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We show that any isometric immersion of a flat plane domain into R
3 is developable

provided it enjoys the little Hölder regularity c1,2/3. In particular, isometric
immersions of local C1,α regularity with α > 2/3 belong to this class. The proof
is based on the existence of a weak notion of second fundamental form for such
immersions, the analysis of the Gauss–Codazzi–Mainardi equations in this weak
setting, and a parallel result on the very weak solutions to the degenerate
Monge–Ampère equation analysed in [M. Lewicka and M. R. Pakzad. Anal. PDE
10 (2017), 695–727.].
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1. Introduction

1.1. Background

It often happens, in differential geometry, as in other contexts where nonlinear
PDEs appear, that the solutions to a given nonlinear system of equations satisfy
also systems of higher order equations carrying significant geometric or analytic
information. A very basic example is the Gauss–Codazzi–Mainardi equations satis-
fied by any smooth isometric immersion of a two-dimensional Riemannian manifold
into R3. Note that, in their turn, these equations can be used to prove certain rigid-
ity statements for the immersion, e.g. to show that any isometric immersion of a
flat domain is developable, i.e. roughly speaking, at any given point p its image
contains a segment of R3 passing through p.

The subtlety which is often glossed over in the context of classical differential
geometry, where all the mappings are assumed smooth, or at least twice or thrice
continuously differentiable, is that, due to nonlinearity, the passage from say a given
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set of first order equations, e.g. the system of isometric immersion equations in our
example, to the higher order equations requires a minimum of regularity. There is
no guarantee that in the absence of this regularity the geometric information hidden
in the higher order equations would be accessible. The above mentioned subtlety
could be a source of confusion. Coming back to our example, it is often assumed
that all isometric images of flat domains must be ruled, which is untrue. Already, at
the dawn of modern differential geometry, no less figures than Lebesgue and Picard
intuited the existence of a surface which could be flattened onto the plane with no
distortion of relative distances, but nowhere contained a straight segment. To quote
Picard1:

According to general practice, we suppose in the preceding analysis, as in all
infinitesimal geometry of curves and surfaces, the existence of derivatives which
we need in the calculus. It may seem premature to entertain a theory of surfaces
in which one does not make such hypotheses. However, a curious result has been
pointed out by Mr Lebesgue (Comptes Rendus, 1899 and thesis)2 ; according to
which one may, by the aid of continuous functions, obtain surfaces corresponding
to a plane, of such sort that every rectifiable line of the plane has a corresponding
rectifiable line of the same length of the surface, nevertheless the surfaces obtained
are no longer ruled. If one takes a sheet of paper, and crumples it by hand, one
obtains a surface applicable to the plane and made up of a finite number of
pieces of developable surfaces, joined two and two by lines, along which they
form a certain angle. If one imagines that the pieces become infinitely small, the
crumpling being pushed everywhere to the limit, one may arrive at the conception
of surfaces applicable to the plane and yet not developable [in the sense that there
is no envelope of a family of planes of one parameter and not ruled].

The suggested constructions by Lebesgue and then Picard fall short of being
totally satisfactory as they point to continuous but yet not differentiable mappings.
However, they were perhaps the heralds of a celebrated result due to Kuiper [39],
who based on the work by John Nash [47, 48] proved that any Riemannian manifold
can be C1 isometrically embedded into a Riemannian manifold of one dimension
higher. (Actually, by Nash and Kuiper’s construction, C1 isometric embeddings
can approximate any short immersion.) As a consequence, the flat disk can be C1-
isometrically embedded into any given small ball of R3 and hence the image cannot
be ruled. To make the matters worse, these embeddings can be made through recur-
rent self-similar corrugations [3, 4], whose images seem, without a proof at hand,
not to include any straight segment of R3 in any scale. In contrast, and returning
to our original developability statement in a higher regularity setting where the
Gauss–Codazzi equations hold true, Hartman and Nirenberg [28] proved, inciden-
tally almost at the same time Nash and Kuiper showcased their results, that a
C2-regular isometric immersion of a flat domain must have a locally ruled surface
as its image. We have come full circle, and this discussed dichotomy leaves us with a
fundamental question any analyst would like to ask: At what regularity thresh-
old or thresholds between C1 and C2 the unruled isometries transition
into the ruled regime?

1[51, Page 555], translated and quoted in [7].
2[40]. See also [22, Pages 164-165] and the discussion therein of Lebesgue’s heuristic construc-

tion.
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1.2. Recent developments

To put the problem described above in a broader context, we note that the above
dichotomy—known in the recent literature as flexibility vs. rigidity—is not spe-
cific to the case of isometric immersions. The Nash and Kuiper scheme for creating
highly oscillatory anomalous solutions of typically lower regularity through itera-
tions could be studied under the broader topic of convex integration [25, 54] for the
differential inclusions (or PDEs re-cast in this framework), and the involved den-
sity or flexibility-related results are usually referred to as h-principle. The existence
of such h-principle is usually accompanied by a parallel rigidity property which
indicates that the construction cannot be carried out in high regularity scales. A
notable example is the recent discovery by the first author and Székelyhidi [17]:
They showed that the system of Euler equations in fluid dynamics is given to the
convex integration method and that Nash and Kuiper’s iterations can be adapted
in this case in order to create non-conservative compactly supported continuous
flows approximating an open set of subsolutions (see [18, 55] for a thorough dis-
cussion of the connection between the two problems of turbulence and isometric
immersions). Their results, and the subsequent work in improving the regularity of
the anomalous solutions stood in contrast with the rigidity result reflected in the
conservation of energy for solutions passing a certain regularity threshold (α > 1/3
for C1,α-Hölder continuous solutions) in [12, 20], as conjectured by Onsager [49].
Their approach finally lead to the complete resolution of this conjecture by Isett
in [31]; see [19] for a review of the history of the problem and the intermediate
results.

Coming back to the question of isometric immersions, a parallel question is
whether the images of isometric immersions into R3 of closed convex surfaces (i.e.
2-manifolds with no boundary and positive Gaussian curvature) are rigid motions.
This result follows from the convexity of the image of such surfaces. This convexity
fails for C1,α isometric immersions of convex surfaces if α < 1/5, in which regime
the above mentioned h-principle for isometric immersions holds true, as shown in
[9, 16], improving on the results by [6, 13]. On the other hand, following Borisov
[5], Conti et al. proved in [13, 14] that when α > 2/3, the isometric image of a closed
convex surface is convex (from which it follows that the immersion is a rigid motion),
and that more generally the h-principle cannot hold true for isometric immersions
of any elliptic 2-manifold with or without boundary. Mischa Gromov conjectures in
[26, Section 3.5.5.C, Open Problem 34-36] that the transition threshold is α = 1/2
in this case. The best evidence so far for this conjecture is provided in [15], where
the authors show that C1,1/2 regularity could be the borderline regularity for
the identity of intrinsic covariant derivative of the 2-manifold and its geometric
interpretation.

This article concerns the fundamental question of the sub-C2 regularity scales
for which, given an isometric immersion of a flat domain, one is able to make sense
of fundamentally geometric objects such as the second fundamental form and the
Gauss–Codazzi equations. The final goal is to show that the developability property
of such isometric immersions (as defined below in Definition 1.1 and proven for C2

isometries in [28]) survives for C1,α isometric immersions if α > 2/3. As we shall
see, parts of the project, e.g. the definition of the second fundamental form, can be

https://doi.org/10.1017/prm.2024.55 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.55


4 C. De Lellis and M. R. Pakzad

carried over for α > 1/2, but our analysis falls short of proving a weak variant of
the Codazzi–Mainardi equations for 1/2 < α < 2/3. In this manner, the question
of the optimal threshold remains open in the flat case as it is for the elliptic case.

Before proceeding, it should be mentioned that the developability of flat iso-
metric immersions has been discussed in the literature in other regularity regimes.
Pogorelev [52, Theorem 1, p. 603] proves this developability under the rather weak
assumptions of C1 regularity and the existence and vanishing of the total extrin-
sic curvature (defined as a measure). This result lies at the background of our
conclusion through the analysis made in [41] and [37, 38]. On the other hand
parallel results have been shown by the second author for W 2,2 isometric immer-
sions [50], where a slight C1 regularity gain in this case is also proven, and by
Jerrard in [34] for the class of Monge–Ampère functions [24]. The former result
was based on observations made by Kirchheim on solutions to the degenerate
Monge–Ampère equation [36, Chapter 2], and lead to a subsequent statement
regarding the smooth density of isometric immersions. These statements were gen-
eralized to higher dimensional domains for the co-dimension 1 case in [43]. The
latter approach by Jerrard [33, 34], anchored in geometric measure theory, opened
the path for proving C1 regularity and a full range of developability results for
isometric immersions of any dimension and co-dimension of sub-critical Sobolev
regularity [35].

1.3. The main result

We first begin by a definition to clarify the notion of developabilty as we
understand it.

Definition 1.1. Let Ω ⊂ R2 be a domain and u : Ω → Rk be C1-smooth. We say
u is developable if for all x ∈ Ω, either u is affine in a neighbourhood of x, or there
exists a line Lx containing x such that the Jacobian derivative ∇u is constant on
lx, the connected component of x in Lx ∩ Ω.

Remark 1.2. For bounded domains, lx is always a segment whose both ends lie on
∂Ω. We allow for unbounded domains, and hence lx could be a complete line, a ray
or an open segment. With some abuse of notation, we will refer to all of them as
‘segments’ throughout the paper.

There are other equivalent formulations for the developability whose equivalence
we will show further on in propostion 2.1. In particular, local and global developa-
bility, as laid out in corollary 2.2, are equivalent. Also, from corollary 2.8 and lemma
2.9 it follows that when u is developable, the segments lx are uniquely determined
outside the maximal affine region; they do neither intersect each other nor pass
through the local constancy regions of the Jacobian derivative.

In this article, we prefer to work with the little Hölder spaces. For our choice
of notations and precise definitions of these spaces see § 3. Working with the
little Hölder scale pinpoints the needed control—for the effectiveness of our argu-
ments—on the oscillations of the mapping gradient. The corresponding results in
the classical Hölder regime is then obtained as a corollary.
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The main result of this article is the following theorem:

Theorem 1.3. Let Ω ⊂ R2 be a domain and 2/3 � α < 1. If u ∈ c1, α(Ω, R3) is
an isometric immersion, then u is developable. In particular, if α > 2/3, we have
C1,α(Ω) ⊂ c1,2/3(Ω) and therefore all isometric immersions u : Ω → R3 of local
C1, α regularity are developable.

Remark 1.4. Based on the observations made in this article, the proofs of
[13, 14] for the rigidity statements are also valid under little Hölder c1,2/3 regularity
assumption. A more difficult task would be to consider other types of regular-
ity regimes, e.g. the fractional Sobolev one. For this direction, see [42] and the
discussions therein.

Per [52, Theorem 1, p. 603], what we need to show is that the image of the Gauss
map �n is of measure zero. Following [13, Corollary 5] it is possible to prove that
the Brouwer degree deg(y, V, �n) of �n of the immersion vanishes for all open sets
V ⊂ Ω and y ∈ R2, when defined. However, this is not sufficient to conclude with
the needed statement |�n(Ω)| = 0 for developability: Through a similar approach as
in [44, Section 5], for each α ∈ (0, 1), one can construct a map in C0,α(Ω, R2) whose
local degree vanishes everywhere, but whose image is onto the unit square. Hence,
the zero degree Gauss map could still have an image of positive measure and this
obstacle necessitates another strategy. Indeed, our argument uses a slight improve-
ment on the parallel result proved for the degenerate very weak Monge–Ampère
equation in [41], which uses the degree formula for both the gradient of the solution,
and its affine perturbations of positive degree, as follows:

The very weak Hessian determinant [21, 32] of a given function v ∈W 1,2
loc (Ω) is

defined to be

DetD2v := −1
2

(
∂11(∂2v)2+∂22(∂1v)2 − 2∂12(∂1v∂2v)

)
= −1

2
curlT curl (∇v ⊗∇v)

in the sense of distributions. The operator DetD2 coinsides with the usual
Monge–Ampère operator det∇2 when v ∈ C2 and ∇2v stands for the Hessian
matrix field of v. (A C3 regularity is needed for a straightforward calculation.)
The following statement regarding the degenerate Monge–Ampère equation is a
crucial ingredient of our analysis (compare with [41, Theorem 1.3]).

