturbances resulting
from thermal fluctuations might influence the small-scale properties of the freely decaying
turbulent flows under their consideration. In this paper, the detailed comparisons between
the CNS benchmark solution and the RKwD simulation provide us with the rigorous
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Figure 9. Probability density functions (p.d.f.s) of θ(x, z, t) in 0 � x < Γ , 0 � z � 1 and 0 � t � 500 in the
case Pr = 6.8, Ra = 6.8 × 108 and L/H = 2

√
2: (a) the p.d.f. given by the CNS benchmark solution; (b) the

p.d.f. given by the RKwD simulation using �t = 10−4.

evidence that numerical noises as a kind of small-scale artificial stochastic disturbances
might influence the large-scale properties of a sustained turbulence, i.e. the 2-D turbulent
RBC considered in this paper.

4. Concluding remarks and discussions

All numerical algorithms have background numerical noises, i.e. truncation errors and
round-off errors, which are tiny and random. It was reported that for a chaotic dynamic
system, random numerical noises increase exponentially due to the butterfly effect of
chaos, up to the same order of magnitude as its ‘true’ physical solution (Hu & Liao 2020;
Qin & Liao 2020). Therefore, numerical simulations of a deterministic chaotic system
are mostly a mixture of the ‘true’ physical solution, which is deterministic in physics,
and the ‘false’ numerical noises, which are, however, stochastic. This is the reason why
numerical simulations of a deterministic chaotic system given by traditional algorithms
in single/double precision often look stochastic, and why it has been wrongly believed
that a deterministic chaotic system can lead to randomness. This is also the reason why
Teixeira et al. (2007) made a rather pessimistic conclusion that ‘for chaotic systems,
numerical convergence cannot be guaranteed forever’. Obviously, even given an accurate
initial condition, this kind of randomness of chaotic system comes from the randomness
of artificial background numerical noises. Thus the background numerical noises can be
regarded naturally as a kind of artificial stochastic disturbances to a chaotic system when
it is solved numerically.

In this paper, the so-called clean numerical simulation (CNS) is adopted to investigate
accurately the influence of numerical noises as a kind of tiny artificial stochastic
disturbances on the 2-D turbulent RBC under consideration. This is mainly because the
CNS can reduce the background numerical noises (i.e. round-off errors and truncation
errors) to any a required level, which can be so small that the ‘false’ numerical noises are
negligible compared with its ‘true’ physical solution, and thus the numerical simulations of
turbulence are convergent/reproducible in an interval of time long enough for statistics, as
illustrated in this paper. Strictly speaking, the CNS solution is also a mixture of the ‘true’
physical solution and the ‘false’ numerical noises. However, unlike the simulation given
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by a traditional algorithm in single/double precision, the ‘false’ numerical noises of a CNS
solution are often several orders of magnitude smaller than its ‘true’ physical solution in
a region t ∈ [0, Tc] long enough for statistics, so that its numerical noises are negligible
and the CNS result is ‘convergent’ and ‘reproducible’. Such a CNS solution in t ∈ [0, Tc]
can be used as a ‘clean’ benchmark solution for comparison with those given by traditional
algorithms in single/double precision, so as to investigate the influence of numerical noises
as tiny artificial stochastic disturbances on the 2-D turbulent RBC under consideration.
So, unlike the Taylor series method, the key point of the CNS is the so-called ‘critical
predictable time’ Tc that determines a temporal interval [0, Tc] in which the numerical
simulations are ‘reliable’ and ‘clean’, since their ‘false’ numerical noises are much smaller
than the ‘true’ physical solution and thus are negligible.

