ON INCOMPLETE CHARACTER SUMS TO A PRIME-POWER MODULUS

BY

J. H. H. CHALK

AbSTRACT. Let χ denote a primitive character to a prime-power modulus $k=p^{\alpha}$. The expected estimate

$$
\sum_{N+1<n<N+H} X(n) \ll H^{1-r^{-1}} k^{\left(r^{-1}+r^{-2}\right) / 4} k^{\epsilon}
$$

for the incomplete character sum has been established for $r=1$ and 2 by D. A. Burgess and recently, he settled the case $r=3$ for all primes $p>3$, (cf. [2] for the proof and for references). Here, a short proof of the main inequality (Theorem 2) which leads to this result is presented; the argument being based upon my characterization in [3] of the solution-set of a related congruence.

1. Let ${ }^{1} \chi$ be a primitive character to a prime-power modulus $p^{\alpha}(p \geq 3, \alpha \geq 2)$,

$$
\begin{equation*}
T_{n, r}(\boldsymbol{m})=\sum_{\substack{0 \leq x \leq p^{r} \\ x \in S_{n}^{\prime}(f, g)}} \chi[F(x)] \tag{1}
\end{equation*}
$$

where

$$
\begin{gather*}
\boldsymbol{m}=\left(m_{1}, m_{2}, \ldots, m_{6}\right) \in \mathbf{Z}^{6}, \quad F(X) / g(X), \tag{2}\\
f(X)=\prod_{1 \leq i \leq 3}\left(X+m_{i}\right), \quad g(X)=\prod_{3<i \leq 6}\left(X+m_{i}\right), \\
\left\{\begin{array}{c}
S_{n}(f, g)=\left\{x \in \mathbf{Z}: f g(x) \not \equiv 0(p), \quad J(f, g, x) \equiv 0\left(p^{n}\right)\right\}, \\
S_{n}^{0}(f, g)=\left\{x \in S_{n}(f, g): J^{\prime}(f, g, x) \equiv 0(p)\right\}
\end{array},\right.
\end{gather*}
$$

and

$$
\begin{equation*}
J(f, g, X)=f(X) g^{\prime}(X)-f^{\prime}(X) g(X) \tag{5}
\end{equation*}
$$

In a recent letter, David Burgess wrote that he had established the estimate

$$
\begin{equation*}
\sum_{\substack{m \in z^{6} \\ 0<m_{i} \leq h}}\left|S_{\alpha}(\boldsymbol{m})\right| \ll h^{3} p^{\alpha}(\alpha \log p)^{4} \quad \text { for } \quad 0<h \leq p^{\alpha / 6}, \tag{6}
\end{equation*}
$$

[^0]where
\[

$$
\begin{equation*}
S_{\alpha}(\boldsymbol{m})=\sum_{\substack{0 \leq x<p^{\alpha} \\ f_{g}(x) \neq o(p)}} \chi[F(x)] . \tag{7}
\end{equation*}
$$

\]

The connection between $S_{\alpha}(\boldsymbol{m})$ and $\left.T_{n, r}^{f_{g}(\boldsymbol{m})} \boldsymbol{m}\right)$ is given by an inequality of the form

$$
\begin{equation*}
\left|S_{\alpha}(\boldsymbol{m})\right| \leq p^{n}\left|T_{n, r}(\boldsymbol{m})\right|+4 p^{\alpha / 2} \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
(n, r)=((\alpha-\epsilon) / 2,(\alpha+\epsilon) / 2) \tag{9}
\end{equation*}
$$

and $\epsilon=\epsilon(\alpha)=0$ if α is even and $=-1$ if α is odd, (cf., Lemma 2 below). Our estimation of $S_{\alpha}(\boldsymbol{m})$ is entirely based upon that of $T_{n, r}(\boldsymbol{m})$, which in turn depends upon the fact (cf. [3], Theorem pp. 434-435) that $S_{n}(f, g)$ is a union of at most 4 arithmetic progressions. Thus, for fixed $\boldsymbol{m} \in \boldsymbol{Z}^{6}$ for which $S_{n}(f, g) \neq \emptyset$,

$$
\begin{equation*}
S_{n}(f, g)=\underset{\tau, \sigma}{\cup} A(\tau, \sigma) \tag{10}
\end{equation*}
$$

