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Abstract

We present a family of counterexamples to a question proposed recently by Moreté concerning the
character codegrees and the element orders of a finite solvable group.
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1. Introduction

Let G be a finite group, and write Irr(G) to denote the set of irreducible complex
characters of G. The concept of character codegree, originally defined as |G|/x(1)
for any nonlinear irreducible character y of G, was introduced in [1] to characterise
the structure of finite groups. However, a nonlinear character y € Irr(G/N), where N
is a nontrivial normal subgroup of G, will have two different codegrees when it is
considered as a character of G and of G/N. To eliminate this inconvenience, Qian
et al. in [9] redefined the codegree of an arbitrary character y of G as

X(1) =G : Kery|/x(1).

Many properties of codegrees have been studied, including variations on Huppert’s
p-o conjecture, the relationship between codegrees and element orders, groups with
few codegrees, and recognising simple groups using the codegree set.

The authors believe that among the above-mentioned results, the most interesting
is the relation between codegrees and element orders (see [4, 7, 8]). Here we mention
a result of Qian [7, Theorem 1.1] which says that if a finite solvable group G has an
element g of square-free order, then G must have an irreducible character of codegree
divisible by the order o(g) of g. Isaacs [4] established the same result for an arbitrary
finite group. Recently, Qian [8] strengthened his earlier result, showing that for every
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element g of a finite solvable group G, there necessarily exists some y € Irr(G) such
that o(g) divides y°(1).

Motivated by the results in [4, 7, 8], Moret6 considered the converse relation of
codegrees and element orders and proposed an interesting question [6, Question B].
He also mentioned that counterexamples, if they exist, seem to be rare.

QUESTION 1.1. Let G be a finite solvable group and let y € Irr(G). Does there exist
g € G such that 7(x°(1)) € m(o(g))? Here, n(n) denotes the set of prime divisors of a
positive integer 7.

In this note, we will construct a family of examples to show that this question has a
negative answer in general. For notation and terminology of character theory, we refer
to [3].

2. Counterexamples

We begin with some facts about automorphisms of extra-special p-groups, which
are more or less well-known but we give a complete proof for the reader’s convenience.

THEOREM 2.1. For any distinct primes p,r with r > 3, choose an extra-special
p-group P of order p**', such that P has exponent p if p > 2, and P is the central
product of r — 1 dihedral groups of order 8 and a quaternion group if p = 2.

(1) There exists a prime q dividing p" + 1 but not p> — 1. In particular, r divides
q — 1, so that the semi-direct product C, = C, makes sense.

(2) Aut(P) contains a subgroup A, which acts trivially on Z(P) and is isomorphic to
Cy > C..

PROOF (1) By Zsigmondy’s prime theorem (see [2, Theorem IX.8.3]) and the
condition that r > 3, there exists a prime ¢ dividing p* — 1 but not p' — 1 for all
i=1,...,2r — 1. It follows that 2r is the order of p modulo g, establishing (1).

(2) Write S = Sp(2r, p) for p > 2 and S = O_(2r,2) for p = 2. Let A denote the
subgroup of Aut(P) consisting of those automorphisms of P acting trivially on Z(P).
By the construction of P, it is well known that A/Inn(P) is isomorphic to S (see, for
example, [10, Theorem 1]). Since the orders of C, < C, and Inn(P) are relatively prime
(as p does not divide gr), it suffices to show that S contains a subgroup isomorphic to
C, = C, by the Schur-Zassenhaus theorem.

To do this, we consider the finite field F - of p*" elements and let V = [, be the
vector space over I, of dimension 2r. We need to construct a nonsingular symplectic
form (,) on V for p > 2 and a nonsingular quadratic form Q on V for p = 2.

Fix an element a € F» —F,. Then a ¢ F) since r is odd. Let tr : F,, — FF,, be the
trace map. It is easy to see that

w,w) = tr((a — a? ) ow?” =vP'w)), v,weV,
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defines a nonsingular symplectic form on V and the corresponding symplectic group
is S for p > 2 (see [5, Example 8.5]). When p = 2,

o) = tr('"*?), veVv,

defines a nonsingular quadratic form on V and the corresponding orthogonal group is
S =0_2r,2).

Now, let T'o(V) = {v+— av | 0 # a € V}, consisting of multiplications, and let o :
v = v” be the Frobenius field automorphism of F,»-. Then o acts naturally on ['o(V),
and we consider the corresponding semi-direct product I'o(V) > (o). Observe that
[o(V) is cyclic of order p?” — 1 and the order of o is 2r. Recall that the prime g
divides p” + 1 and let C be the unique subgroup of order ¢ in I'o(V). It is clear that
C is invariant under o, and furthermore, by elementary Galois theory, the fixed point
of 0% in C is trivial since ¢ does not divide p> — 1. So we can form the semi-direct
product C = (o?), which is clearly isomorphic to C,4 > C,. What remains is to show
that C > (%) < S.

A simple calculation shows that both the symplectic form ¢, ) and the quadratic
form Q defined above are preserved by the map on V induced by multiplication by an
element of order p” + 1, and thus the unique cyclic subgroup of I'o(V) of order p" + 1
must be contained in S. In particular, we have C < S. To prove o € S, we distinguish
two cases. For p = 2, since the Galois group of F,,/F, can be identified with (c?) (as
r is odd), we conclude that o> must preserve the trace map from F,- to F), and hence
lies in S. For p > 2, we need to establish that <v"2, w"z) = (v,w) for all v, w € V. Let
b=a—a and x = vw?” — v’ w. It suffices to prove tr(bx” ) = tr(bx). Since (bx)? =
(=b)(—x) = bx, we have bx € F,,. It follows that tr((bx)‘fz) = tr(bx). By the choice of a,
we know that b € F > and hence b is fixed by o%. Thus, tr(bx"z) = tr(bx) and o € S,
as required. |

As an application of Theorem 2.1, we can now construct a family of counterexam-
ples to Moretd’s question.

EXAMPLE 2.2. In the notation of Theorem 2.1, let G = P < A be the corresponding
semi-direct product, so that G is solvable. Then there exists an irreducible character y
of G such that y“(1) = p"*!gr but G contains no element of order divisible by pgr.

PROOF. Note that Z(P) is cyclic of order p, and thus we can choose a faithful linear
character A of Z(P). Then it is well known that A = p’6 for some 6 € Irr(P). Since A
acts trivially on Z(P), it fixes A and hence 6 is A-invariant. It follows that 8 extends to
some y € Irr(G) by Gallagher’s theorem (see [3, Corollary 6.28]), so that y(1) = 6(1) =
p”. Also, let B be the unique subgroup of A of order g. Then P/Z(P) is irreducible as an
F,[B]-module because |[P/Z(P)| = p*" and the order of p modulo g is exactly 2r. From
this, we conclude that Z(P) is the unique minimal normal subgroup of G, and since 8
is faithful, we have Ker y N P = Ker 6 = 1. Obviously, P is the Fitting subgroup of the
solvable group G, and thus Ker y contains no minimal normal subgroup of G, which

r+1

forces Ker y = 1. Therefore, we have y“(1) = |G|/x(1) = p" ' gr.
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Finally, if G has an element of order divisible by all the primes p,q,r, then A
contains an element of order gr and thus A is cyclic, which is not the case by the
choice of primes ¢, r. The proof is now complete. m]
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