Theorem 1.5. Let Ω ⊂ R2 be an open domain and let v ∈ c1,2/3(Ω) be such that

DetD2v = 0,

in Ω. Then v is developable.

Remark 1.6. Note that per corollary 2.2 the assumption v ∈ C1,α(Ω) in [41,
Theorem 1.3] can too be easily relaxed to the local regularity v ∈ C1,α(Ω) in any
bounded or unbounded domain.

Theorem 1.5 can be proved following the exact footsteps of Lewicka and the
second author in proving [41, Theorem 1.3], taking into account lemma 3.1 and
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proposition 3.5 below in showing the following degree formulas for any open set
U ⊂ Ω:

∀y ∈ R2 \ ∇v(∂U) deg(∇v, U, y) = 0,
∀ 0 < δ 	 1 ∀y ∈ Fδ(U) \ Fδ(∂U) deg(Fδ, U, y) � 1, (1.1)

where Fδ(x1, x2) := ∇v(x1, x2) + δ(−x2, x1). See [41, Equations (7.6) and (7.9)].
The rest of the proof remains unchanged. We will leave the verification of details
to the reader.

The main strategy of our proof of theorem 1.3 is hence to relate the given isomet-
ric immersion u ∈ c1,2/3 to a scalar function v which satisfies the assumptions of
theorem 1.5: In a first step, we show that a notion of the second fundamental form
A in the weak sense exists for immersions of C1,α-regularity for α > 1/2. Next, the
Codazzi–Mainardi equation is used to prove that if u is isometric, A is curl free,
implying that it must be the Hessian matrix of a scalar function, namely the sought
after function v. We then show the required regularity for v, and proceed to prove
using the Gauss equation that v satisfies the very weak degenerate Monge–Ampère
equation as required by the assumptions of theorem 1.5. Finally, we need to prove
that developability of v, as derived from theorem 1.5, implies the developability
of the isometric immersion u. Apart from theorem 1.5, the 2/3-Hölder exponent
regularity is only required for proving that a weak version of Codazzi–Mainardi
equations holds for isometric u ∈ c1,2/3, i.e. when we need to show that A is curl
free.

The article is organized as follows: In § 2, we will present and prove a few state-
ments regarding the developability properties of C1 mappings. In § 3, we will gather
a few analytical tools which deal with properties of Hölder continuous functions and
with quadratic differential expressions in terms of functions of low regularity. In par-
ticular, our basic proposition 3.8 will allow us to define a second fundamental form
for the immersions of Hölder-type regularity. The subsequent section is dedicated
to the definition and properties of this second fundamental form. In § 5, building
on the previous sections, we complete the proof of theorem 1.3. Appendix A is ded-
icated to a side result (proposition A.1) on the developability of each component
of the immersion, which can be shown independently with a shorter proof. Finally,
in Appendix B the proof of some standard facts regarding little Hölder spaces are
presented.

2. Preliminaries: developable mappings

We have gathered in this section a few statements we will need, and their proofs,
regarding the developable mappings in two dimensions. Most of the material in this
section are well known and can be found in one form or another in the literature on
the topic [11, 28–30, 34–38, 41, 43, 46, 50, 52, 56], but the authors do not know
of any instance where the following statements are explicitly formulated in concert.
As already observed in [29], much of the developability properties of a mapping
concern the level sets of its Jacobian derivative, so we formulate our statements
having the mappings f = ∇u in mind, where u is a developable mapping.
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2.1. Global vs local developability

Developability can be defined by local or global formulations, which turn out to
be equivalent. There is a risk of confusion, which must be avoided, due to slight
differences between the possible formulations (see e.g. the footnote on p. 875 in [38]).
Also, it would be useful to have a set of equivalent statements at hand to streamline
the arguments. The following proposition states three equivalent conditions which
the Jacobian derivative of a C1 mapping can satisfy to be developable:

Proposition 2.1. Let Ω ⊂ R2 be any domain and let f : Ω → Rm. If f is
continuous, then the following three conditions are equivalent.

(a) For all x ∈ Ω, either f is constant in a neighbourhood of x, or there exists a
line L containing x such that f is constant on the connected component of x
in L ∩ Ω.

(b) For all x ∈ Ω, there exists an open disk Bx ⊂ Ω centred at x with the fol-
lowing property: To all p ∈ Bx, we can associate a line Lp containing p such
that f is constant on the segment l̃p = Lp ∩B. Moreover, for any y, z ∈ Bx,
l̃y ∩ l̃z = ∅, or l̃y = l̃z.

(c) For all x ∈ Ω, there exists an open disk Bx centred at x in Ω such that for all
p ∈ Bx, there exists a line L ⊂ R2 containing p so that f is constant on the
segment L ∩Bx.

Corollary 2.2. u ∈ C1(Ω, Rk) is developable if and only if for any point in x ∈ Ω,
there exists a neighbourhood V of x on which the restriction u|V is developable.

Remark 2.3. Local regularity assumptions are sufficient in the assumptions of
theorems 1.3 and 1.5 because of the equivalence of global and local developability
as formulated above.

Remark 2.4. The continuity of f is necessary for the implications (a) ⇒ (b), (c)
in proposition 2.1 as the following example demonstrates. The function

f : R2 → R, f(s, t) :=

{
0 st �= 0
1 st = 0,

satisfies condition (a) but not (b) or (c). Also, the geometric configuration of the
level sets of f in [50, Figure 1] shows the necessity of the distinction between the
points in the local constancy regions from other points in condition (a). In other
words, a global formulation of condition (b) is not a statement equivalent to (b): A
continuous function on a convex domain Ω can satisfy conditions (a) and (b) while
there are points x ∈ Ω such that for no line L containing x the function is constant
on the intersection L ∩ Ω.

Remark 2.5. In the recent literature on similar problems, global (and hence
inequivalent) versions of condition (b) are formulated as ‘developability of f ’ in
[36, Definition 2.29] and ‘Ω-developability of f on Ω’ in [29, Section 3.1]. On the
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other hand condition (a) appears in the statement of [50, Theorem II], and then in
[46] as the ‘condition (L)’. It is also equivalent to f being ‘countably developable’
according to [29, Definition 1] and [30]. (Note that [29, Assumption (24)] is redun-
dant for continuous f ; see lemma 2.9.) Finally, it is condition (c) that is stated as the
property of the gradients (with empty-interior images) of C1 mappings in the main
result of [37, 38]. (This local result was an ingredient of the proof of theorem 1.5
in [41].) Generalizations of (a) to weaker regularity or higher dimensional settings
can be found in [34, 35, 56].

Remark 2.6. The developability of a C1 mapping on Ω, as formulated in definition
1.1, translates therefore to its Jacobian derivative satisfying condition (a). To clarify
some discrepancy in the literature, we emphasize that we prefer to reserve the term
developable for those mappings whose Jacobian derivatives are constant along lower
dimensional flat strata in one form or another [35, 43], rather than directly using
it for their derivative mappings as done in [36, Definition 2.29] or [29, 30]. This
is for historical reasons, since this term is conventionally used to refer to (ruled)
smooth surfaces of zero Gaussian curvature [10].

Proof. (a) ⇒ (b):
This is implicitly proved in [43, Lemma 3.7]. We pursue a slightly different

strategy. For any f : Ω → R, let Cf be the set on which f is locally constant:

Cf := {x ∈ Ω; f is constant in a neighbourhood of x}.
Note that f is constant on the connected components of the open set Cf . If f
satisfies condition (a) of the proposition, for each x ∈ Ω \ Cf we choose a line Lx

so that f is constant on the connected component x in Lx ∩ Ω, denoted by lx.
We begin by the following simple but useful lemma. �

Lemma 2.7. Let f : Ω → Rm be continuous and satisfy condition (a) in proposition
2.1. Let Δ ⊂ Ω be a closed triangular domain. If f is constant on two edges of Δ,
then f is constant on Δ.

Proof. Let x, y, z be the vertices of Δ and assume that f is constant on [x, y]
and [x, z]. For any point w ∈ Δ \ Cf , lw must cross one of the two segments [x, y]
or [x, z]. This implies f(w) = f(x). If w ∈ Δ ∩ Cf , and if the segment [w, x] ⊂ Cf ,
then once again f(w) = f(x). Finally, if [w, x] �⊂ Cf , let w̃ be the closest element to
w on the segment [w, x] not in Cf . We already proved that f(w̃) = f(x). But since
w̃ is in the closure of the connected component of w in Cf , and f is continuous, we
have also f(w) = f(w̃) = f(x). We conclude that f |Δ ≡ f(x). �

We now make a crucial observation on the constancy directions Lx.

Corollary 2.8. Let f be continuous and satisfy condition (a) in proposition 2.1.
If x ∈ Ω \ Cf , there exists only one line L for which f is constant on the connected
component l of x in L ∩ Ω.

Proof. Let x ∈ Ω \ Cf and assume that for two lines L �= Λ, f is constant on the
connected components l and λ of x in respectively L ∩ Ω and Λ ∩ Ω. Choose a
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disk B(x, ρ) ⊂ B(x, 2ρ) ⊂ Ω and note that ∂B(x, ρ) intersects l and λ on 4 points
x1, x2 ∈ l and χ1, χ2 ∈ λ. Now the assumptions of lemma 2.7 is satisfied for the
four closed triangular domains with vertices x, xi, χj , i, j ∈ {1, 2}. This implies
that x ∈ Cf , which contradicts the first assumption on x. �

As a consequence, when f is continuous, for each x ∈ Ω \ Cf , there is only one
choice for Lx and there is no ambiguity in the notation. We further observe:

Lemma 2.9. Let the continuous mapping f : Ω → Rm satisfy condition (a) in propo-
sition 2.1. Then for all x ∈ Ω \ Cf , lx ⊂ Ω \ Cf . Moreover, for all y, z ∈ Ω \ Cf ,
ly ∩ lz = ∅, or ly = lz.

Proof. For showing the first conclusion, we argue by contradiction: Let y ∈ Cf ∩ lx
and let V be an open neighbourhood of y in Ω on which f is constant. We observe
that for δ > 0 small enough B(x, δ) \ lx cannot entirely lie in Cf , since otherwise,
B(x, δ) \ lx having only two connected components on both sides of lx, and f
being continuous, the value of f would be constant on B(x, δ), contradicting x /∈
Cf . Therefore, there is a sequence xk ∈ Ω \ Cf converging to x such that f(xk) �=
f(x). Since the value of f on xk and x differ, lxk

∩ lx = ∅ for all k. As xk → x,
we deduce that lxk

must locally uniformly converge to lx. This implies that lxk
∩

V is non-empty for k large enough and hence f(xk) = f(y) = f(x), which is a
contradiction.

To prove the second statement, also assume by contradiction that ly �= lz and
that x ∈ ly ∩ lz �= ∅. Choose a disk B(x, ρ) ⊂ B(x, 2ρ) ⊂ Ω and note that ∂B(x, ρ)
intersects ly and lz on four points y1, y2 ∈ ly and z1, z2 ∈ lz. Now the assumptions of
lemma 2.7 are satisfied for the four closed triangular domains with vertices x, yi, zj ,
i, j ∈ {1, 2}. This implies that x ∈ Cf , which contradicts the first statement, as
y /∈ Cf but x ∈ ly ∩ Cf . �

We are now ready to prove (b) assuming (a). We first note that condition (b)
is obvious if x ∈ Cf . If x /∈ Cf , without loss of generality, and through rotations,
dilations and translations, we can assume that x = (0, 0) and that lx is parallel to
the horizontal axis. We show that we can find δ−, δ+ > 0 such that condition (b)
holds true for B+(x, δ+) and B−(x, δ−) in the upper and lower planes, where the
open half disks are defined by

B±(x, δ) := B(x, δ) ∩ {(s, t) ∈ R2; ±t > 0}.