where, for $m=n-\mu, \mu=\operatorname{ord}_{p}[f(X)-g(X)]$, and $[[\theta]]=-[-\theta]$,

$$
A(\tau, \boldsymbol{\sigma})=\left\{\begin{array}{lll}
\left\{x \in \boldsymbol{Z}, x \equiv \tau\left(p^{m-\sigma}\right)\right\}, & \text { if } \quad 0 \leq \sigma<[[m / 2]] \tag{11}\\
\left\{x \in \boldsymbol{Z}, x \equiv \tau\left(p^{\sigma}\right)\right\}, & \text { if } & \boldsymbol{\sigma}=[[m / 2]]
\end{array}\right.
$$

and $^{2}(\tau, \sigma)$ takes on at least one and at most four values. For $\sigma \neq 0$,

$$
\begin{equation*}
(\tau, \sigma)=(t, v),(t+v z, v),\left(t_{1}, v_{1}\right),\left(t_{1}+v_{1} z_{1}, v_{1}\right) \tag{12}
\end{equation*}
$$

which satisfy the conditions

$$
\begin{equation*}
\text { (i) } 0<v \leq[[m / 2]], 0<v_{1} \leq[[m / 2]] \tag{13}
\end{equation*}
$$

(14) (ii) $\binom{z}{z_{1}}$ is defined uniquely, $\binom{\left(p^{m-2 v}\right)}{\left(p^{m-2 v_{1}}\right)}$ with $\binom{3 z+2 \equiv 0(p)}{3 z_{1}+2 \equiv 0(p)}$, respectively; otherwise, $v=0 \Rightarrow(\tau, \sigma)=(t, 0)$ and the case $\nu_{1}=0$ is anomalous in that $(\tau, \sigma)=$ $\left(t_{i}, 0\right)$ with $i \leq 2$ if $v \neq 0$ and $i \leq 3$ if $v=0$. We show, in Lemma 3, that $F(X)$ satisfies

$$
\begin{equation*}
F^{\prime}(\tau) \equiv F^{\prime \prime}(\tau) \equiv 0\left(p^{\mu+\sigma}\right), F^{(r)}(\tau) \equiv 0\left(p^{\mu}\right),(r \geq 1) \tag{15}
\end{equation*}
$$

for some pair (μ, σ) with $0 \leq \mu<n, 0 \leq \sigma \leq[[m / 2]]$ and since $\tau \in A(\tau, \sigma) \subset$ $S_{n}(f, g)$, trivially, it follows that

$$
\begin{equation*}
\boldsymbol{m} \in B(\mu, \mu+\sigma, h) \tag{16}
\end{equation*}
$$

where

$$
\begin{align*}
B(\mu, s, h) & =\left\{\boldsymbol{m} \in Z^{6}, 0<m_{i} \leq h: \exists x \cdot F^{\prime}(x) \equiv F^{\prime \prime}(x) \equiv 0\left(p^{s}\right),\right. \tag{17}\\
F^{\prime \prime \prime}(x) & \left.\equiv 0\left(p^{\mu}\right), f g(x) \not \equiv 0(p)\right\} .
\end{align*}
$$

[^1]Thus, by the decomposition of $S_{n}(f, g)$ in (10), and, since $A(\tau, \sigma) \subset S_{n}^{0}(f, g) \Rightarrow \mu+$ $\sigma>0$, it follows that

$$
\begin{equation*}
\sum_{\substack{\boldsymbol{m} \in \mathbb{Z}^{6} \\ 0<m_{i} \leq h}}\left|T_{n, r}(\boldsymbol{m})\right| \tag{18}
\end{equation*}
$$

cannot exceed the sum of at most four expressions of the type

$$
\begin{equation*}
\sum_{\substack{\mu, \sigma \\ 0 \leq \mu<n \\ 0 \leq \sigma \leq\|m / 2\| \\ \mu+\sigma>0}} \sum_{m \in B(\mu, \mu+\sigma, h)}\left|\sum_{\substack{0<x<p^{\prime} \\ x \in A(\tau, \sigma)}} \chi[F(x)]\right| \tag{19}
\end{equation*}
$$

since (τ, σ) takes at most four values in (12). Now, by Burgess' recent work (cf. [2], Theorem 7), we have an upper bound to the cardinality of $B(\mu, s, h)$, which takes the shape

$$
\begin{equation*}
\# B(\mu, s, h) \leq \kappa(s+1)^{3} M(\mu, s, h) \tag{20}
\end{equation*}
$$

where

$$
\begin{equation*}
M(\mu, s, h)=\frac{h^{6}}{p^{s+\mu / 2}}+\frac{h^{5}}{p^{\mu / 2}}+h^{4} \tag{21}
\end{equation*}
$$

and κ is a numerical constant $\leq 6.2^{7}$. My contribution is a bound for the summand and this is stated in Theorem 1.