It was reported recently by McMullen et al. (2022) that tiny stochastic disturbances
resulting from thermal fluctuations might influence the small-scale properties of the
freely decaying turbulence under their consideration, which is in agreement with the
conclusions given by Gallis et al. (2021), Bandak et al. (2022), Bell et al. (2022),
Eyink & Jafari (2022), and so on. In this paper, we investigate the large-scale influence
of numerical noises as a kind of tiny artificial stochastic disturbances on a sustained
turbulence. Using 2-D turbulent RBC as an example, we illustrate that the numerical
noises as a kind of micro-level artificial stochastic disturbances could indeed lead to
large-scale deviations, not only in spatio-temporal trajectories but also even in statistics
of the sustained turbulence considered in this paper. In particular, such tiny artificial
stochastic disturbances even lead to different types of flows: the shearing convection
occurs for the RKwD simulations, and its corresponding flow field turns to a kind of zonal
flow thereafter; however, the CNS benchmark solution always sustains the non-shearing
vortical/roll-like convection during the whole process of simulation, as shown in figures 2
and 3. Thus we provide rigorous evidence that numerical noises as a kind of tiny artificial
stochastic disturbances have not only quantitatively but also qualitatively large-scale
influences on a sustained turbulence, i.e. the 2-D turbulent RBC considered in this paper.
Of course, for various types of turbulent flows governed by the NS equations, more
investigations are needed in the future.

Why does this kind of qualitatively large-scale influence happen? We try to give
an explanation. This 2-D turbulent RBC system might have two possible final states:
the vortical/roll-like flow and the zonal flow, which can be seen as two minima of a
double-well potential. Once the CNS benchmark solution falls in one of these two minima
(e.g. the roll-like flow), it remains there forever, since the corresponding ‘false’ numerical
noises are much less than the ‘true’ physical solution and thus cannot trigger the transition
to another minimum. On the contrary, the RKwD simulation can perform the transition
from one state to the other, because its ‘false’ numerical noises as artificial stochastic
disturbances might be of the same order of magnitude as the ‘true’ physical solution, as
shown in figure 10, so that the RKwD simulation might depart very far from its ‘true’
physical solution and thus fall in another minimum. If so, then the transition of the RKwD
simulation from the vortical/roll-like flow to the zonal flow of the 2-D turbulent RBC
should occur at random times for different numerical noises as a kind of artificial stochastic
disturbances. In order to check this hypothesis, we perform a new RKwD simulation of the
2-D turbulent RBC with the identical initial/boundary conditions and physical parameters
of the previous one, but using a different time step �t = 2 × 10−4, denoted RKwD′. The
corresponding numerical noises as a different kind of artificial stochastic disturbances are
verified to be at the same tiny level as the previous ones. As shown in figure 11 (which
describes the temporal evolutions of the Nusselt number Nu and the Reynolds number Re),
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Figure 10. Comparison between the CNS benchmark solution θCNS and the numerical noises εn = θCNS −
θRKwD at the point x = 1 and y = 1/2, where θRKwD is the RKwD simulation. Solid line denotes the CNS
benchmark solution; dashed line denotes the numerical noises: (a) 1 � t � 500; (b) 75 � t � 100.
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Figure 11. Temporal evolution of the Nusselt number Nu and the Reynolds number Re in the case Pr = 6.8,
Ra = 6.8 × 108 and L/H = 2

√
2: (a) Nusselt number Nu; (b) Reynolds number Re. Solid line in red denotes

the CNS benchmark solution; dashed line in black denotes the RKwD simulation (with �t = 10−4); dashed
line in blue denotes the RKwD′ simulation (with �t = 2 × 10−4).

the transition from the vortical/roll-like flow to the zonal flow of the RKwD′ simulation
with�t = 2 × 10−4 occurs indeed at a different time t ≈ 230, compared to t ≈ 188 of the
previous RKwD simulation with �t = 10−4. Thus our above-mentioned explanation in
terms of a stochastic dynamical system in the double-well potential should be reasonable.
This test provides useful information to better understand the origin of the phenomenon
reported in this paper.