Then we can choose B = B(x, min{δ+, δ−}) and the proof is complete.
Without loss of generality we concentrate on the upper half plane. If there exists

δ+ > 0 such that B(x, δ+) ⊂ Cf , the conclusion is obvious: We choose Ly always
parallel to the horizontal axis. Otherwise there exists a sequence xk /∈ Cf in the
upper open half plane converging to x. Note that by lemma 2.9, any two (possibly
unbounded) segments ly, lz do not intersect within Ω unless they are the same.
This implies that lxk

∩ lx = ∅ and that the lxk
must converge locally uniformly to
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lx. We choose ρ > 0 such that the closed rectangular box

S+
ρ := {(s, t) ∈ R2; |s| � ρ, 0 � t � ρ}

is a subset of Ω. We let x±0 := (±ρ, 0), x± = (±ρ, ρ) and choose k large enough such
that for y = xk, ly = lxk

intersects the two segments [x±0 , x
±] in their respective

interior points y− and y+. The closure of the convex open quadrilateral P created
by the four vertices x−0 , x

+
0 , y

+, y− lies in S+
ρ and we have that [y−, y+] ⊂ ly and

[x−0 , x
+
0 ] ⊂ lx.

We claim that condition (b) is valid for P (standing for Bx), which completes
the proof since there exists some δ+ > 0, such that B+(x, δ+) ⊂ P . For any z ∈ P ,
if z �∈ Cf , then we can choose l̃z = lz ∩ P , which lies between l̃x0 and l̃y. If, on the
other hand, z ∈ Cf , let the points z1 ∈ [y−, y+] and z0 ∈ [x−0 , x

+
0 ] be those points

on ∂P which lie vertically above and below z. Since z0, z1 /∈ Cf , we can choose
the two closest elements of P \ Cf to z on the segment [z0, z1], which we name
respectively by z̃0, z̃1. We observe that lz̃0 and lz̃1 cannot intersect lx and ly, which
contain the upper and lower boundaries of P , and hence will intersect the two
vertical boundaries of P between x±0 and y± in z̃±i , i = 0, 1. We claim that f is
constant in the region X enclosed between lz̃0 (which is above l̃x and below lz̃1) and
lz̃1 (which is above l̃z̃0 and below l̃y) in P . Note that X is the convex quadrilateral
created by z̃−0 , z̃

+
0 , z̃

+
1 , z̃

−
1 and contains z in its interior.

The latter claim about the constancy of f on X, if proven, completes the proof
of the former claim regarding P , since we are free to choose our non-intersecting
constancy segments in this region X (in particular for z) in a manner that no such
two segments intersect within P : If the directions lz̃0 and lz̃1 are parallel, choose
the line Lp for all points p ∈ X to be the line parallel to them passing from p. If, on
the other hand, the extensions of lz̃0 and lz̃1 meet at a point q (outside of Ω), for
all p ∈ X we choose the line Lp to be the one passing through p and q. If l̃p, for any
p ∈ X, were to intersect any other l̃p̃ for p̃ ∈ P \X, it would have to first intersect
one of the two l̃z̃i

, i = 0, 1, which does not happen by construction. Note that X
is the connected component of Cf ∩ P containing z. We can therefore foliate P in
constancy segments by exhausting all the connected components of Cf ∩ P .

To prove our final claim, that is the constancy of f on the region X, we note
that f is constant on the segment l̃z̃1 = [z̃−1 , z̃

+
1 ], and on the segment [z̃0, z̃1], whose

interior lies in Cf . Since z̃1 ∈ [z̃−1 , z̃
+
1 ], by lemma 2.7, f must be constant in the

triangular domain created by z̃0, z̃−1 , z̃
+
1 . But then this last assertion implies that

f is constant on the segments [z̃0, z̃−1 ] and [z̃0, z̃+
1 ], which combined with lemma

2.7 again, using the constancy of f on segments [z̃0, z̃−0 ] and [z̃0, z̃+
0 ] ⊂ lz̃0 , proves

the claim that f is constant on X. The proof of (a) ⇒ (b) is complete.
(b) ⇒ (c):
It is logically obvious.
(c) ⇒ (a):
The proof can be found in the last page of [41]. We reproduce it here for com-

pleteness. Let x ∈ Ω and consider a Ball Bx over which condition (c) is satisfied.
In particular, f is constant on Lx ∩Bx for some line Lx passing through x. Now,
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The geometry of C1,α isometric immersions 11

consider the (possibly infinite) segment

cx := The connected component of x in {y ∈ Lx ∩ Ω; f(y) = f(x)}.
We claim that cx, which contains the segment Lx ∩Bx, is either equal to lx, i.e.
the connected component of x in Lx ∩ Ω, or x ∈ Cf . This proves that f is constant
either on lx, or in a neighbourhood of x, and so (a) holds true.

We assume that cx �= lx, and prove x ∈ Cf . In this case cx must admit at least
one endpoint within Ω. Let y ∈ Ω be that endpoint. Consider the open disk By

centred at y in which all points admit constancy segments within By. Let the line
Ly passing through y be such that f is constant on the segment Ly ∩By and let
z, w be the endpoints of this segment. Ly and Lx cannot be parallel, since then
cx can be extended along Lx = Ly to include either z or w, which contradicts the
fact that it must be a maximal connected constancy subset of lx. Therefore, we can
choose an element ỹ ∈ By ∩ cx to form an open triangle Δ with vertices ỹ, z, w.
f is constant on [y, z] and on [ỹ, y], where y ∈ (z, w). Since no segment Lp ∩By

departing from a point p ∈ Δ can reach ∂By on its both ends without crossing
[w, z] or [ỹ, y], we deduce that f |Δ ≡ f(y) = f(x).

We observe that Cf contains Δ, and hence also the open segment (ỹ, y). We
have thus found a non-empty interval in cx from which we can propagate our local
constancy property and so reach to the desired conclusion of x ∈ Cf . We argue
by contradiction: If x /∈ Cf , let x̃ be the closest point to y on [x, y] which is not
in Cf . Certainly Cf ⊃ (x̃, y) ⊃ (ỹ, y) and (x, y) ⊃ (x̃, y). Consider once more the
open disk Bx̃ according to condition (c). Since Cf is open, for some ŷ ∈ (x̃, y)
close enough to x̃, f is constant on a segment [ẑ, ŵ] ⊂ Bx̃ ∩ Cf orthogonal to cx
at ŷ, with ŷ ∈ (ẑ, ŵ). Also note that for x̂ ∈ [x, ŷ), f is constant on the portion
[x̂, ŷ] = [x, ŷ] ∩Bx̃ ⊃ [x̃, ŷ] of the segment [x, ŷ] ⊂ cx. Since f takes the value f(x)
on both of [x̂, ŷ] and [ẑ, ŵ], both within the set Bx̃, a similar argument as above
shows that f is constant on the open triangle Δ̂ with vertices x̂, ẑ, ŵ, and so
Δ̂ ⊂ Cf . But then x̃ ∈ (x̂, ŷ) ⊂ Δ̂ ⊂ Cf , which contradicts its choice.

In view of proposition 2.1, and as already observed in [36, Proposition 2.30], we
have:

Corollary 2.10. Let Ω ⊂ R2 be a domain and let the continuous mapping f : Ω →
Rm satisfy any of the equivalent conditions in proposition 2.1. Then for all x ∈ Ω,
there exists L > 0, an open disk B centred at x, and a unit Lipschitz vector field
�η : B → R2 with Lip �η � L, for which

∀y ∈ B �η(y) = �η(y + s�η(y)) and f(y) = f(y + s�η(y)) for all s for which y

+ s�η(y) ∈ B.

Proof. We choose a disk Bx = B(x, 2δ) ⊂ Ω according to condition (b) and we
let B = B(x, δ). For any p ∈ B, there exists a line Lp such that f is constant
on l̃p = Lp ∩Bx, and no two such lines meet within Bx. We define the mapping
Λ : B → RP1 which associates to each point p ∈ B the element of the real projective
line RP1 determined by the direction of Lp, and we note that it is constant along the
segments Lp ∩B and continuous. Since B is simply connected, Λ can be lifted to a
continuous mapping �η : B → S1. By constancy of Λ along the segments Lp ∩B, �η
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12 C. De Lellis and M. R. Pakzad

can only take two distinct values along them, and so its continuity implies that �η
is constant along these directions, which are now determined by �η itself. Since two
distinct lines Lp and Lq, for p, q ∈ B, do not meet except possibly at an at least a
δ-distance from ∂B, we conclude that Lip �η � 1/δ. �

2.2. Developability through test functions

The following lemma will allow us to translate the developability properties of
v ∈ C1 into a property for the distribution ∇2v:

Lemma 2.11. Let B ⊂ R2 be an open disk and f : B → Rm be continuous. Also, let
�η : B → R2 be a unit Lipschitz vector field such that the following property holds
true:

∀x ∈ B �η(x) = �η(x+ s�η(x)) for all s for which x+ s�η(x) ∈ B.

Then the following two properties are equivalent:

(a) ∀x ∈ B f(x) = f(x+ s�η(x)) for all s for which x+ s�η(x) ∈ B,

(b) ∀ψ ∈ C∞
c (B)

ˆ
B

fdiv(ψ�η) = 0.

Proof. condition (b) states that the distributional derivative of f in direction of the
vector field �η vanishes. The proof shows that a regular enough change of variable
reduces the problem to the case when �η is constant.

Let �ξ = �η⊥ and x ∈ B. Choose T0 > 0 such that γ : (−T0, T0) → B is a solution
to the ODE γ′(t) = �ξ(γ(t)) in B with initial value γ(0) = x. Let L = Lip �η, k(t) =
−γ′′(t) · �η(γ(t)) and note that ‖k‖L∞(−T0,T0) � L. It is straightforward to see that
there exists 0 < t0 � T0/2 such that for all t, t′ ∈ [−t0, t0], and all s, s′ ∈ R,

γ(t) + s�η(γ(t)), γ(t′) + s′�η(γ(t′)) ∈ B =⇒ γ(t) + s�η(γ(t)) �= γ(t′) + s′�η(γ(t′)),

unless t = t′ and s = s′. Indeed, assume by contradiction that there exist sequences
tk, t

′
k → 0, sk, s

′
k, such that for all k, (tk, sk) �= (t′k, s

′
k), and

γ(tk) + sk�η(γ(tk)) = γ(t′k) + s′k�η(γ(t
′
k)) ∈ B.

Note that tk = t′k implies sk = s′k, and hence we must have tk �= t′k for all k, implying
on its turn that γ(tk) �= γ(t′k) for all k. On the other hand, by the main property
of �η we obtain

�η(γ(tk)) = �η(γ(tk) + sk�η(γ(tk)) = �η(γ(t′k) + s′k�η(γ(t
′
k)) = �η(γ(t′k)).

This yields

γ(tk) − γ(t′k) = (s′k − sk)�η(γ(tk)),

implying that

γ(tk) − γ(t′k)
tk − t′k

· �ξ(γ(tk)) = 0.

Passing to the limit we obtain |�ξ(x)|2 = γ′(0) · �ξ(γ(0)) = 0, which is a contradiction.
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Since γ([−t0, t0]) is compact in B, we choose 0 < s0 < 1/2L such that the image
of [−t0, t0] × [−s0, s0] under

Φ(t, s) := γ(t) + s�η(γ(t)), t ∈ [−t0, t0], s ∈ [−s0, s0],

lies compactly in B. We note that Φ is one-to-one and Lipschitz on U := (−t0, t0) ×
(−s0, s0) and that we have

det∇Φ(t, s) = 1 + sk(t) � 1
2

a.e. in U.

We conclude that Φ : U → Φ(U) is a bilipschitz change of variable.
We let Vx = Φ(U), which is an open neighbourhood of x in B. We calculate for

any ψ ∈ C∞
c (Vx):

div(ψ�η) = ∂�η(ψ�η) · �η + ∂�ξ(ψ�η) · �ξ = ∇ψ · �η + ψ∂�ξ�η · �ξ,

which gives for ψ̃ = ψ ◦ Φ:

div(ψ�η)(Φ(t, s)) = ∂sψ̃ + ψ̃
k(t)

1 + sk(t)
.