Theorem 1. For $\mu+\sigma>0$,

$$
\begin{equation*}
\left|\sum_{\substack{0 \leq x \ll^{r} \\ x \in A(\tau, \sigma)}} x[F(x)]\right| \leq N_{\alpha}(\mu, \sigma, h) \tag{22}
\end{equation*}
$$

where

$$
N_{\alpha}(\mu, \sigma, h)=\left\{\begin{array}{lll}
p^{(\mu+\sigma+\epsilon) / 2}, & \text { if } \quad 0 \leq \sigma<[[m / 2]], \tag{23}\\
2 p^{(n+\mu+2 \epsilon) / 3}, & \text { if } \quad \sigma=[[m / 2]] .
\end{array}\right.
$$

By Lemma 5, we have

$$
M(\mu, \mu+\sigma, h) N_{\alpha}(\mu, \sigma, h) p^{n} \leq\left\{\begin{array}{lll}
6 h^{3} p^{\alpha-\mu / 6}, & \text { if } \quad \sigma<[[m / 2]] \tag{24}\\
6 h^{3} p^{\alpha}, & \text { if } \quad \sigma=[[m / 2]]
\end{array}\right.
$$

and this is the final ingredient for our version of Burgess' estimate in (6).
Theorem 2.

$$
\begin{equation*}
\sum_{\substack{\boldsymbol{m} \in Z^{6} \\ 0<m_{i} \leq h}}\left|S_{\alpha}(\boldsymbol{m})\right| \leq(24)^{3}(\alpha+3)^{4} h^{3} p^{\alpha}, \quad \text { if } \quad 0<h \leq p^{\alpha / 6} \tag{25}
\end{equation*}
$$

2. Proof of Theorem 2. By (8), (9), (18), (19), we have

$$
\begin{align*}
\sum_{\substack{m \in Z^{6} \\
0<m_{i} \leq h}}\left|S_{\alpha}(m)\right| & \leq 4 h^{6} p^{\alpha / 2}+6!h^{3} p^{\alpha} \tag{26}\\
& +4 p^{n} \sum_{\substack{\mu, \sigma \\
0 \leq \mu<n, \mu+\sigma>0 \\
0 \leq \sigma \leq\|\boldsymbol{m} / 2\|}} \# B(\mu, \mu+\sigma, h) N_{\alpha}(\mu, \sigma, h)
\end{align*}
$$

upon inserting the bounds in (20) and (22) into each of the sums of the type in (19), at most 4 in number, and noting that, for the special case $\mu=n$, the trivial bound p^{α} is sufficient when $f(X) \equiv g(X)\left(p^{n}\right)$, and the roots of f are merely a permutation of those of g, (as $h^{3} \leq p^{n}$). Now by (20), (21) and (24),

$$
\begin{align*}
& p^{n} \sum_{\substack{\mu, \sigma \\
0 \leq \mu \leq n \\
0 \leq \sigma \leq\|m / 2\|}} \# B(\mu, \mu+\sigma, h) N_{\alpha}(\mu, \sigma, h) \tag{27}\\
& \leq \sum_{\substack{\mu, \sigma \\
0 \leq \mu<n \\
0 \leq \sigma \leq\|m / 2\|}}(\mu+\sigma+1)^{3} M(\mu, \mu+\sigma, h) N_{\alpha}(\mu, \sigma, h) p^{n} \\
& \leq 6 \kappa h^{3} p^{\alpha}\left\{\sum_{\substack{0 \leq \mu<n \\
0 \leq \sigma<\|m / 2\|}} p^{-\mu / 6}(\mu+\sigma+1)^{3}+\sum_{\substack{0 \leq \mu<n \\
\sigma=\|m / 2\|}}(\mu+\sigma+1)^{3}\right\} \\
& \leq 6 \kappa h^{3} p^{\alpha}\left\{\left[\sum_{0 \leq \mu<n} \sum_{0 \leq \sigma \leq n} p^{-\mu / 6}(n+1)^{3}\right]+(n+1)^{4}\right\} \\
& \leq 6 \kappa h^{3} p^{\alpha}\left\{1+\sum_{0 \leq \mu<\infty} p^{-\mu / \sigma}\right\}(n+1)^{4} \\
& <6^{2} \kappa h^{3} p^{\alpha}(n+1)^{4} \\
& <6^{3} \cdot 2^{3}(\alpha+3)^{4} h^{3} p^{\alpha} .
\end{align*}
$$