Thus, generally speaking, if a chaotic system has N-well potential, where N � 2, its
numerical simulations given by traditional algorithms in single/double precision should
fall randomly in one of the N minima, and also the transition between different minima
should occur frequently and randomly. Similarly, if a turbulent flow has multiple states in
a large scale, then small disturbances might lead to the transition between different states.
Such small disturbances can be either natural (such as environmental perturbations) or
artificial (such as background numerical noises). In this case, it is impossible to make
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a correct prediction of flow states by means of traditional algorithms in single/double
precision. By contrast, if a turbulent flow has an unique state, then the background
numerical noises should not have a large-scale influence on the flow. This should be a
piece of good news for researchers in the field of computational fluid dynamics.

In theory, even if a turbulent flow has multiple states in large scale, we can still give a
deterministic prediction of its large-scale states by means of the CNS, since the artificial
background numerical noises are negligible in a long enough interval of time for the CNS
solution. However, a natural disturbance, e.g. thermal fluctuation, always exists in fluid
flows, which is random, small-scale, but unavoidable in practice. It is an open question
whether or not, like tiny artificial numerical noises, the micro-scale thermal fluctuation
might have a large-scale influence on some turbulent flows with multiple states. Note
that the influence of thermal fluctuation is not considered in the NS equations. So it
is strongly suggested to investigate the large-scale influence of thermal fluctuation on
turbulent flows with multiple states by means of the Landau–Lifshitz–Navier–Stokes
(LLNS) equations (Landau & Lifshitz 1959). It is also worthwhile seriously discussing
which is better for turbulent flows (especially those with large-scale multiple states),
either the deterministic NS equations or the stochastic LLNS equations. Obviously, more
investigations are necessary in the future.

It should be emphasized that the external noises considered in most of related articles
are mostly about ten orders of magnitude larger than the numerical noises considered in
this paper, which might greatly change the characteristics of the chaotic/turbulent systems
under their consideration. Also, even when their external noises are zero, their numerical
simulations are in fact a mixture of the ‘true’ physical solution and the ‘false’ numerical
noises; both of them might be at the same level, as shown in this paper. Thus, strictly
speaking, the conclusions based on this kind of ‘mixture’ should be not rigorous in theory.
Thus the CNS provides, for the first time, a rigorous way to investigate the influence
of external disturbances and very tiny artificial numerical noises on chaotic dynamical
systems and turbulent flows.

In summary, numerical noises as weak, small-scale stochastic perturbations increase
exponentially to a macro level of numerical simulations, and also might have a large
influence on the macroscopic statistics of turbulent flows. Therefore, we should pay more
attention to the influences of small-scale stochastic perturbations on turbulence. Finally,
this work also illustrates the validity, novelty and great potential of the CNS as a reliable
and accurate tool in theoretical studies of turbulence. We hope that the CNS might provide
a brand new, extremely accurate numerical tool to study turbulent flows.

Supplementary movie. A supplementary movie is available at https://doi.org/10.1017/jfm.2022.710.
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Appendix A. The CNS algorithm for 2-D turbulent RBC

Lin et al. (2017) combined the clean numerical simulation (CNS) with the traditional
Fourier–Galerkin spectral method (in spectral space) to solve a two-dimensional
(2-D) turbulent Rayleigh–Bénard convection (RBC) with free-slip boundary conditions.
However, their approach is rather time-consuming. Recently, Hu & Liao (2020) and Qin
& Liao (2020) proposed an efficient CNS algorithm in physical space for spatio-temporal
chaos to overcome the shortcomings of the CNS algorithm in spectral space. Here, the
basic idea of this kind of efficient CNS algorithm in physical space is described briefly by
using the 2-D turbulent RBC as an example.

A.1. The CNS algorithm in physical space
Applying the coordinate transformations x̃ = λx and z̃ = μz to the NS equations (2.1) and
(2.2), where λ = 2π/Γ and μ = π, we obtain the governing equations

∂

∂t
(λ2ψxx + μ2ψzz) = λμψz

(
λ2ψxxx + μ2ψxzz

)
− λμψx

(
λ2ψxxz + μ2ψzzz

)

+λθx +
√

Pr
Ra

(
λ4ψxxxx + 2λ2μ2ψxxzz + μ4ψzzzz

)
, (A1)

∂θ

∂t
= λμ(ψzθx − ψxθz)+ λψx + 1√

Pr Ra
(λ2θxx + μ2θzz), (A2)

with t � 0, x ∈ [0, 2π] and z ∈ [0,π], where x and z as subscripts denote the spatial
derivatives, and the overhead tildes are omitted.