Therefore, letting f̃(t, s) = f ◦ Φ(s, t) = f(γ(t) + s�η(γ(t)) we obtain

ˆ
Vx

fdiv(ψ�η) =
ˆ

U

fdiv(ψ�η) ◦ Φ(s, t)(1 + sk(t)) dsdt

=
ˆ

U

f̃(s, t)

(
∂sψ̃ + ψ̃

k(t)
1 + sk(t)

)
(1 + sk(t)) dsdt

=
ˆ

U

f̃(t, s)

(
k(t)ψ̃ + ∂sψ̃ + sk(t)∂sψ̃

)
dsdt

=
ˆ

U

f̃(t, s)∂s((1 + sk(t))ψ̃) dsdt.

(2.1)

If (a) is satisfied, then f̃(t, s) = f̃(t) for all values of s for which the function is
defined, and hence, since ψ̃ is compactly supported in U , we obtain:

∀ψ ∈ C∞
c (Vx)

ˆ
Vx

fdiv(ψ�η) = 0. (2.2)

Now for ψ ∈ C∞
c (B), we let K := supp(ψ) ⊂ B. K is compact and so it admits a

finite covering of open sets of the form Vxi
, for i = 1, · · · , n. We consider a partition
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of unity associated with this covering

θi ∈ C∞
c (Vxi

),
n∑

i=1

θi = 1 on K,

and we conclude with (b) by (2.2):

ˆ
B

fdiv(ψ�η) =
n∑

i=1

ˆ
B

fdiv(θiψ�η) =
n∑

i=1

ˆ
Vxi

fdiv(θiψ�η) = 0.

To prove the converse, assume (b) and let ϕ ∈ L1(U), be such that
ˆ s0

−s0

ϕ(t, s) ds = 0, (2.3)

and define

φ(t, s′) :=
1

1 + s′k(t)

ˆ s′

−s0

ϕ(t, s) ds.

We can construct a sequence ψk ∈ C0,1
c (Vx) such that

ψk ◦ Φ → φ in L1(U) and ∂s(ψk ◦ Φ) → ∂sφ in L1(U).

Therefore by (b)
ˆ

Vx

fdiv(ψ�η) = 0 ∀ψ ∈ C∞
c (Vx) =⇒

ˆ
Vx

fdiv(ψk�η) = 0,

which in view of (2.1) implies
ˆ

U

f̃ϕdsdt =
ˆ

U

f̃(t, s)∂s((1 + sk(t))φ) dsdt

= lim
k→∞

ˆ
U

f̃(t, s)∂s

(
(1 + sk(t))ψk ◦ Φ

)
dsdt = 0.

This fact being true for all ϕ ∈ L1(U) satisfying (2.3) implies that

∀t ∈ (−t0, t0) ∀s ∈ (−s0, s0) f̃(t, s) =
 s0

−s0

f̃(t, s) ds.

This means that for |s| < s0:

f(x+ s�η(x)) = f̃(0, s) = f̃(0, 0) = f(x).

Global property (a) is a direct consequence of this local property around each x ∈ B,
and the fact that �η itself is constant on x+ s�η(x) ∈ B for all s. �
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3. A Hölder continuity toolbox

3.1. Notations

For any open set U ⊂ Rn, sufficiently differentiable function f : U → R, and
nonnegative integer j we will denote by [·]j;U the supremum norm of its jth
(multi-index) derivatives over U and by

‖f‖k;U :=
k∑

j=0

[f ]j;U

its Ck norm. For 0 < α � 1, the corresponding Hölder seminorms and norms are
identified by the standard conventions

[f ]k,α;U := sup
x, y ∈ U
x �= y

|Dkf(x) −Dkf(y)|
|x− y|α ,

‖f‖k,α;U := ‖f‖k;U + [f ]k,α;U .

The modulus of continuity of f : U → R is defined by

ωf ;U (r) := sup
x, y ∈ U

0 < |x− y| � r

|f(x) − f(y)|.

We also introduce the α-Hölder modulus of f for 0 < α < 1:

[f ]0,α;U |r := sup
x, y ∈ U

0 < |x− y| � r

|f(x) − f(y)|
|x− y|α .

We will drop the subscript U when denoting these quantities for the specific case
of an open set named U , hence ‖ · ‖· = ‖ · ‖·;U , etc.

For a fixed mollifying kernel φ ∈ C∞
c (B(0, 1)) with

´
φ = 1, and x ∈ Rn, we

denote the standard convolution of a given mapping f with φ over the length
scale ε by

fε(x) := f ∗ φε(x) =
ˆ

Rn

f(x− y)φε(y)dy,

where for all x

φε(x) := ε−nφ
(x
ε

)
.

Naturally fε(x) is defined for ε small enough provided f is integrable in some
neighbourhood of x.

Throughout this article, the universally bounded constant c = O(1) might change
but is independent of all the data, unless specified by an argument. We will also
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use the usual little-o convention, i.e. for any two functions b, b̃ : [0, ε0) → R+, we
have:

b̃(ε) is o(b(ε)) ⇐⇒ ∀ε b̃(ε) � cb(ε) and lim
ε→0+

b̃(ε)
b(ε)

= 0.

We will repeatedly refer to the following convolution estimates in our arguments:

Lemma 3.1. Let V ⊂ U ⊂ Rn be open sets such that dist(V , ∂U) > 0. Assume that
f, h : U → R are locally integrable. Then for any 0 < α < 1 and ε < dist(V , ∂U):

(i) ‖fε − f‖0;V � c[f ]0,α|εεα,

(ii) ‖∇fε‖0;V � c[f ]0,α|εεα−1,

(iii) ‖fεhε − (fh)ε‖1;V � c[f ]0,α|ε[h]0,α|εε2α−1.

Note the basic estimate

∀x ∈ V ∀y ∈ B(0, ε) |f(x) − f(x− y)| � ωf ;U (ε) � [f ]0,α|εεα.

Based on this estimate, the proof follows the same lines as in [13, Lemma 1] and is
left to the reader. The commutator estimate lemma 3.1-(iii) will be crucial for our
analysis. It will be used to prove the quadratic estimate (4.5) ([13, Proposition 1])
for the pull-back metric of mollified isometric immersions. It is also a necessary
ingredient of the proof of theorem 1.5 through establishing the degree formulas
(1.1) for v ∈ c1,2/3, following [41].

3.2. Little Hölder spaces

Our goal here is to define and characterize the elements of the little Hölder spaces
c1,α. We denote by Ck(U) the functions which are continuously differentiable up
to the kth order in U , and by Ck(U) the functions whose derivatives up to order k
in U exist and admit a continuous extension to U . For any open bounded weakly
Lipschitz domain U ⊂ Rn, we recall the definition of the Hölder space

Ck,α(U) := {f ∈ Ck(U); ‖f‖k,α;U <∞}.
By uniform continuity of derivatives, all the derivatives of f up to the order k have
continuous extensions to U and so Ck,α(U) ⊂ Ck(U). For an arbitrary open set
Ω ⊂ Rn we say f ∈ Ck,α(Ω) if and only if for any point x ∈ Ω, f ∈ Ck,α(U) for
some open neighbourhood U ⊂ Ω of x.

Remark 3.2. We have restricted our attention to weakly Lipschitz bounded
domains U in order to insure the inclusion C1(U) ⊂ C0,α(U) and to avoid
unnecessary technical complications in what follows.

Definition 3.3. Let 0 < α < 1 and U ⊂ Rn be an open bounded weakly Lipschitz
domain. The little Hölder space c0,α(U) is the closure of C1(U) with respect to
‖ · ‖0,α;U in C0,α(U). For any open set Ω ⊂ Rn, we say f ∈ c0,α(Ω) if and only if
for any point x ∈ Ω, f ∈ c0,α(U) for an open neighbourhood U ⊂ Ω of x. For k ∈ N,
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the space ck,α(U) (resp. ck,α(Ω)) is defined to be the set of all functions f ∈ Ck(U)
(resp. Ck(Ω)) for which the components of Dkf belong to c0,α(U) (resp. c0,α(Ω)).

Remark 3.4. Under the above regularity assumptions on U , it can be shown that
ck,α(U) is the closure of C∞(U) in Ck,α(U). We will not use this fact in our
arguments.

It is useful to identify the elements of the little Hölder spaces in terms of their
modulus of continuity. In this regard we state the following well-known equivalence,
whose proof is presented for the sake of completeness (see also Appendix B).

Proposition 3.5. Let U be a bounded weakly Lipschitz domain, 0 < α < 1. Then
the following statements are equivalent.

(i) f ∈ c0,α(U).

(ii) f : U → R admits an extension f̃ ∈ c0,α(Rn) and f̃ε|U → f in C0,α(U).

(iii) ωf ;U (r) is o(rα).

(iv) lim
r→0

[f ]0,α;U |r = 0.

Proof. (i) ⇒ (iv): Assuming f ∈ c0,α(U), let fk ∈ C1(U) be a sequence of functions
converging to f in C0,α(U) as k → ∞. We estimate:

[f ]0,α|r � [f − fk]0,α|r + [fk]0,α|r � [f − fk]0,α + c(U)‖∇fk‖0r
1−α,

and a straightforward argument by the auxiliary argument k implies the required
convergence.

(iv) ⇒ (iii): This is straightforward since for all r > 0:

1
rα
ωf ;U (r) � [f ]0,α;U |r.

(iii) ⇒ (ii): By the assumption f is uniformly continuous in U . We extend f to
f̃ : Rn → R by applying proposition B.2, obtaining that ωf̃ ;Rn(r) � Cωf ;U (r) is
o(rα). We conclude that

[f̃ ]0,α;Rn|r = sup
0�s�r

1
sα
ωf̃ ;Rn(s)

is o(1) as a function of r. Consider any bounded weakly Lipschitz domain V ⊂ Rn

and note that f̃ |V ∈ C0,α(V ). Applying lemma B.1 to V implies that f̃ε|V → f̃ |V
in C0,α(V ) as ε→ 0 and thus f̃ |V ∈ c0,α(V ). Both conclusions in (ii) follow.

(ii) ⇒ (i): This statement trivially follows from definition 3.3. �

Corollary 3.6. Let 0 < α < β < 1 and let U ⊂ Rn be a bounded weakly Lipschitz
domain. Then c1,β(U) � C1,β(U) � c1,α(U).

Proof. The first inclusion is trivial. If f ∈ C1,β(U), then ωf ;U (r) is O(rβ) and so
the second inclusion follows by proposition 3.5. �
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3.3. A distributional product and a criteria for Hölder continuity

The following two propositions are practically known by the community at large.
Similar or more general statements in the same spirit have appeared in various
contexts, e.g. in the discussion of the Young integral [58] or of the paraproducts [53,
Chapter 4]. For example, see [2, Theorem 2.52] and [23, Theorem 13.16], or compare
with [45, Theorem 22]. Here, we have formulated and proved rather accessible
straightforward versions for the little Hölder spaces which are more adapted to our
needs.

Definition 3.7. Let U ⊂ Rn be a bounded weakly Lipschitz domain. We say that
a distribution T ∈ D′(U, Rn) satisfies the α-interpolation property on W 1,1

0 (U)
whenever for C > 0

∀ψ ∈ C∞
c (U) ∀j ∈ {1, · · · , n} |Tj [ψ]| � C‖ψ‖α

L1‖∂jψ‖1−α
L1 .

We say that T satisfies the fine α-interpolation property on W 1,1
0 (U) whenever for

C > 0

∀σ > 0 ∃δ = δ(σ) > 0 ∀ψ ∈ C∞
c (U) ∀j ∈ {1, · · · , n}

‖ψ‖L1 � δ‖∂jψ‖L1 =⇒ |Tj [ψ]| � C‖ψ‖α
L1‖∂jψ‖1−α

L1 σ,
(3.1)

with δ(1) = +∞
Proposition 3.8. Let U ⊂ Rn be a bounded weakly Lipschitz domain and V � U be
an open set compactly contained in U . Let 0 < α < 1, f ∈ C0,α(U) and h ∈ c0,α(U).
If α > 1/2, then as ε→ 0, for all j = 1, · · ·n the sequence fε∂jhε converges in
the sense of distributions to a distribution on V which we denote by f∂jh. More
precisely, the convergence is in the dual of W 1,1

0 (V ), i.e. if ψ ∈W 1,1
0 (V )

f∂jh[ψ] := lim
ε→0

ˆ
V

fε∂jhεψ(x)dx

exists. Moreover for all ψ ∈ C∞
c (V )∣∣∣∣∣

ˆ
V

fε∂jhεψ(x)dx− f∂jh[ψ]

∣∣∣∣∣ � ‖f‖0,α[h]0,α

(
o(ε2α−1)‖ψ‖L1 + o(εα)‖∂jψ‖L1

)
,

(3.2)
and T = (f∂1 h, . . . , f∂nh) satisfies the fine α-interpolation property (3.1) on
W 1,1

0 (U) with C = c(U, V )‖f‖0,α[h]0,α.