Thus, the sum on the left of (26) does not exceed

$$
\left[4+6!+4.6^{3} \cdot 2^{3}(\alpha+3)^{4}\right] h^{3} p^{\alpha} \leq 2^{6} 6^{3}(\alpha+3)^{4} h^{3} p^{\alpha}
$$

3. The Auxiliary Lemmata. In subsequent arguments, we shall need a finite form of the Taylor expansion of $F(x)$ or $F(a+x)$ and Lemma 1 provides the justification.

Lemma 1. $(n \geq 2)$. Let $k_{n}=p \phi\left(p^{n}\right)-1$,

$$
G(X)=f(X) g(X)^{k_{n}}, F(X)=f(X) / g(X) .
$$

Then
(i) for any x with $g(x) \not \equiv 0(p)$,

$$
\begin{equation*}
G(x) \equiv F(x), G^{\prime}(x) \equiv F^{\prime}(x), \ldots, G^{(r)}(x) \equiv F^{(r)}(x), \ldots,\left(p^{n}\right) \tag{28}
\end{equation*}
$$

and

$$
\operatorname{ord}_{p} F^{(r)}(x) / r!\geq 0, \quad \text { for all } r
$$

(ii) If $g(a) \not \equiv 0(p)$, then
(29) $\quad F(a+x) \equiv F(a)+\frac{F^{\prime}(a)}{1!} x+\frac{F^{\prime \prime}(a)}{2!} x^{2}+\cdots+\frac{F^{\left(1_{n}\right)}(a)}{1_{n}!} x^{1_{n}} \quad\left(p^{n}\right)$,
where $1_{n} \leq \operatorname{deg} G(X)$.
Proof:
(i) Use induction on r, noting that

$$
F^{(r)}(x)=\frac{f_{r}(x)}{g^{r}(x)}, G^{(r)}(x) \equiv f_{r}(x) g(x)^{k_{n}-r}\left(p^{n}\right)
$$

for a suitable polynomial $f_{r}(x)$, and that $k_{n} \equiv-1\left(p^{n}\right)$.
(ii) Since $G(a+x) \equiv F(a+x)\left(p^{n}\right)$, and $G(a+x)$ is a polynomial in x, part (i) gives the result.

Lemma 2.

$$
\begin{equation*}
\left|S_{\alpha}(\boldsymbol{m})\right| \leq 4 p^{\alpha / 2}+p^{n}\left|T_{n, r}(\boldsymbol{m})\right| . \tag{30}
\end{equation*}
$$

Proof. This is merely a refinement of Burgess' Lemma 2 and Lemma 4 ([1]) in which the non-singular solutions (p^{r}) of the congruence $F^{\prime}(x) \equiv 0\left(p^{r}\right)$, at most 4 in number are separated and estimated crudely. Lemma 1 provides the justification in replacing his $f(x) g(x)^{\phi\left(p^{n}\right)-1}$ by $F(x)=f(x) / g(x)$.

Lemma 3. $\operatorname{ord}_{p} F^{\prime \prime}(\tau)=\mu+\sigma$.
Proof. If $F(X)=f(X) / g(X)$, then

$$
-g^{2}(X) F^{\prime}(X)=J(f, g, X)
$$

and

$$
-\left(g^{2}(X) F^{\prime \prime}(X)+2 g(X) g^{\prime}(X) F^{\prime}(X)\right)=J^{\prime}(f, g, X)
$$

Then, by our choice of $\tau \in A(\tau, \sigma) \subset S_{n}(f, g)$, we have $J(f, g, \tau) \equiv 0\left(p^{n}\right)$ and so

$$
F^{\prime}(\tau) \equiv 0\left(p^{n}\right), \quad \text { since } \quad g(\tau) \not \equiv 0(p)
$$