We extend the computational domain from z ∈ [0,π] to z ∈ [0, 2π] so as to satisfy easily
the free-slip boundary conditions at the lower (z = 0) and upper (z = π) plates by means
of Fourier series. We use Nx × Nz equidistant points, i.e.

xj = 2π

Nx
j, zk = 2π

Nz
k, (A3a,b)

where j = 0, 1, 2, . . . ,Nx − 1 and k = 0, 1, 2, . . . ,Nz − 1, to discretize ψ and θ ,
respectively.

To reduce truncation errors in the temporal dimension, the high-order Taylor expansions
are adopted, i.e.

ψ(xj, zk, t +�t) ≈
M∑

m=0

ψ [m](xj, zk, t) (�t)m, (A4)

θ(xj, zk, t +�t) ≈
M∑

m=0

θ [m](xj, zk, t) (�t)m, (A5)

where �t is the time step, and M is the order of Taylor expansion, with the definitions

ψ [m](xj, zk, t) = 1
m!

∂mψ(xj, zk, t)
∂tm

, θ [m](xj, zk, t) = 1
m!

∂mθ(xj, zk, t)
∂tm

. (A6a,b)
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Here, the order M should be large enough so as to reduce the truncation errors (in the
temporal dimension) to a required tiny level.

Differentiating (m − 1) times both sides of (A1) and (A2) with respect to t and then
dividing by m!, we obtain the governing equations of ψ [m] and θ [m]:

λ2 ψ [m]
xx (xj, zk, t)+ μ2 ψ [m]

zz (xj, zk, t)

= 1
m

{√
Pr
Ra

[
2λ2μ2 ψ [m−1]

xxzz (xj, zk, t)+ λ4 ψ [m−1]
xxxx (xj, zk, t)+ μ4 ψ [m−1]

zzzz (xj, zk, t)
]

+
m−1∑
r=0

λμψ [r]
z (xj, zk, t)

[
λ2 ψ [m−1−r]

xxx (xj, zk, t)+ μ2 ψ [m−1−r]
xzz (xj, zk, t)

]

−
m−1∑
r=0

λμψ [r]
x (xj, zk, t)

[
λ2 ψ [m−1−r]

xxz (xj, zk, t)+ μ2 ψ [m−1−r]
zzz (xj, zk, t)

]

+ λ θ [m−1]
x (xj, zk, t)

}
, (A7)

θ [m](xj, zk, t) = 1
m

{
1√

Pr Ra

[
λ2 θ [m−1]

xx (xj, zk, t)+ μ2 θ [m−1]
zz (xj, zk, t)

]

+λμ
m−1∑
r=0

ψ [r]
z (xj, zk, t) θ [m−1−r]

x (xj, zk, t)

− λμ
m−1∑
r=0

ψ [r]
x (xj, zk, t) θ [m−1−r]

z (xj, zk, t)+ λψ [m−1]
x (xj, zk, t)

}
, (A8)

where m � 1.
Note that there exist some spatial partial derivatives (denoted by subscripts) in (A7) and

(A8), such as ∂s1+s2ψ [r]/(∂xs1 ∂zs2) and ∂s1+s2θ [r]/(∂xs1 ∂zs2) with r, s1, s2 � 0. In order
to approximate these spatial partial derivative terms with high computational efficiency
and precision from the known discrete variables ψ [r](xj, zk, t) and θ [r](xj, zk, t), we adopt
the spatial Fourier series