Remark 3.9. If h is merely in C0,α(U), a similar result holds true with the following
estimates for all ψ ∈W 1,1

0 (U):∣∣∣∣∣
ˆ

V

fε∂jhεψ(x)dx− f∂jh[ψ]

∣∣∣∣∣ � c‖f‖0,α[h]0,α

(
ε2α−1‖ψ‖L1 + εα‖∂jψ‖L1

)
and

|f∂jh[ψ]| � C‖ψ‖α
L1‖∂jψ‖1−α

L1 ,

i.e. T = (f∂1 h, . . . , f∂nh) satisfies the α-interpolation property on W 1,1
0 (U).
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Proof. Let ψ ∈W 1,1
0 (V ), and for ε < dist(V , ∂U) we define:

a(ε) :=
ˆ

V

fε∂jhεψ(x)dx.

We first prove that a(ε) is a Cauchy sequence. For any 0 < ε′ < ε we have

|a(ε) − a(ε′)| =

∣∣∣∣∣
ˆ

V

(fε∂jhε − fε′∂jhε′)ψ

∣∣∣∣∣
�
∣∣∣∣∣
ˆ

V

fε(∂jhε − ∂jhε′)ψ

∣∣∣∣∣+
∣∣∣∣∣
ˆ

V

(fε − fε′)∂jhε′ψ

∣∣∣∣∣
=

∣∣∣∣∣−
ˆ

V

∂jfε(hε−hε′)ψ −
ˆ

V

fε(hε − hε′)∂jψ

∣∣∣∣∣+
∣∣∣∣∣
ˆ

V

(fε − fε′)∂jhε′ψ

∣∣∣∣∣
�
∣∣∣∣∣
ˆ

V

∂jfε(hε − hε′)ψ

∣∣∣∣∣+
∣∣∣∣∣
ˆ

V

fε(hε − hε′)∂jψ

∣∣∣∣∣+
∣∣∣∣∣
ˆ

V

(fε − fε′)∂jhε′ψ

∣∣∣∣∣
= I1(ε, ε′) + I2(ε, ε′) + I3(ε, ε′)

(3.3)
We estimate, using ε′ < ε:

I1(ε, ε′) =

∣∣∣∣∣
ˆ

V

ψ(x)

(ˆ
Rn

(f(x− y)∂jφε(y))dy

)
(ˆ

Rn

(h(x− z)(φε(z) − φε′(z))dz

)
dx

∣∣∣∣∣
=

∣∣∣∣∣
ˆ

V

ψ(x)
ˆ

Rn

(f(x− y) − f(x))∂jφε(y)dy

ˆ
Rn

(h(x− z) − h(x))(φε(z) − φε′(z))dz dx

∣∣∣∣∣
� ‖ψ‖L1(c[f ]0,αε

α−1)(c[h]0,α|εεα) � ‖ψ‖L1(c[f ]0,αε
α−1)([h]0,αo(εα))

� ‖ψ‖L1 [h]0,α[f ]0,αo(ε2α−1),

where we used lemma 3.1-(i) and proposition 3.5 in the third line. For I3(ε, ε′), we
note that ε �� ε′ and hence the same estimate as for I1 is not obtained, but through
the same calculations as for I1, we obtain

I3(ε, ε′) � ‖ψ‖L1 [h]0,α[f ]0,αε
′−1

o(ε′α)εα.
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In the same manner, we can also obtain an estimate for I2:

I2(ε, ε′) =

∣∣∣∣∣
ˆ

V

fε(hε − hε′)∂jψ

∣∣∣∣∣
� ‖∂jψ‖L1‖f‖0 sup

x∈V

∣∣∣∣∣
ˆ

Rn

h(x− y)(φε(y) − φε′(y))dy

∣∣∣∣∣
= ‖∂jψ‖L1‖f‖0 sup

x∈V

∣∣∣∣∣
ˆ

Rn

(h(x− y) − h(x))(φε(y) − φε′(y))dy

∣∣∣∣∣
� ‖∂jψ‖L1‖f‖0[h]0,αo(εα).

Putting the three estimates together in view of (3.3), we obtain a first crude
estimate:

|a(ε)−a(ε′)| � [h]0,α

([
o(ε2α−1)+ε′−1

o(ε′α)εα

]
[f ]0,α‖ψ‖L1 +o(εα)‖f‖0‖∂jψ‖L1

)
.

(3.4)

This estimate is not enough to establish the Cauchy property of the sequence a(ε).
Therefore, we proceed as follows. If ε′/ε � 1/2, we set ρ = ε′/ε, m = 1. Otherwise
there exists m ∈ N, depending on ε′/ε < 1, such that 1/4 � ρ = (ε′/ε)1/m < 1/2.
We now write

|a(ε) − a(ε′)| �
m∑

k=1

|a(ρk−1ε) − a(ρkε)|.

We apply (3.4) successively to 0 < ρkε < ρk−1ε (as the new ε′ and ε) to obtain

|a(ε) − a(ε′)| � [h]0,α

(
o(ε2α−1)[f ]0,α‖ψ‖L1(1 + ρα−1)

m∑
k=1

ρ(k−1)(2α−1)

+ o(εα)‖f‖0‖∂jψ‖L1

m∑
k=1

ρ(k−1)α

)

� (ρα−1 + 1)
1 − ρ(2α−1)m

1 − ρ2α−1
o(ε2α−1)[h]0,α[f ]0,α‖ψ‖L1

+
1 − ραm

1 − ρα
o(εα)[h]0,α‖f‖0‖∂jψ‖L1

� o(ε2α−1)[h]0,α[f ]0,α‖ψ‖L1 + o(εα)[h]0,α‖f‖0‖∂jψ‖L1 ,

since by our choice either 1/2 � ρ < 1 and m = 1, or 1/4 � ρ < 1/2, independent
of ε′, ε. This implies that a(ε) is Cauchy sequence. Hence, the limit

f∂jh[ψ] := a = lim
ε→0

a(ε),

exists.

https://doi.org/10.1017/prm.2024.55 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.55


The geometry of C1,α isometric immersions 21

Now, we estimate for a fixed ε > 0, as ε′ → 0:∣∣∣∣∣
ˆ

V

fε∂jhεψ(x)dx− f∂jh[ψ]

∣∣∣∣∣ = |a(ε) − a| � ‖ψ‖L1 [f ]0,α[h]0,αo(ε2α−1)

+ ‖∂jψ‖L1‖f‖0[h]0,αo(εα),

which establishes (3.2). To obtain (3.1), applying lemma 3.1-(ii) and proposition
3.5 to ∂jhε we observe that:

|f∂jh[ψ]| � |a(ε)| + |a(ε) − a| � |a(ε)| + [f ]0,α[h]0,α‖ψ‖L1o(ε2α−1)

+ ‖f‖0[h]0,α‖∂jψ‖L1o(εα)

� ‖f‖0[h]0,α‖ψ‖L1o(εα−1) + [f ]0,α[h]0,α‖ψ‖L1o(ε2α−1)

+ ‖f‖0[h]0,α‖∂jψ‖L1o(εα)

� ‖f‖0,α[h]0,α

(
‖ψ‖L1o(εα−1) + ‖∂jψ‖L1o(εα)

)

In other words,

for any σ > 0, there exists δ0 = δ0(σ) > 0 such that

ε � min{δ0,dist(V , ∂U)} =⇒ |f∂jh[ψ]|

� c‖f‖0,α[h]0,α

(
‖ψ‖L1εα−1 + ‖∂jψ‖L1εα

)
σ,

(3.5)

with δ0(1) = +∞.
We conclude the proof of (3.1): Given, σ > 0, we let

δ =
(

1 +
diam(V )

dist(V , ∂U)

)
δ0.

Assume ‖ψ‖L1 � δ‖∂jψ‖L1 for a given nonzero ψ, then letting

ε =
(

1 +
diam(V )

dist(V , ∂U)

)−1 ‖ψ‖L1

‖∂jψ‖L1
,

we obtain ε < dist(V , ∂U) by the Poincaré inequality ‖ψ‖L1 � diam(V )‖∂jψ‖L1 on
V . On the other hand we also have ε � δ0 and therefore applying (3.5) we obtain
as required:

|f∂jh[ψ]| � c

(
1 +

diam(V )
dist(V , ∂U)

)1−α

‖f‖0,α[h]0,α‖ψ‖α
L1‖∂jψ‖1−α

L1 σ.

�
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Definition 3.10. We say U ⊂ Rn is an open coordinate rectangular box when it is
a rectangular cuboid with edges parallel to the coordinate axes, i.e.

U =
n∏

k=1

Ik

for Ik an open interval in R.

Proposition 3.11. Assume that U ⊂ Rn is an open coordinate rectangular box and
that for f ∈ L1(U), T = ∇f satisfies the fine α-interpolation property on W 1,1

0 (U)
according to definition 3.7 with C = 1. Then

[f ]0,α;U |δ(σ) � 2n+1σ.

In particular, by proposition 3.5, f ∈ c0,α(U) and [f ]0,α;U � 2n+1.

Proof. The proof of the proposition follows classical ideas relating the decay of
mean oscillations to pointwise behaviour of functions, as pioneered by Morrey and
Campanato, see for instance [8]. We prove the statement by induction over the
dimension.

First let n = 1 and U ⊂ R and be an open interval and let I ⊂ U be any open
subinterval. Note that for any φ ∈ C∞

c (I), we can construct a sequence φ̃k ∈ C∞
c (I)

such that ‖φ̃k‖0 � 1 + 2‖φ‖0, and φ̃k converges strongly in L1 to φ− ffl
I
φ. Now fix

ϕ ∈ C∞
c (I) with

ffl
I
ϕ = 1 and let

φk := φ̃k −
( 

I

φ̃k

)
ϕ

L1

−−→ φ−
 

I

φ.

By the dominated convergence theorem we have

lim
k→∞

ˆ
I

fφk =
ˆ

I

f(φ−
 

I

φ).

Let ψk(t) =
´ t

−∞ φk(s)ds and note that ψk ∈ C∞
c (I). We have therefore for all φ ∈

C∞
c (I) and σ > 0, provided |I| � δ(σ):∣∣∣∣∣
ˆ

I

(f −
 

I

f)φ

∣∣∣∣∣ =
∣∣∣∣∣
ˆ

I

f(φ−
 

I

φ)

∣∣∣∣∣ = lim
k→∞

∣∣∣∣∣
ˆ

I

fφk

∣∣∣∣∣= lim
k→∞

∣∣∣∣∣
ˆ

I

fψ′
k

∣∣∣∣∣ = lim
k→∞

∣∣∣∣∣T [ψk]

∣∣∣∣∣
� lim inf

k→∞
‖ψk‖α

L1‖ψ′
k‖1−α

L1 σ � lim inf
k→∞

‖ψ′
k‖L1 |I|ασ

= lim inf
k→∞

‖φk −
 

I

φk‖L1 |I|ασ=‖φ−
 

I

φ‖L1 |I|ασ � 2‖φ‖L1 |I|ασ,

where we used the Poincaré inequality on I. Since (L1)′ = L∞, and C∞
c (I) is dense

in L1(I), we conclude that

∀σ > 0 |I| � δ(σ) =⇒ ‖f −
 

I

f‖L∞(I) � 2|I|ασ. (3.6)

https://doi.org/10.1017/prm.2024.55 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.55


The geometry of C1,α isometric immersions 23

Now, let y ∈ U , and let d = dist(y, ∂U), and for z ∈ (y − d/2, y + d/2) and r < d/2
define

hr(z) :=
 z+r

z−r

f(x)dx.

hr is continuous in z and converges a.e. to f on (y − d/2, y + d/2) as r → 0. On
the other hand, for all r′ < r < d/2:

∣∣∣∣∣hr(z) − hr′(z)

∣∣∣∣∣ �
 

(z−r,z+r)×(z−r′,z+r′)
|f(x) − f(x′)|dxdx′

� 4|(z − r, z + r)|α = 2α+2rα,

where we applied bound (3.6) to I = (z − r, z + r), σ = 1, δ(1) = +∞. As a conse-
quence, hr is a Cauchy sequence in the uniform norm and f is continuous as the
uniform limit of the hr for r → 0. Now, applying once again (3.6) to I = (x, y) ⊂ U
we obtain that

∀σ > 0 ∀x, y ∈ U |x− y| � δ(σ) =⇒ |f(x) − f(y)| � 4|x− y|ασ,

which implies [f ]0,α;U |δ(σ) � 4σ, as required.
Now, assume that n > 1 and that the statement is true for n− 1. Let Q ⊂ U be

any coordinate rectangular box, i.e.