If $\sigma=\boldsymbol{v}$, then

$$
\begin{equation*}
J^{\prime}(f, g, X)=J^{\prime}(f+\lambda g, X) \equiv u J^{\prime}\left(f_{1}, g, X\right), \quad\left(p^{n}\right) \tag{31}
\end{equation*}
$$

by the combinative invariance of J and J^{\prime} and $f_{1}(x)$ is as defined in ([3], (19)). But

$$
J^{\prime}\left(f_{1}, g, X\right)=\left[w(X-t)^{3}+v(X-t)^{2}\right] g^{\prime \prime}(X)-2[3 w(X-t)+v] g(X)
$$

and on substituting $\tau=t$ and $\tau=t+v z$ for $\nu \neq 0$ and $\tau=t$ for $v=0$ we have the
required result (noting that $3 z+1 \equiv-1 \not \equiv 0(p)$ in the case $\tau=t+v z$). If $\sigma=\nu_{1}$, the argument is entirely similar, except that (31) is replaced by

$$
\begin{equation*}
J^{\prime}\left(f_{1}, g, X\right)=J^{\prime}\left(f_{1}, g+\lambda_{1} f_{1}, X\right) \equiv u_{1} J^{\prime}\left(f_{1}, g_{1}, X\right), \quad\left(p^{m}\right) \tag{32}
\end{equation*}
$$

where $u_{1} \not \equiv 0(p)$ and $g_{1}(X)$ is as defined in ([3], (38)).
Lemma 4. Suppose $l \geq 2, k \geq 2$ and $p>3$. Let

$$
f(X)=a_{k} X^{k}+\cdots+a_{2} X^{2}+a_{1} X+a_{0} \quad\left(a_{i} \in Z, 0 \leq i \leq k\right),
$$

where

$$
\begin{equation*}
\left(a_{1}, a_{2}, a_{3}, p\right)=1, \quad p \mid a_{r}(r \geq 3) \tag{33}
\end{equation*}
$$

If $\mu_{1}, \mu_{2}, \ldots, \mu_{r}$ denote the distinct roots of the congruence

$$
\begin{equation*}
f^{\prime}(x) \equiv 0(p), \quad 0 \leq x<p \tag{34}
\end{equation*}
$$

let $m_{1}, m_{2}, \ldots, m_{r}$ denote their respective multiplicities and define

$$
m=m_{1}+m_{2}+\cdots+m_{r}, \quad M=\max \left(m_{1}, m_{2}, \ldots, m_{r}\right) .
$$

If

$$
S\left(p^{\prime}, f\right)=\sum_{0 \leq x \leq p^{\prime}} e^{2 \pi \mathrm{if}(x) / p^{\prime}}
$$

then

$$
\left|S\left(p^{\prime}, f\right)\right| \leq m p^{\left[1-\frac{1}{M+1}\right]},
$$

where $m \leq k-1$.
Proof. See e.g. [4], pp. 40-41; also [5], Ch. 1, §5 with routine changes. ${ }^{3}$
Lemma 5. Let

$$
M(\mu, \mu+\sigma, h)=\frac{h^{6}}{p^{\sigma+3 \mu / 2}}+\frac{h^{5}}{p^{\mu / 2}}+h^{4}
$$

Then
(i) $M(\mu, \mu+\sigma, h) \cdot p^{(\mu+\sigma+\epsilon / 2} \cdot p^{n}<3 h^{3} p^{\alpha} p^{-\mu / 6}$, if $0 \leq \sigma<\left[\left[\frac{m}{2}\right]\right]$
(ii) $M(\mu, \mu+[[m / 2]], h) \cdot p^{(n+\mu+2 \epsilon) / 3} p^{n} \leq 3 h^{3} p^{\alpha}$.