ψ [r](x, z, t) ≈
(Nx/2)−1∑

nx=−(Nx/2)+1

(Nz/2)−1∑
nz=−(Nz/2)+1

Ψ [r](nx, nz, t) exp(inxx) exp(inzz), (A9)

θ [r](x, z, t) ≈
(Nx/2)−1∑

nx=−(Nx/2)+1

(Nz/2)−1∑
nz=−(Nz/2)+1

Θ [r](nx, nz, t) exp(inxx) exp(inzz), (A10)
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where i = √−1 is the imaginary unit, and

Ψ [r](nx, nz, t) = 1
NxNz

Nx−1∑
j=0

Nz−1∑
k=0

ψ [r](xj, zk, t) exp(−inxxj) exp(−inzzk), (A11)

Θ [r](nx, nz, t) = 1
NxNz

Nx−1∑
j=0

Nz−1∑
k=0

θ [r](xj, zk, t) exp(−inxxj) exp(−inzzk), (A12)

are determined by the knownψ [r](xj, zk, t) and θ [r](xj, zk, t), respectively, at discrete points
(xj, zk) with j = 0, . . . ,Nx − 1 and k = 0, . . . ,Nz − 1. Then we can obtain the rather
accurate approximations of the spatial partial derivative terms in (A7) and (A8):

∂s1+s2ψ [r]

∂xs1 ∂zs2
(xj, zk, t)

≈ is1+s2

(Nx/2)−1∑
nx=−(Nx/2)+1

(Nz/2)−1∑
nz=−(Nz/2)+1

(nx)
s1(nz)

s2 Ψ [r](nx, nz, t) exp(inxxj) exp(inzzk),

(A13)

∂s1+s2θ [r]

∂xs1 ∂zs2
(xj, zk, t)

≈ is1+s2

(Nx/2)−1∑
nx=−(Nx/2)+1

(Nz/2)−1∑
nz=−(Nz/2)+1

(nx)
s1(nz)

s2 Θ [r](nx, nz, t) exp(inxxj) exp(inzzk).

(A14)

Here, the fast Fourier transform algorithm is used to increase computational efficiency. In
this way, the spatial truncation error can be decreased to a required tiny level, as long as
the mode numbers Nx and Nz are large enough.

Note that if the order M of the Taylor expansions (A4) and (A5) is large enough, then
the temporal truncation errors can be controlled below a required tiny level. Also, if spatial
discretizations are fine enough, i.e. the mode numbers Nx and Nz are large enough, then the
spatial truncation errors in Fourier expressions (A9) and (A10), and also the corresponding
spatial derivative terms in (A7) and (A8), can be reduced to a required tiny level. However,
this is not enough, since there always exist some round-off errors, which might be larger
than the truncation errors. So, in addition, all physical/numerical variables and parameters
are expressed in multiple precision with a large enough number Ns of significant digits so
that the round-off errors can also be controlled below a required tiny level. In this way,
the background numerical noises, i.e. both the spatial/temporal truncation errors and the
round-off error as a whole, can be controlled below a required tiny level. This is different
from other numerical algorithms, including DNS. In theory, the CNS results are more
accurate than those given by DNS, since the CNS adopts multiple precision, while DNS
mostly use double precision. In addition, note that the CNS results are useful only in a
limited interval of time t ∈ [0, Tc], in which numerical noises can be neglected.
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A.2. Realization of free-slip boundary conditions
Considering the Fourier expansions (A9) and (A10), the complex coefficients
Ψ [r](nx, nz, t) and Θ [r](nx, nz, t) can be expressed in terms of their real and imaginary
parts as

Ψ [r](nx, nz, t) = Ψ
[r]
1 (nx, nz, t)+ iΨ [r]

2 (nx, nz, t), (A15)

Θ [r](nx, nz, t) = Θ
[r]
1 (nx, nz, t)+ iΘ [r]

2 (nx, nz, t), (A16)

where r � 0, −(Nx/2)+ 1 � nx � (Nx/2)− 1 and −(Nz/2)+ 1 � nz � (Nz/2)− 1.
Using the conjugate symmetry of Ψ [r](nx, nz, t) and Θ [r](nx, nz, t), we enforce