Q :=
n∏

k=1

Ik ⊂ U,

with the open intervals Ik ⊂ R. Let x̂ := (x1, · · · , xn−1) and note that for all h ∈
L1(Q),

for a.e. x̂ ∈ Qn−1 :=
n−1∏
j=1

Ik, ĥ(x̂) :=
 

In

h(x)dxn

is well defined and belongs to L1(Q). We claim that:

∀σ > 0 |In| � δ(σ) =⇒ ess sup
x∈Q

∣∣∣∣∣f(x) − f̂(x̂)

∣∣∣∣∣ � 2|In|ασ. (3.7)

Let us first show that the conclusion holds assuming claim (3.7) is true for all
coordinate boxesQ ⊂ U . For a, b the extremities of In, choose 0 � θk � 1 in C∞

c (In)
such that θk ≡ 1 on (a+ 1/k, b− 1/k). Given σ > 0, for 1 � j � n− 1, and ψ ∈
C∞

c (Qn−1), assuming that ‖ψ‖L1(Qn−1) � δ(σ)‖∂jψ‖L1(Qn−1), we have by our main
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assumption on f :∣∣∣∣∣
ˆ

Qn−1
f̂∂jψ

∣∣∣∣∣ = 1
|In|

∣∣∣∣∣
ˆ

Q

f(x)∂jψ(x̂)dx

∣∣∣∣∣ = lim
k→∞

1
|In|

∣∣∣∣∣
ˆ

Q

f(x)θk(xn)∂jψ(x̂)dx

∣∣∣∣∣
= lim

k→∞
1

|In|

∣∣∣∣∣
ˆ

Q

f∂j(θkψ)

∣∣∣∣∣ � lim
k→∞

1
|In| ‖θkψ‖α

L1(Q)‖∂j(θkψ)‖1−α
L1(Q)σ

= lim
k→∞

1
|In| ‖θkψ‖α

L1(Q)‖θk∂jψ‖1−α
L1(Q)σ =

1
|In| ‖ψ‖

α
L1(Q)‖∂jψ‖1−α

L1(Q)σ

= ‖ψ‖α
L1(Qn−1)‖∂jψ‖1−α

L1(Qn−1)σ,

since θkψ ∈ C∞
c (Q) and

‖θkψ‖L1(Q) =

(ˆ b

a

θk

)
‖ψ‖L1(Qn−1) � δ(σ)

(ˆ b

a

θk

)
‖∂jψ‖L1(Qn−1)

= δ(σ)‖∂j(θkψ)‖L1(Q).

Applying the induction assumption, we deduce that

[f̂ ]0,α;Qn−1|δ(σ) � 2n. (3.8)

To prove that f is continuous, fix y ∈ U and consider a box Qd = Qn−1 ×
(yn − d, yn + d) ⊂ U containing y. For all z ∈ Qn−1 × (yn − d/2, yn + d/2), and
r < d/2 we define

hr(z) :=
 zn+r

zn−r

f(ẑ, s)ds

Note that, if r is fixed, the vertical averages of f are continuous in ẑ as established
in (3.8), and so hr is continuous in z. Applying (3.7) with σ = 1 to Q = Qn−1 ×
(zn − r, zn + r) we have for r′ < r < d/2:∣∣∣∣∣hr(z) − hr′(z)

∣∣∣∣∣ �
 

(z−r,z+r)×(z−r′,z+r′)
|f(ẑ, s) − f(ẑ, s′)|dsds′

� 4|(z − r, z + r)|α = 2α+2rα,

which implies that hr locally uniformly converge to their limit, which happens to
be f . Hence f is continuous in U .

To obtain a Hölder estimate, let x, y ∈ U . First, assume xj = yj for some 1 �
j � n. We re-arrange the coordinates so that j = n and note that for any sequence
of coordinate rectangular boxes Qk of height 1/k, containing x and y, such that
xn = yn is the midpoint of In,k, we have by (3.8)

∀σ > 0 |x− y| � δ(σ) =⇒ |f(x) − f(y)| = lim
k→∞

|f̂Qk
(x̂) − f̂Qk

(ŷ)|

� 2n|x̂− ŷ|ασ � 2n|x− y|ασ.
If, on the other hand, xj �= yj for all j, we can choose a coordinate rectangular box
Q ⊂ U which has x and y as its opposite vertices on the largest diameter. We obtain
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by applying (3.7) and (3.8) to the now continuous f , provided |x− y| � δ(σ):

|f(x) − f(y)| � |f(x) − f̂(x̂)| + |f̂(x̂) − f̂(ŷ)| + |f(y) − f̂(ŷ)|
� 4|xn − yn|ασ + 2n|x̂− ŷ|ασ � (4 + 2n)|x− y|ασ
� 2n+1|x− y|ασ.

In both cases we can conclude with the desired bound, i.e. [f ]0,α;U |δ(σ) � 2n+1σ.
Note that the sequence Qk in the first case and the box Q in the second case exist
since U is assumed to be a coordinate box itself.

It remains to prove claim (3.7). Given σ > 0 assume that |In| � δ(σ) as required
in (3.7). For any φ ∈ C∞

c (Q), consider a sequence φ̃k ∈ C∞
c (Q), ‖φ̃k‖0 � 1 + 2‖φ‖0,

converging strongly in L1 to φ− φ̂(x̂). As a consequence,

lim
k→∞

ˆ
In

φ̃k(x)dxn = 0 in L1(Qn−1).

Choose a ϕ ∈ C∞
c (In) such that

ffl
In
ϕ = 1 and define

φk(x) = φ̃k(x) −
( 

In

φ̃k(x̂, s)ds

)
ϕ(xn).

Then φk ∈ C∞
c (Q) converges in L1 to φ− φ̂(x̂) and φ̂k(x̂) =

ffl
In
φk(x)dxn = 0. Let-

ting ψk(x̂, t) =
´ t

−∞ φk(x̂, s)ds we obtain for all φ ∈ C∞
c (Q), ψk ∈ C∞

c (Q). We
hence obtain∣∣∣∣∣
ˆ

Q

(f − f̂(x̂))φ

∣∣∣∣∣ =
∣∣∣∣∣
ˆ

Q

f(φ− φ̂(x̂))

∣∣∣∣∣ = lim
k→∞

∣∣∣∣∣
ˆ

Q

fφk

∣∣∣∣∣ = lim
k→∞

∣∣∣∣∣
ˆ

Q

f∂nψk

∣∣∣∣∣
= lim

k→∞

∣∣∣∣∣Tn[ψk]

∣∣∣∣∣
� lim inf

k→∞
‖ψk‖α

L1‖∂nψk‖1−α
L1 σ � lim inf

k→∞
|In|α‖∂nψk‖α

L1‖∂nψk‖1−α
L1 σ

= lim
k→∞

|In|α‖φk −
 

In

φk(x)dxn‖L1σ = |In|α‖φ

−
 

In

φ(x)dxn‖L1(Q)σ

� 2|In|α‖φ‖L1(Q)σ,

where we used the Poincaré inequality

‖ψk‖L1(Q) � |In|‖∂nψk‖L1(Q) � δ(σ)‖∂nψk‖L1(Q)

on In. Once again, using the fact that L∞ is the dual of L1, and the density of
C∞

c (Q) in L1(Q), we conclude with (3.7). �
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4. A second fundamental form for c1,α isometries

Let u∈ c1,α(Ω, R3) be an immersion with 2/3 � α < 1 and let V � Ω be any smooth
simply connected domain compactly contained in Ω, e.g. an open disk. We intend
to show the following three statements, which we will formulate more precisely later
on. We shall prove:

1. A weak notion of the second fundamental form Aij = −∂iu · ∂j�n makes sense
for the immersion u on V . A = [Aij ] is symmetric. This part can be carried
out for α > 1/2.

2. If u is isometric, then A is curl free, and is equal to ∇2v for a scalar function
v ∈ c1,α(V ).

3. Det (D2v) = −1/2curlT curl (∇v ⊗∇v) = 0 in D′(V ).

We choose an open smooth domain U such that V � U � Ω. Let φ ∈ C∞
c (B(0, 1))

be a nonnegative function with
´
φ = 1. For ε < dist(V , ∂U) we define

�nε := �n ∗ φε

to be the mollification of the unit normal

�n =
∂1u× ∂2u

|∂1u× ∂2u|

of immersion u. Note that by assumption C0 := ‖∂1u× ∂2u‖0;U > 0 and �n ∈
c0,α(Ω, R3). Let uε := u ∗ φε : V → R3 be the standard mollification of u on V .
If ε is small enough uε is an immersion since ∇uε converges uniformly to ∇u on V ,
and

|∂1uε × ∂2uε| � 1
2
C0.

We define

Nε :=
∂1uε × ∂2uε

|∂1uε × ∂2uε|

to be the unit normal corresponding to uε. A direct application of lemma 3.1 yields:

‖∂iuε − ∂iu‖0;V � ‖u‖1,αo(εα), ‖uε‖2;V � ‖u‖1,αo(εα−1); ‖�nε − �n‖0;V

� ‖u‖2
1,αo(ε

α). (4.1)

We also note that

‖Nε − �n‖0;V � 1
C0

‖u‖2
1,αo(ε

α), ‖∇Nε‖0;V � 1
C0

‖u‖2
1,αo(ε

α−1). (4.2)
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To see the first estimate we observe that

‖Nε − �n‖0;V �
∥∥∥∥∥ ∂1uε × ∂2uε

|∂1uε × ∂2uε| −
∂1u× ∂2u

|∂1u× ∂2u|

∥∥∥∥∥
0;V

� 2
C2

0

∥∥∥∥∥|∂1u× ∂2u|(∂1uε × ∂2uε) − |∂1uε × ∂2uε|(∂1u× ∂2u)

∥∥∥∥∥
0;V

� 2
C0

(∥∥∥∥∥∂1uε × ∂2uε − ∂1u× ∂2u

∥∥∥∥∥
0;V

+

∥∥∥∥∥|∂1uε × ∂2uε| − |∂1u× ∂2u|
∥∥∥∥∥

0;V

)

� 4
C0

∥∥∥∥∥∂1uε × ∂2uε − ∂1u× ∂2u

∥∥∥∥∥
0;V

� 1
C0

‖u‖2
1,αo(ε

α),

where we used (4.1). The second estimate also follows from (4.1) and a direct
calculation.

We finally denote by the symmetric matrix field Aε := [Aε
ij ] the second funda-

mental form associated with the immersion uε in the local coordinates, i.e.

Aε
ij := ∂ijuε ·Nε = −∂iuε · ∂jN

ε, (4.3)

which by (4.1) satisfies the obvious bound

‖Aε‖0;V � [uε]2;V � ‖u‖1,αo(εα−1). (4.4)

4.1. Definition of the second fundamental form A

We are ready now to prove our main claims about the existence of a second fun-
damental form for the immersion u and its properties. In what follows the constant
C = c(U, V, ‖u‖1,α;U , C0) might change but it has a universal upper bound only
depending on the stated quantities.