Proof. (i) Since $n=(\alpha-\epsilon) / 2$ and $\sigma<[[m / 2]] \Rightarrow 2 \sigma \leq n-\mu-1$, we have $\max (2 \sigma, \mu+\sigma) \leq \mu+2 \sigma \leq n-1=\alpha / 2-(1+\epsilon / 2)$. Then

$$
\begin{aligned}
(\mu+\sigma+\epsilon) / 2+n & =(\alpha-\epsilon+\mu+\sigma+\epsilon) / 2=\alpha / 2+(\mu+\sigma) / 2 \\
& \leq(\alpha / 2-\mu)+(\sigma+3 \mu / 2)
\end{aligned}
$$

[^2]and $h^{6} p^{\alpha / 2} \leq h^{3} p^{\alpha}$. Similarly,
$$
h^{5} p^{\alpha / 2} p^{(\mu+\sigma) / 2} p^{-\mu / 2} \leq h^{3} p^{\alpha / 3} p^{\alpha / 2} p^{\sigma / 2}<h^{3} p^{5 \alpha / 6} \cdot p^{\alpha / 8} p^{-\mu / 4}<h^{3} p^{\alpha} p^{-\mu / 4}
$$
and
$$
h^{4} p^{(\alpha+\mu+\sigma) / 2}<h^{3} p^{\alpha / 6} p^{\alpha / 2} \cdot p^{(\mu+\sigma) / 2}=\left(h^{3} p^{\alpha} p^{-\mu / 6}\right) \cdot p^{(\mu+\sigma) / 2-\alpha / 3-\mu / 6},
$$
where
$$
\alpha / 3>2(\mu+2 \sigma) / 3 \geq 2 \mu / 3+\sigma / 2=\mu / 6+(\mu+\sigma) / 2 .
$$
(ii) $\sigma=[[m / 2]], n=(\alpha-\epsilon) / 2 \Rightarrow 2 \sigma-(\alpha-\epsilon) / 2+\mu=0$ or $1 \Rightarrow \sigma \geq \alpha / 4$ $-\mu / 2$. But, $(n+\mu+2 \epsilon) / 3+n=(2 \alpha+\mu) / 3$ and so
$$
h^{6} p^{(2 \alpha+\mu) / 3} p^{-\left(\frac{3 \mu}{2}+\sigma\right)} \leq h^{3} p^{7 \alpha / 6+\mu-\sigma},
$$
where $7 \alpha / 6-\mu-\sigma \leq 7 \alpha / 6-\mu-(\alpha / 4-\mu / 2)<\alpha$.
Similarly, $h^{5} p^{-\mu / 2} p^{(2 \alpha+\mu) / 3} \leq h^{3} p^{\alpha / 3} p^{2 \alpha / 3}=h^{3} p^{\alpha}$,
$$
h^{4} p^{(2 \alpha+\mu) / 3}<h^{3} p^{\alpha / 6} p^{2 \alpha / 3} p^{\mu / 3}<h^{3} p^{\alpha},
$$
since $\mu \leq n-1=(\alpha-\epsilon) / 2-1<\alpha / 2$
3. Proof of Theorem 1. For convenience, we denote the sum in (22), by S_{1} if $0 \leq$ $\alpha<[[m / 2]]$ and by S_{2} if $\sigma=[[m / 2]]$.
(i) Write $x=\tau+p^{m-\sigma} y$, where $0 \leq y<p^{\mu+\sigma+\epsilon}$; then
$$
S_{1}=\chi[F(\tau)] \sum_{0 \leq y<p^{\mu+\omega+\epsilon}} \chi\left[1+\frac{F_{\tau}(y)-F(\tau)}{F(\tau)}\right],
$$
since $F(\tau) \not \equiv 0(p)$ where, by Lemma 2,
\[

$$
\begin{aligned}
F_{\tau}(y)-F(\tau) & =p^{m-\sigma} F^{\prime}(\tau) y+\frac{p^{2(m-\sigma)}}{2!} F^{\prime \prime}(\tau) y^{2}+\frac{p^{3(m-\sigma)}}{3!} F^{\prime \prime \prime}(\tau) y^{3}+\cdots \\
& \equiv p^{\alpha-(\mu+\sigma+\epsilon)}\left[a_{1} y+a_{2} y^{2}+\cdots+a_{k} y^{k}\right], \quad\left(p^{\alpha}\right)
\end{aligned}
$$
\]

and $\alpha-(\mu+\sigma+\epsilon)=2 n-\mu-\sigma>\alpha / 2, k \leq \alpha /(m-\sigma)<\alpha$,

$$
a_{1}=\frac{F^{\prime}(\tau)}{1!p^{n}}, \quad a_{2}=\frac{F^{\prime \prime}(\tau)}{2!p^{\mu+\sigma}}, \quad a_{3}=\frac{F^{\prime \prime}(\tau)}{3!p^{\mu}} p^{n-\mu-2 \sigma} .
$$