Ψ
[r]
1 (nx, nz, t) = Ψ

[r]
1 (−nx,−nz, t) = −Ψ [r]

1 (nx,−nz, t) = −Ψ [r]
1 (−nx, nz, t), (A17)

Ψ
[r]
2 (nx, nz, t) = −Ψ [r]

2 (−nx,−nz, t) = −Ψ [r]
2 (nx,−nz, t) = Ψ

[r]
2 (−nx, nz, t), (A18)

Θ
[r]
1 (nx, nz, t) = Θ

[r]
1 (−nx,−nz, t) = −Θ [r]

1 (nx,−nz, t) = −Θ [r]
1 (−nx, nz, t), (A19)

Θ
[r]
2 (nx, nz, t) = −Θ [r]

2 (−nx,−nz, t) = −Θ [r]
2 (nx,−nz, t) = Θ

[r]
2 (−nx, nz, t), (A20)

so as to satisfy automatically the free-slip boundary conditions at z = 0 and z = π,
corresponding to the upper and lower boundaries, respectively. Also, there should exist

Ψ
[r]
1 (0, nz, t) = Ψ

[r]
1 (nx, 0, t) = Ψ

[r]
2 (nx, 0, t) = 0, (A21)

Θ
[r]
1 (0, nz, t) = Θ

[r]
1 (nx, 0, t) = Θ

[r]
2 (nx, 0, t) = 0. (A22)

For more details, please refer to Saltzman (1962). Actually, (A17)–(A22) imply that
ψ [r](x, z, t) and θ [r](x, z, t) in (A9) and (A10) are expanded as the sine series in the vertical
direction, which satisfy automatically the free-slip boundary conditions

ψ [r](x, z, t) = ∂2ψ [r](x, z, t)
∂z2 = θ [r](x, z, t) = 0 (A23)

at z = 0 and z = π, i.e.

ψ [r](xj, zk, t) = ψ [r]
zz (xj, zk, t) = θ [r](xj, zk, t) = 0 (A24)

at k = 0 and k = Nz/2.

A.3. Computational efficiency
In this subsection, we illustrate that the above-mentioned CNS algorithm in physical
space needs much less calculation than the previous CNS algorithm combined with the
Fourier–Galerkin spectral method (Lin et al. 2017). Table 1 illustrates the required CPU
times of the CNS algorithm combined with the Fourier–Galerkin spectral method (denoted
T1) and the CNS algorithm in physical space described above (denoted T2) by means of
different numbers np of threads in parallel computing. Note that T1 is much larger than
T2 in the cases np = 16, 32, 64 and 128: the corresponding time ratio T1/T2 is more than
1500 in all cases. In consequence, the CNS algorithm in physical space described above
is much more efficient (about three levels of magnitude higher) than the previous CNS
algorithm combined with the Fourier–Galerkin spectral method (Lin et al. 2017), and thus
is used in this paper.
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np T1 (s) T2 (s) T1/T2

16 475 348.2 282.0 1686
32 237 953.8 138.4 1719
64 123 709.2 77.5 1596
128 65 149.4 43.2 1508

Table 1. Required CPU times of the CNS algorithm combined with the Fourier–Galerkin spectral method
(denoted T1) and the CNS algorithm in physical space (denoted T2) for solving the governing equations (2.1)
and (2.2) in the temporal interval t ∈ [0, 0.1] with the same physical and numerical parameters: aspect ratio
Γ = L/H = 2

√
2, Prandtl number Pr = 6.8, Rayleigh number Ra = 107, mode numbers |nx|, |nz| � 127 of

spatial discretizations, the 10th order (M = 10) of the truncated Taylor series in temporal dimension with a
fixed time step �t = 10−3, and the number Ns = 100 of significant digits in the multiple precision scheme,
where np denotes the number of threads in parallel computing.
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