Proposition 4.1. If α > 1/2, then Aε
ij converges in the sense of distributions to a

distribution Aij ∈ D′(V ). More precisely, the convergence is in the dual of W 1,1
0 (V ),

and we have:

∀ψ ∈ C∞
c (V ) |(Aε

ij −Aij)[ψ]| � C

(
o(ε2α−1)‖ψ‖L1 + o(εα)‖∂jψ‖L1

)
.

Moreover, for each i, the distribution T = (Aij)n
j=1 satisfies the fine α-interpolation

property on W 1,1
0 (V ) according to definition 3.7.

https://doi.org/10.1017/prm.2024.55 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.55


28 C. De Lellis and M. R. Pakzad

Proof. Applying proposition 3.8 to the components f := ∂iu
m, h := �nm, for m ∈

{1, 2, 3}, we deduce that for a distribution Aij ∈ D′(V ),

Bε
ij := −∂iuε · ∂j�nε → Aij := −∂iu · ∂j�n in D′(V ),

and

|Bε
ij [ψ] −Aij [ψ]| � C

(
o(ε2α−1)‖ψ‖L1 + o(εα)‖∂jψ‖L1

)
.

On the other hand, we have for all ψ ∈W 1,1
0 (V ):

|Aε
ij [ψ] −Aij [ψ]| � |Bε

ij [ψ] −Aij [ψ]| +
∣∣∣∣∣
ˆ

B

∂iuε(x) · (∂j�nε(x) − ∂jN
ε(x))ψ(x)dx

∣∣∣∣∣
� C

(
o(ε2α−1)‖ψ‖L1 + o(εα)‖∂jψ‖L1

)

+

∣∣∣∣∣
ˆ

V

∂ijuε · (�nε −Nε)ψdx

∣∣∣∣∣+
∣∣∣∣∣
ˆ

V

∂iuε · (�nε −Nε)∂jψ

∣∣∣∣∣
� C

(
o(ε2α−1)‖ψ‖L1 + o(εα)‖∂jψ‖L1

)
,

where we used proposition 3.8, (4.1) and (4.2). The stated fine α-interpolation
property follows as in proposition 3.8. �

Definition 4.2. For 1/2 < α < 1, we define the weak second fundamental form of
an immersion u ∈ c1,α(Ω, R3) on V as the distribution

A : C∞
c (V ) → R2×2

sym, A[ψ] := [Aij [ψ]]2×2.

Remark 4.3. The definition of A can be uniquely extended to a distribution
globally defined on Ω, i.e. belonging to D′(Ω, R2×2

sym), but we will not need this
fact.

4.2. A satisfies Gauss-Codazzi-Mainardi equations (in a weak sense)

From now on we assume that the immersion u is also isometric, i.e. the pull
back-metric g := (∇u)T (∇u) is the Euclidean metric E2 on Ω. We consider G ε :=
(∇uε)T∇uε = u∗εE3, the pull-back metric induced by uε, where E3 is the Euclidean
metric of R3. The commutator estimate lemma 3.1-(iii) implies

‖G ε − (g ∗ φε)‖1;V = ‖(∇uε)T∇uε − ((∇u)T∇u)ε‖1;V � ‖u‖2
1,αo(ε

2α−1).

So, in view of the fact that E2 ∗ φε = E2 on V we obtain:

‖G ε − E2‖1;V � ‖u‖2
1,αo(ε

2α−1). (4.5)

Compare with [13, Proposition 1], which is stated under more general settings and
where the mollifier needs to be symmetric.
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Proposition 4.4. We have the uniform estimate

‖curlAε‖0;V � Co(ε3α−2). (4.6)

In particular, if α � 2/3, then curlA = 0 in D′(V ).

Proof. We recall that the Christoffel symbols associated with a metric g are given
by

Γi
jk(g) =

1
2
gim(∂kgjm + ∂jgkm − ∂mgjk),

where the Einstein summation convention is used. Hence, in view of (4.5), we have

Γi,ε
kj := Γi

jk(G ε) → 0

uniformly, if α � 1/2, with the estimate

‖Γi,ε
kj ‖0;V � Co(ε2α−1). (4.7)

Writing the Codazzi–Mainardi equations [27, Equation (2.1.6)] for the immersion
uε we have

∂2A
ε
11 − ∂1A

ε
12 = Aε

11Γ
1,ε
12 +Aε

12(Γ
2,ε
12 − Γ1,ε

11 ) −Aε
22Γ

2,ε
11 ,

∂2A
ε
12 − ∂1A

ε
22 = Aε

11Γ
1,ε
22 +Aε

12(Γ
2,ε
22 − Γ1,ε

12 ) −Aε
22Γ

2,ε
12 .

Hence, by (4.4) and (4.7),

‖∂2A
ε
i1 − ∂1A

ε
i2‖0;V � Co(εα−1)o(ε2α−1),

which completes the proof. �

Before proceeding to the next step, we need to establish a further property of the
sequence Aε. Observe that if u ∈ C2(Ω, R3) were an isometric immersion, then the
determinant of its second fundamental form A would vanish, since, in this particular
case, it would be equal to the Gaussian curvature of the Euclidean metric. In the
case considered here, u does not enjoy the sufficient regularity for detA to be
defined. However, we can show that for α � 1/2, detAε converges in the sense of
distributions to 0 as ε→ 0, that with a rate which will be crucial in our analysis.
The following statement is a slight variant of [13, Proposition 7] recast for our
purposes:

Proposition 4.5. Let Aε be as defined in (4.3). Then for all ψ ∈ C∞
c (V ),∣∣∣∣∣

ˆ
V

(detAε)ψ

∣∣∣∣∣ � C‖ψ‖W 1,1o(ε2α−1).
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Proof. In view of the formula for the (0, 4)-Riemann curvature tensor [27, Equation
(2.1.2)]

Riljk = glm(∂kΓm
ij − ∂jΓm

ik + Γm
ksΓ

s
ij − Γm

jsΓ
s
ik),

and by the Gauss equation [27, Equation (2.1.7)], (4.5) and (4.7) we have on V :

detAε = R1212(G ε) = G ε
1m(∂1Γ

m,ε
22 − ∂2Γ

m,ε
21 + Γm,ε

1s Γs,ε
22 − Γm,ε

2s Γs,ε
21 )

= ∂1(G ε
1mΓm,ε

22 ) − ∂2(G ε
1mΓm,ε

21 ) + o(ε2α−1)

= 2∂12G
ε
12 − ∂11G

ε
22 − ∂22G

ε
11 + o(ε2α−1)

= −curlT curl G ε + o(ε2α−1).

The conclusion follows by an integration by parts involving the first term and
applying (4.5). �

4.3. A as the Hessian of a scalar function

Proposition 4.6. Let α � 2/3, u ∈ c1,α(Ω, R3) be an isometric immersion and
V be a smooth simply connected domain compactly contained in Ω. There exists
v ∈ c1,α(V ) ∩W 1,2(V ) such that A, the second fundamental form of u on V , equals
∇2v in the sense of distributions. Moreover

DetD2v = −1
2
curlT curl(∇v ⊗∇v) = 0 in D′(V ).

Remark 4.7. In our setting, it can also be shown that v ∈ c1,α(V ). In view of
remark 4.3, one can find such v ∈ c1,α(Ω) provided Ω is simply connected. We will
not need these facts.

Proof. Let Aε be as defined in (4.3) and let F ε be the solution to the Neumann
problem {

ΔF ε = divAε in V
∂νF

ε = Aε · ν on ∂V

Since div(∇F ε −Aε) = 0, there exists a vector field Eε such that Aε = ∇F ε +
∇⊥Eε. Eε solves {

ΔEε = curl(Aε −∇F ε) = curlAε in V
Eε = const. on ∂V

Since Aε is symmetric, we have ∂2(F ε
1 + Eε

2) = ∂1(F ε
2 − Eε

1), and thus we derive
the existence of a scalar function v(ε) ∈ C∞(V ) satisfying

∂1v
(ε) = F ε

1 + Eε
2 , ∂2v

(ε) = F ε
2 − Eε

1 ,

i.e. ∇v(ε) = F ε + (Eε
1 , −Eε

2). As a consequence

Aε = ∇2v(ε) −∇(Eε)⊥+∇⊥Eε.
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Standard elliptic estimates imply that for any p <∞

‖∇Eε‖W 1,p(V ) � c(p, V )‖curlAε‖0;V . (4.8)

As a consequence, fixing p > 2, and in view of (4.6), ‖Aε −∇2v(ε)‖0;V �
Co(ε3α−2) → 0 and therefore ∇2v(ε) converges to A in the sense of distributions.

Now, for all ϕ ∈ C∞
c (V ), there exists a vector field Ψ in V , vanishing on ∂V ,

such that div Ψ = ϕ− ffl
V
ϕ, for which ‖Ψ‖W 1,2(V ) � c(V )‖ϕ‖L2(V ) (see e.g. [1]).

By adjusting the ∇v(ε) so that it is of average 0 over V , and in view of proposition
4.1, we obtain that for all ε, ε′ � δ:

∣∣∣∣∣
ˆ

V

(∇v(ε) −∇v(ε′))ϕ

∣∣∣∣∣ =
∣∣∣∣∣
ˆ

V

(∇v(ε) −∇v(ε′))(ϕ−
 

V

ϕ)

∣∣∣∣∣
=

∣∣∣∣∣
ˆ

V

(∇v(ε) −∇v(ε′))div Ψ

∣∣∣∣∣
=

∣∣∣∣∣
ˆ

V

(∇2v(ε) −∇2v(ε′))Ψ

∣∣∣∣∣
�
∣∣∣∣∣
ˆ

V

(Aε −Aε′
)Ψ

∣∣∣∣∣+
∣∣∣∣∣
ˆ

V

(∇2v(ε) −Aε)Ψ

∣∣∣∣∣
+

∣∣∣∣∣
ˆ

V

(∇2v(ε′) −Aε′
)Ψ

∣∣∣∣∣
� C‖Ψ‖W 1,1o(δ3α−2) � C‖ϕ‖L2(V )o(δ3α−2).

By duality, we conclude that ∇v(ε) converges strongly in L2(V ) to a vector field F
and that ∇F = A. It is now straightforward to see that, if necessary by adjusting
the v(ε) by constants, v(ε) converges strongly in W 1,2 to some v ∈W 1,2(V ) and
that A = ∇2v.

To complete the proof, it is only necessary to show that (a) DetD2v = 0 and (b)
v ∈ c1,α(V ).

In order to show (a), we first observe that since ∇v(ε) → ∇v in L2(V ), for all
ψ ∈ C∞

c (V ) we obtain:

−1
2
curlT curl(∇v ⊗∇v)[ψ] = lim

ε→0
−1

2
curlT curl(∇v(ε) ⊗∇v(ε))[ψ]

= lim
ε→0

det∇2v(ε)[ψ]

= lim
ε→0

ˆ
V

det(Aε + ∇(Eε)⊥−∇⊥Eε)ψ
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= lim
ε→0

ˆ
V

(detAε)ψ

+ lim
ε→0

∑
some indices i,j,k,l

ˆ
V

Aε
ij(∂kE

ε
l )ψ

+ lim
ε→0

ˆ
V

det(∇(Eε)⊥−∇⊥Eε)ψ.

The third term obviously converges to 0, and so does the first term by proposition
4.5. For the second term, we have, using propositions 4.1, (4.6) and (4.8)∣∣∣∣∣

ˆ
V

Aε
ij(∂kE

ε
l )ψ

∣∣∣∣∣ �
∣∣∣∣∣(Aε

ij −Aij)[(∂kE
ε
l )ψ]

∣∣∣∣∣+
∣∣∣∣∣A[(∂kE

ε
l )ψ]

∣∣∣∣∣
� C‖(∂kE

ε
l )ψ‖W 1,1o(ε2α−1) + C‖(∂kE

ε
l )ψ‖W 1,1

� C‖ψ‖1o(ε2α−1)o(ε3α−2) + C‖ψ‖1o(ε3α−2) ε→0−−−→ 0.