Moreover, $p^{\mu} \mid F^{(r)}(\tau)$ for $r \geq 1$ and, indeed we have

$$
a_{r}=\frac{F^{(r)}(\tau)}{r!p^{\mu}} \cdot p^{w(r)}, \quad(r \geq 3)
$$

where

$$
\begin{aligned}
w(r) & =r(m-\sigma)-(2 n-\mu-\sigma)+\mu, \\
& =3(m-\sigma)-(2 n-2 \mu-\sigma)+(r-3)(m-\sigma), \\
& =n-\mu-2 \sigma+(r-3)(m-\sigma), \\
& =n-\mu-2 \sigma+(r-3), \text { since } m>2 \sigma . \\
& >0, \text { for } r \geq 3
\end{aligned}
$$

Also, if $p^{\delta(r, p)} \| r$!, then

$$
\delta(r, p)=\left[\frac{r}{p}\right]+\left[\frac{r}{p^{2}}\right]+\cdots<\frac{r}{p-1} \leq r-3, \quad \text { for } \quad r \geq 4, \quad p \geq 5
$$

and so

$$
w(r)>n-\mu-2 \sigma+\delta(r, p), \quad \text { for } \quad r \geq 4
$$

Hence

$$
S_{1}=\chi(F(\tau)) \sum_{0 \leq y<p^{\mu+\sigma+\epsilon}} e\left[\frac{c}{F(\tau) p^{\mu+\sigma+\epsilon}} G(y)\right),
$$

since $\chi\left(1+p^{\gamma}\right)=e\left(\frac{c}{p^{\alpha-\gamma}}\right)$ if $\gamma \geq \alpha / 2$, where $p \nmid c, e(x)$ denotes $e^{2 \pi i x}$,

$$
G(y)=a_{1} y+a_{2} y^{2}+\cdots+a_{k} y^{k},
$$

$\operatorname{ord}_{p} a_{2}=0$, by Lemma 4 and $p \mid a_{r}(3 \leq r \leq k)$. Now

$$
G^{\prime}(Y) \equiv a_{1}+2 a_{2} Y
$$

and so, by Hua's inequality (Lemma 4) with $M=m=1$,

$$
\left|S_{1}\right| \leq p^{(\mu+\sigma+\epsilon) / 2} \leq p^{(n+\mu) / 3+\epsilon / 2}
$$

since $n>\mu+2 \sigma$.
(ii) Write $x=\tau+p^{\sigma} y$, where $0 \leq y<p^{n-\sigma+\epsilon}$ and

$$
\sigma=[[m / 2]]=\left\{\begin{array}{lll}
m / 2, & \text { if } m & \text { even } \\
(m+1) / 2, & \text { if } m & \text { odd }
\end{array}\right.
$$

Then, as in (i),

$$
\begin{aligned}
S_{2} & =\sum_{0 \leq y<p^{n-\sigma+\epsilon}} \chi\left[F_{\tau}(y)\right] \\
& =\chi\left[F(\tau) \sum_{0 \leq y<p^{n-\sigma+\epsilon}} \chi\left[1+\frac{F_{\tau}(y)-F(\tau)}{F(\tau)}\right],\right.
\end{aligned}
$$

where

$$
\begin{aligned}
F_{\tau}(y)-F(\tau) & \equiv \frac{p^{\sigma}}{1!} F^{\prime}(\tau) y+\frac{p^{2 \sigma}}{2!} F^{\prime \prime}(\tau) y^{2}+\cdots+\frac{p^{k \sigma}}{k!} F^{(k)}(\tau) y^{k} . \quad\left(p^{\alpha}\right) \\
& \equiv p^{\alpha-(n-\sigma+\epsilon)}\left[a_{1} y+a_{2} y^{2}+\cdots+a_{k} y^{k}\right], \quad\left(p^{\alpha}\right)
\end{aligned}
$$

and $\alpha-(n-\sigma+\epsilon)=2 n-(n-\sigma)>\alpha / 2, k<\alpha / \sigma<\alpha$,

$$
\begin{gathered}
a_{1}=\frac{F^{\prime}(\tau)}{1!p^{n}}, \quad a_{2}=\frac{F^{\prime \prime}(\tau)}{2!p^{n-\sigma}}=\frac{F^{\prime \prime}(\tau)}{2!p^{\mu+\sigma}} \cdot p^{2 \sigma-m} \\
a_{3}=\frac{F^{\prime \prime \prime}(\tau)}{3!p^{n-2 \sigma}}=\frac{F^{\prime \prime \prime}(\tau)}{3!p^{\mu}} \cdot p^{2 \sigma-m}, \quad a_{4}=\frac{F^{(i v)}}{4!p^{\mu}} \cdot p^{3 \sigma-m} \\
a_{r}=\frac{F^{(r)}(\tau)}{r!p^{\mu}} \cdot p^{w(r)}, \quad p^{\mu} \mid F^{(r)}(\tau), \quad(r \geq 1)
\end{gathered}
$$

with $w(r)=r \sigma-(n+\sigma)+\mu=(r-1) \sigma-m=(2 \sigma-m)+(r-3) \sigma$. Thus, for $r \geq 4$, we have $w(r) \geq 1+\delta(r, p)$ with strict inequality if m is odd.

Hence

$$
S_{2}=\chi[F(\tau)] \sum_{0 \leq y<p^{n-\sigma+\epsilon}} e\left[\frac{c}{p^{n-\sigma+\epsilon}} G(y)\right]
$$

where $G(y)=a_{1} y+a_{2} y^{2}+\cdots+a_{k} y^{k}$ and

$$
\operatorname{ord}_{p} a_{2}=\left\{\begin{array}{llll}
0 & \text { if } & m & \text { is even } \\
1 & \text { if } & m & \text { is odd }
\end{array}, \quad p \mid a_{r}(4 \leq r \leq k)\right.
$$

Now, for m even,

$$
G^{\prime}(y) \equiv a_{1}+2 a_{2} y+3 a_{3} y^{2}(p), \quad p \nmid 2 a_{2}
$$

and so, by Hua's inequality, with $M \leq 2, m \leq 2$

$$
\left|S_{2}\right| \leq 2 p^{(n-\sigma+\epsilon)(1-1 / 3)}=2 p^{(n+\mu+2 \epsilon) / 3}
$$

For m odd, when $2 \sigma-m=1$ and $p \| a_{2}, p \mid a_{3}$, we note that $S_{2}=0$ if $p \nmid a_{1}$; otherwise, if $p \mid a_{1}$, we have $p \mid G(Y)$ and

$$
p^{-1} G^{\prime}(y) \equiv a_{1} p^{-1}+2 a_{2} p^{-1} y+3 a_{3} p^{-1} y^{2}(p), \quad p \nmid 2 a_{2} p^{-1}
$$

and then, by Hua's inequality, with $f(X)=p^{-1} G(X), M \leq 2, m \leq 2$,

$$
\left|S_{2}\right| \leq 2 p \cdot p^{(n-\sigma+\epsilon-1)(1-1 / 3)}=2 p^{(n+\mu+2 \epsilon) / 3}
$$

REFERENCES

[^3]3. J. H. H. Chalk, On a Congruence related to Character Sums, Canadian Math. Bull., 28(4) (1985), pp. 431-439.
4. L.-K. Hua, Enzyklopädie der Mat. Wissenschaften, Band 12, Heft 13, Teil 1; B. 13.
5. L.-K. Hua, Additive Primzahltheorie, (Teubner, Leipzig), 1959.

University of Toronto,
Toronto, Ont. M5S IAI

[^0]: Received by the editors May 8, 1985, and, in revised form, August 18, 1986.
 AMS Subject Classification (1980): 10A10, 10G05.
 Key words: Congruences, Character Sums.
 (C) Canadian Mathematical Society 1985.
 'For notation and terminology, see [3]; in particular, "mod p^{r} is abbreviated to " $\left(p^{r}\right)$ ".

[^1]: ${ }^{2}$ It should be noted that the conditions above in the case $\sigma=0$ are not explicitly stated in the theorem itself (see, however, part (ii), (a) for the case $\nu_{1}=0$).

[^2]: ${ }^{3}$ Alternatively, refer to my version (to appear in Mathematika).

[^3]: 1. D. A. Burgess, On Character Sums and L-series, Proc. London Math. Soc., (3), 12 (1962), pp. 193-206.
 2. D. A. Burgess, Estimation of Character Sums Modulo a Power of a prime, ibid (3) 52 (1986), pp. 215-235.