This completes the proof of (a).
It remains to prove (b) v ∈ c1,α(V ). Since ∇2v = A is symmetric in i, j, we

have ∂jiv = ∂ijv = Aij , as distributions. Proposition 4.1 implies that, for each i,
∇(∂iv) satisfies the fine α-interpolation inequality on W 1,1

0 (V ). For any x ∈ V , we
apply proposition 3.11 to a coordinate rectangular box containing x and compactly
included in V to conclude that ∂iv ∈ c0,α(V ) for i = 1, 2, which yields v ∈ c1,α(V ).

�

5. Developability: a proof of theorem 1.3

Let u ∈ c1,α(Ω, R3) be an isometric immersion for 2/3 � α < 1. In order to prove
our main theorem, and in view of proposition 2.1, it is sufficient to show that ∇u
satisfies condition (c). We first fix an open disk V containing x and compactly
contained in Ω and note the existence of the function v ∈ c1,α(V ) ⊂ c1,2/3(V ) as
defined in proposition 4.6. We apply the key developability result theorem 1.5 to v
to obtain that ∇v satisfies any of the equivalent conditions of proposition 2.1 in V .
The developability of u is a consequence of corollory 2.2 and proposition 5.1 below.
The second conclusion follows from corollary 3.6.

Proposition 5.1. Let 1/2 < α < 1 and u ∈ c1,α(Ω, R3) be an immersion, with the
second fundamental form A defined as in proposition 4.1 on V � Ω. Assume more-
over that A = ∇2v, where v ∈ C1(V ). Then u|V is developable if and only if v is
developable.

Proof. We consider the following identity [27, Equation (2.1.3)] (also known as the
Gauss equation in the literature), which is valid for the mollified sequence of smooth
immersions uε:

∂ijuε = Γk,ε
ij ∂kuε +Aε

ijN
ε, (5.1)

where the standard Einstein summation convention is used.
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Let B ⊂ V be a given disk, ψ ∈ C∞
c (B) and Lipschitz unit vector field �η : B →

R2. We denote the coefficients of u and Nε respectively by um and Nε,m and
calculate for m = 1, 2, 3,ˆ

B

div(ψ�η)(∇um) = lim
ε→0

ˆ
B

div(ψ�η)(∇um
ε ) = lim

ε→0
−
ˆ

B

ψ�η · ∇2um
ε

= lim
ε→0

−
ˆ

B

ψ�η ·
(

Γk,ε∂ku
m
ε +AεNε,m

)

= lim
ε→0

−
ˆ

B

ψ�η · (AεNε,m),

(5.2)

where we used (4.7). We have
ˆ

B

ψ�η ·
(
AεNε,m

)
= Aε[Nε,mψ�η] = (Aε −A)[Nε,mψ�η] +A[Nε,mψ�η].

By proposition 4.1 we have:∣∣∣∣∣(Aε −A)[Nε,mψ�η]

∣∣∣∣∣ � C

(
‖Nε,mψ�η‖L1o(ε2α−1) + ‖∇(Nε,mψ�η)‖L1o(εα)

)
� C‖ψ�η‖L1o(ε2α−1) + ‖∇(ψ�η)‖L1o(εα) → 0 as ε→ 0,

where we used (4.2). Note also that in view of A = ∇2v, we have for all ε, in view
of the fact that Nε,mψ ∈ C∞

c (B):

A[Nε,mψ�η] = −
ˆ

B

div(Nε,mψ�η)∇v.

Therefore, (5.2) impliesˆ
B

div(ψ�η)∇um = lim
ε→0

ˆ
B

div(Nε,mψ�η)∇v. (5.3)

If v is developable, we apply corollary 2.10 to ∇v, and choose accordingly the
open disk B around x ∈ V and the Lipschitz unit vector field �η : B → R2. Therefore,

∀y ∈ B �η(y) = �η(y + s�η(y)) and ∇v(y) = ∇v(y + s�η(y)) for all s for which y

+ s�η(y) ∈ B. (5.4)

We apply lemma 2.11 to f = ∇v and B = Bx to obtain for any ψ ∈ C∞
c (B):ˆ

B

div(Nε,mψ�η)∇v = 0, m = 1, 2, 3,

where we used the fact that Nε,mψ ∈ C∞
c (B). By (5.3) we conclude thatˆ

B

div(ψ�η)∇u = 0.

Once again applying lemma 2.11 and (5.4) implies that the Jacobian derivative ∇u
of the isometric immersion u is constant along the segments generated by the vector
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field �η in B. Therefore, ∇u satisfies condition (c) of proposition 2.1, which implies
the developability of u|V . As already mentioned, this part of the proof concludes
the proof of theorem 1.3 for u ∈ c1,α, 2/3 � α < 1.

To finish the proof of proposition 5.1 we need to prove the converse statement.
If, on the other hand, u|V is assumed to be developable, we proceed in a similar
manner. According to corollary 2.10 and lemma 2.11, for all x ∈ V there exist a
disk B ⊂ V centred at x and a unit Lipschitz vector field �η : B → R2 such that for
all ψ ∈ C∞

c (B):

∀y ∈ B �η(y) = �η(y + s�η(y)) and
ˆ

B

div(Nε,mψ�η)∇um = 0,m = 1, 2, 3.

Hence, using the fact that Aε
ij = ∂ijuε ·Nε we deduce for all ψ ∈ C∞

c (B) :

ˆ
B

div(ψ�η)(∇v) = −A[ψ�η] = lim
ε→0

Aε[ψ�η] = lim
ε→0

ˆ
B

3∑
m=1

(Nε,m∇2um
ε )ψ�η

= lim
ε→0

−
ˆ

B

3∑
m=1

div(Nε,mψ�η)∇um
ε

= lim
ε→0

−
ˆ

B

3∑
m=1

div(Nε,mψ�η)(∇um
ε −∇um) = 0,

where we used (4.1) and (4.2) to obtain a convergence of order o(ε2α−1) in the last
line. Following the same line of argument as before v is hence developable in view
of lemma 2.11. �
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Appendix A. Developabiltiy of each component can be shown
independently

Proposition A.1. Assume Ω ⊂ R2 is an arbitrary domain, 2/3 � α < 1 and
let u ∈ c1,α(Ω, R3) be an isometric immersion. Then for each m = 1, 2, 3, the
component um is developable in Ω.

Remark A.2. Obviously this statement does not guarantee that the constancy
lines or regions of ∇um are the same for the three components. If this fact is
independently shown (e.g. through geometric arguments) theorem 1.3 will also be
proved through this approach.
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Proof. In view of thereom 1.5, it suffices to show that DetD2um = 0 for each m.
Once again, we consider the mollifications uε = u ∗ φε defined on a suitably chosen
domain V � Ω and use (5.1) to calculate for m=1,2,3 and ψ ∈ C∞

c (V ):

−1
2
curlT curl(∇um ⊗∇um)[ψ] = lim

ε→0
−1

2
curlT curl(∇um

ε ⊗∇um
ε )[ψ]

= lim
ε→0

det∇2um
ε [ψ]

= lim
ε→0

ˆ
Ω

det(Γk,ε∂ku
m
ε +AεNε,m)ψ

= lim
ε→0

ˆ
Ω

det(Aε)(Nε,m)2ψ

+ lim
ε→0

ˆ
Ω

det(Γk,ε∂ku
m
ε )ψ

+ lim
ε→0

∑
some indices i,j,r,s

ˆ
Ω

Aε
ijN

ε,m(Γk,ε
rs ∂ku

m
ε )ψ.

The second term obviously converges to 0 in view of (4.7). For the third term we
use (4.1), (4.4) and (4.7) to prove:

∣∣∣∣∣
ˆ

Ω

Aε
ijN

ε,m(Γk,ε
rs ∂ku

l
ε)ψ

∣∣∣∣∣ � C‖Aε‖0;V ‖Γk,ε‖0;V ‖ψ‖L1 � C‖ψ‖L1o(ε3α−2) → 0.

Finally, the vanishing of the first term follows from Propostion 4.5 and (4.2) since

∣∣∣∣∣
ˆ

Ω

det(Aε)(Nε,m)2ψ

∣∣∣∣∣ � C‖(Nε,m)2ψ‖W 1,1o(ε2α−1)

� C

(
‖ψ‖W 1,1o(ε2α−1) + ‖∇Nε‖0;V ‖ψ‖L1o(ε2α−1)

)
� C‖ψ‖W 1,1o(ε3α−2) → 0. �

Appendix B. Little Hölder spaces and modulus of continuity

Here we will prove two auxiliary statements regarding little Hölder spaces.

Lemma B.1. Let V ⊂ U ⊂ Rn be open sets such that dist(V , ∂U) > 0 and f : U →
R. If for 0 < α < 1, [f ]0,α;U |r is o(1) as a function of r, then ‖fε − f‖0,α;V → 0 as
ε→ 0.
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Proof. Let ε < dist(V , ∂U). We first note that by lemma 3.1-(i) we have

‖fε − f‖0;V � c[f ]0,α;U |εεα. (B.1)

We therefore estimate

[fε − f ]0,α;V � [fε − f ]0,α;V |ε + sup
x, y ∈ V
ε < |x− y|

|fε(x) − f(x) + fε(y) − f(y)|
|x− y|α

� [fε − f ]0,α;V |ε + c‖fε − f‖0;V ε
−α

� [fε]0,α;V |ε + [f ]0,α;V |ε + c[f ]0,α;U |ε
� [fε]0,α;V |ε + c[f ]0,α;U |ε.

We now observe that

[fε]0,α;V |ε = sup
x, y ∈ V

0 < |x− y| � ε

∣∣∣∣∣
ˆ

Rn

(f(x− z) − f(y − z))φε(z) dz

∣∣∣∣∣
|x− y|α

� sup
x, y ∈ V

0 < |x− y| � ε

ˆ
Rn

|f(x− z) − f(y − z)|
|x− y|α |φε(z)| dz

� c[f ]0,α;U |ε.

Combining the latter two estimates we hence obtain

[fε − f ]0,α;V � c[f ]0,α;U |ε.

In view of (B.1) and the main assumption, we conclude with the desired approxi-
mation of f by fε ∈ C∞(V ) in C0,α. �

Proposition B.2. Let U ⊂ Rn be a bounded weakly Lipschitz domain and let
f : U → R be uniformly continuous. Then f admits an extension f̃ : Rn → R with
ωf̃ ;Rn � c(U)ωf ;U .

Proof. U is a bounded weakly Lipschitz domain, i.e. by the standard definition,
there is a covering of U of open sets Ui and charts ψi : Ui → Rn, 0 � i � N such that
U0 ⊂ U and for 0 � i � N , ψi is a bilipschitz diffeomorphism between Ui and an
open cylinder Vi := Bi × (−1, 1) ⊂ Rn such that ψi(U ∩ Ui) = V +

i := Bi × (0, 1)
and ψi(∂U ∩ Ui) = Bi × {0}, where Bi ⊂ Rn−1 is the unit ball.

For each 1 � i � N , consider the function hi := f ◦ ψ−1 : V +
i → R. We can esti-

mate the modulus of continuity of each hi from above by the modulus of continuity
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of f using the maximum bilipschitz constant of the ψi, which depends on U :

ωi := ωhi;V
+

i
� c(U)ωf ;U .

Note that ωi is necessarily nondecreasing by definition. Since each V +
i is convex,

ωi is also subadditive, i.e. for all r1, r2 � 0,

ωi(r1 + r2) � ωi(r1) + ωi(r2).

Moreover the uniform continuity of f implies that

lim
r→0

ωi(r) = 0.

A direct application of [57, Theorem 13.16] implies that hi admits an extension h̃i,
given by

h̃i(x) := sup{hi(y) − ωi(|x− y|); y ∈ V +
i },

to the whole Rn also satisfying

ωh̃i;Rn � ωi � c(U)ωf ;U .

Let {θi}0�i�N be a partition of unity corresponding to the covering Ui, i.e.

∀ 0 � i � N θi ∈ C∞
c (Ui, [0, 1]) and

N∑
i=0

θi = 1.

We extend θ0f : U0 → R to f̃0 : Rn → R, and θi(h̃i ◦ ψi) : Ui → R to f̃i : Rn → R

by the trivial zero extension and write

f̃ :=
N∑

i=0

f̃i.

The conclusion follows. �
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